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Abstract 11 

 12 

Ultraviolet (UV) irradiation is commonly used to control pathogen loads in recirculation aquaculture systems (RAS), 13 

although these micro-organisms can be shielded by particles in the water, and some species tolerate very high UV 14 

doses. The objective of this study was to evaluate membrane filtration (MF) as an alternative, or complimentary, 15 

treatment to UV irradiation for pathogen control in RAS, as well as examine the operation and cost of each treatment. 16 

In a pilot-scale RAS, both MF and UV were used to treat wastewater for 30 days and water samples were collected 17 

biweekly and analysed for culturable bacteria, suspended solids, UV transmittance and other parameters. Bacterial 18 

control efficiencies were similar between both MF and UV treatments, which removed 99% of total bacteria and 98% 19 

of heterotrophic bacteria, respectively. Surface fouling was negligible for the UV while MF required biweekly 20 

cleaning to maintain operation. However, MF had the additional benefit of removing 96% of suspended solids, which 21 

resulted in increased UV transmittance. Capital and operating costs of MF were similar to UV, but only when MF 22 

treated a fraction of the wastewater compared with UV. We conclude that MF represents a potential complimentary 23 

technology to enhance UV irradiation, especially to minimise pathogens in RAS that are shielded by particles or 24 

tolerate UV. 25 
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 29 

Shortened title:  30 

Membrane filtration of bacteria in RAS 31 

 32 

1. Introduction 33 

 34 

Recirculation aquaculture systems (RAS) use various combinations of water treatment technologies to remove 35 

pathogens and other wastes derived from fish excretions and uneaten feed, in order to reuse and supply high quality 36 

water to farmed fish (Piedrahita, 2003). Recirculation of waste materials and pathogens can impart added stress on 37 

fish with associated morbidity, and can increase the prevalence of infection and clinical disease (Conte, 1992; 38 

Wedemeyer, 1996). Micro-screen drum filters are typically used in RAS to remove wastes greater than 50 microns, 39 

but smaller particles and pathogens can often bypass these micro-screens (Patterson et al, 1999). Ozone is often used 40 

in RAS to deconstruct fine particles and pathogens, but using ozone can present a health risk to fish as well as humans 41 

because it is toxic at low levels (Sharrer et al., 2005; Wedemeyer, 1996). UV irradiation is typically used in RAS 42 

either alone, or in combination with ozone, to inactivate pathogens, but pathogens can sometimes tolerate this 43 

treatment when “fouling” or high turbidity occurs, which shields pathogens from the UV exposure (Lazarova et al., 44 

1999; Liltved and Cripps, 1999; Wedemeyer, 1996). In addition, some pathogens can tolerate very high doses of UV, 45 

and these proliferate within the RAS causing increased pathogen loads for the fish (Wedemeyer, 1996).  For example, 46 

Flavobacterium psychrophilum has been found to require four-fold higher UV doses than the recommended dose of 47 

30 mJ/cm2 (Sharrer et al., 2005) to achieve 5-log reductions of this pathogen (Hedrick et al., 2000). This bacterial 48 

pathogen has been found in several aquaculture facilities of rainbow trout and in some cases can cause mortalities up 49 

to 90% (Nilsen et al., 2011). Lastly, UV has been found to inactivate most, but not all bacteria in RAS, and this can 50 

lead to the selection and proliferation of opportunistic pathogens that destabilizes the microbial community 51 

(Attramadal et al., 2012). Therefore, ineffective control of pathogens using UV irradiation poses a potential risk to 52 

fish health and the biocontrol aspects of RAS. 53 
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 Membrane filtration (MF) is a process technology that physically separates solids from fluid using semi-54 

permeable membranes that can be classified based on pore size: either as microfiltration, ultrafiltration, nanofiltration 55 

or reverse osmosis (Madaeni, 1999; Peters, 2010). Ultrafiltration membranes have pore sizes between 0.005 to 0.02 56 

µm (Madaeni, 1999; Peters, 2010; Zhou and Smith, 2002) that allow dissolved ions and water to diffuse, while 57 

retaining suspended particles, protozoa, bacteria, viruses and other waste components larger than the applied pore size 58 

(Guo et al., 2009). Retained wastewater is continually or periodically drained from the MF system, but particles can 59 

clog and adsorb onto, or within the membrane’s pore structures that results in reduced filtration rates and higher 60 

transmembrane pressures (TMP) (Le-Clech et al., 2006; Madaeni, 1999). Continual fouling and increases in TMP can 61 

damage membranes. However, cleaning strategies, such as air-scouring and chemical washing can reduce fouling rates 62 

and maintain filtration efficiency, which is essential for long-term operation (Le-Clech et al., 2006; Madaeni, 1999; 63 

Zhou and Smith, 2002). In the past, MF technologies were considered costly, but advances in MF manufacturing 64 

efficiency and its widespread use in other sectors have increased its affordability and potential application in the 65 

aquaculture industry (Gomez et al., 2007). A study using a dead-end MF module with a pore size of 0.05 µm removed 66 

94% of suspended solids with a 76% reduction in biochemical oxygen demand from aquaculture wastewater (Viadero 67 

and Noblet, 2002). However, MF has only been evaluated for solids and bacterial removal on a lab-scale, thus larger 68 

scale studies in RAS are needed in comparison to established technologies, e.g. UV. 69 

 Therefore, due to its various properties, MF technology may present a viable alternative or complimentary 70 

treatment to UV for the control of fish pathogens in RAS. The objective of this study was to compare MF and UV in 71 

terms of the removal efficiency of culturable bacteria, additional effects on water quality, fouling resistance and 72 

capital/operating costs in a pilot-scale RAS. 73 

 74 

2. Materials and methods 75 

 76 

2.1 Recirculation Aquaculture System 77 

The study was conducted at the Alma Aquaculture Research Station (University of Guelph, Elora, ON, Canada) using 78 

a warm-water (i.e. 20-23 °C) RAS that held Nile tilapia (Oreochromis niloticus) broodstock. The 5,600 L system was 79 

composed of twelve circular fibreglass tanks (340 L) that contained 271 fish in total with a mean weight of 1.3 ± 0.2 80 
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kg (± standard deviation). The fish were fed a commercial diet by automatic belt feeders. The study was carried out 81 

in accordance with the criteria set out by the Canadian Council of Animal Care (CCAC, 2005). 82 

 In the RAS, wastewater from fish tanks (Figure 1) was treated using a combination of a 60 µm rotating micro-83 

screen drum filter, foam fractionator, fluidized micro-bead biofilter, CO2 gas stripper and compressed oxygen injection 84 

system (PRAqua Technologies  Ltd., BC, Canada). After oxygenation, the wastewater was disinfected by a 22 L 85 

closed-channel UV reactor (Trojan UV LogicTM  midflow model 02AM20, Trojan Technologies Inc., ON, Canada) at 86 

a rate of 193.5 ± 4.7 L/min before recirculating to the fish tanks. The low-pressure UV reactor was capable of 87 

producing a maximum UV dose of 60 mJ/cm2 with two lamps at a wavelength of 254 nm and a maximum flow rate 88 

of 227 L/min. The RAS recycled 98-99 % of the total flow and water lost through evaporation or drum filter cleaning 89 

cycles was replaced with high quality well water (8.5°C). 90 

 91 

2.2 Membrane Filtration System 92 

The MF system was composed of a membrane element (LSU-1515, Toray Membrane Inc., CA, USA) submerged in 93 

a vertical tank of water (1.8 m height x 0.2 m diameter), termed the “membrane tank” with an overflow port at the top 94 

(Figure 2). The membrane filter was capable of withstanding a maximum TMP of 100 kPa and maximum flow rate of 95 

33 L/min. For more info on the MF system, see Table 1. Before UV treatment, wastewater was diverted into the MF 96 

system in order to supply both MF and UV systems with exactly the same source and quality of wastewater. After 97 

influent wastewater entered the MF system, two streams were produced; water that diffused through the membranes, 98 

termed “permeate”, and wastewater that was retained outside the membranes and drained, termed “retentate”. Influent 99 

wastewater, permeate and retentate flow rates were adjusted every two or three days to approximately 16, 15 and 1 100 

L/min respectively. Retentate was continuously discarded and the permeate was recirculated to the collection sump 101 

(Figure 1). 102 

 Three cleaning strategies were applied to the MF system at different intervals to control membrane fouling: 103 

continuous air-scouring, membrane relaxation cycles and maintenance cleaning. For air-scouring, air was generated 104 

at a rate of 25 L/min connected to an air stone at the bottom of the membrane tank (Figure 2). For relaxation cycles, a 105 

repeat cycle timer turned off the permeate pump for one minute every 30 minutes to enhance air-scouring. For 106 

maintenance cleaning, the MF was taken off-line, soaked in a solution of 300 mg/L (0.03 %) sodium hypochlorite for 107 
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30 minutes, rinsed with well water for 90 minutes and then re-installed in the RAS after no free chlorine (Hach Method 108 

4500-Cl) was detected in the permeate stream (Toray Membrane Inc., CA, USA). The TMP was measured and 109 

recorded every minute using a pressure transducer connected to a data logger (Lascar Electronics Inc., PA, USA), 110 

which was used to calculate membrane fouling resistence (see section 2.4). 111 

 112 

2.3 Water Sampling and Analyses 113 

The MF system processed wastewater from the RAS, in parallel with the UV system, for 30 days. Water samples were 114 

collected, in triplicate, from three sampling locations within the RAS: 1. before MF/UV treatment (influent), 2. after 115 

MF treatment (effluent) and, 3. after UV treatment (effluent; Figure 1 and 2). Water samples were collected every two 116 

or three days, and each sample replicate was taken five minutes apart. For bacterial analyses, separate water samples 117 

were collected in triplicate into sterile bottles, from the three sampling ports within the RAS and then placed on ice 118 

for later analysis.  119 

 Water samples were measured for total bacteria counts using the NEO-GRID/ISO-GRID membrane filtration 120 

system (Neogen Corp., MI, USA) as described in the Official Methods of Analysis 986.32 (AOAC, 2007). An aliquot 121 

of each sample was vacuum-filtered, in duplicate, on an iso-grid, placed on tryptic soy agar (Sigma-Aldrich Co., MO, 122 

USA) and incubated for three days at 18 °C. After incubation, colonies were counted, converted to the corresponding 123 

Most Probable Number (MPN) and then multiplied by the dilution factor to obtain colony forming units (CFU) /mL 124 

of total bacteria (AOAC, 2007). Heterotrophic bacteria were measured at the Agriculture and Food Laboratory 125 

(Guelph, ON, Canada) according to Standard Method 9215 (APHA, 1998).  126 

 For chemical water quality, influent and effluent samples were measured for dissolved oxygen, temperature and 127 

pH using handheld probes (Oxyguard A/S, Farum, Denmark). The UV transmittance (10^-(UV absorbance / cm) x 128 

100) was measured at a 1 cm path length and a wavelength of 254 nm using a spectrophotometer (Hewlett-Packard 129 

Co., CA, USA). Turbidity and total dissolved solids were measured using a turbidimeter (HF Scientific, Fort Myers, 130 

FL, USA) and a spectrophotometer (Hach, London, Canada). Total suspended solids were measured using Standard 131 

Method 2560 (APHA, 1998). 132 

 133 

2.4 Data and Cost Analyses 134 
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Removal efficiencies achieved by MF and UV treatments were calculated for each set of water samples (((influent - 135 

effluent)/influent) x 100%). For bacterial analyses, percent removal was used to calculate Log10 reductions (-log10(1 - 136 

(% removal/100)) (Metcalf and Eddy, 2003). UV doses were calculated based on the UV intensity and water 137 

characteristics ((UV intensity)*(exposure time)*(transmittance factor), mJ/cm2) (Sharrer et al., 2005). 138 

 Fouling resistance experienced by the MF system was calculated based on Darcy’s equation (Belfort et al., 1994): 139 

J=
ΔTMP

η(Rm + Rf)
  140 

where J is permeate flux (i.e. 35.78 L/m2/hr), ΔTMP is change in transmembrane pressure (kPa), η is water viscosity 141 

at 22 °C (i.e. 0.02 kPa·min), Rm is membrane resistance against clean water during the first hour (i.e. 3.34x105 /m) 142 

and Rf is fouling resistance (/m). Fouling rates were calculated using fouling resistance values and time (t) between 143 

each maintenance cleaning (i.e. (Rf,t2 – Rf,t1)/(t2 – t1), /m/day (Fan and Zhou, 2007). 144 

 A Shapiro-Wilk test was performed on data from each water quality parameter to determine data normality (Field 145 

et al., 2012). To test for a difference in removal efficiencies between MF and UV treatments, two-sample Student’s t-146 

test was performed on data sets that were normally distributed and a two-sample Wilcoxon signed-rank test was 147 

performed on data sets that were not (Field et al., 2012). All statistical analyses were completed using R® version 148 

2.11.1 software (R Core Development Team, 2011) and p-values below 0.05 were considered significant. 149 

 The capital and operating costs of the small pilot-scale MF and UV systems were calculated based on quotes 150 

(USD$) from commercial manufacturers (i.e. Toray Membrane and Trojan Technologies). The cost of pumps and 151 

piping was calculated based on an assumption of 1.5 times the cost of the MF module based on the extra need for a 152 

reversible permeate pump, air pump and membrane tank while the cost was 0.5 times the cost of UV, as according to 153 

Cheryan (1998) and Viadero and Noblet (2002). The electricity costs ($0.12/kWh; USA average 2011) for MF were 154 

based on consumption from a 0.24 kW permeate pump and 0.17 kW air pump while the UV system used a 0.35 kW 155 

permeate pump and 0.30 kW UV reactor. Tax and labour were excluded since it varies based on location, water quality 156 

and automation of the treatments. 157 

 158 

3. Results  159 

 160 
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 In the 30-day study, both MF and UV treatments were very effective at achieving high removal efficiencies of 161 

both total and heterotrophic bacteria (Table 2). No significant differences existed in total (Wilcoxon test; W = 50, n = 162 

12, p = 0.085) or heterotrophic (W = 12, n = 5, p = 1.0) bacteria between MF and UV treatments. However, two counts 163 

of total bacteria (i.e. 1300 and 1500 CFU/mL) from MF effluent collected on day four and seven were not included in 164 

the analysis because they were four-fold higher than influent levels, which indicated bacterial contamination inside 165 

the membrane filter. Thereafter, the membrane filter was disinfected (maintenance cleaning) every two or three days 166 

afterwards to reduce contamination.  167 

 Mean UV intensity and transmittance were 17.4 ± 0.2 mW/cm2 and 92.0 ± 0.5 %, which produced a mean UV 168 

dose of 110.0 ± 2.0 mJ/cm2. The UV system did not require any cleaning because UV intensity did not drop below 169 

the recommended minimum of 7.5 mW/cm2. 170 

 Continuous air-scouring, membrane relaxation cycles and maintenance cleanings were effective at reducing 171 

fouling of the MF system (Figure 2). After the first maintenance cleaning, the MF system achieved a mean fouling 172 

rate of 7.04 ± 1.19 x 104 /m/day, or a change in TMP of 0.66 ± 0.11 kPa/day based on nine filtration cycles. On day 173 

0, the MF system had an initial TMP of 3.1 kPa (membrane resistance) and after 30 days of operation it had a final 174 

TMP of 22.9 kPa. In addition to bacteria, MF achieved significant removal efficiencies of turbidity and total suspended 175 

solids and had a significant effect on UV transmittance, pH and dissolved oxygen (Table 3).  176 

 The cost comparison showed that one MF element had lower capital and operating costs than UV, but less 177 

wastewater would be treated (Table 4). In order to filter the same flow as UV, six MF elements would be required, 178 

consequently increasing the capital and operating costs of the MF system to 3.8 times that of comparable UV system. 179 

 180 

4. Discussion 181 

 182 

This study demonstrated for the first time that MF can achieve similar bacterial removal efficiencies compared with 183 

UV treatment in RAS, at least at a small, pilot-scale level. Recent studies have evaluated membrane bioreactors (MBR) 184 

for bacteria retention for nitrogen removal at low flow rates in RAS (Holan et al., 2014; Sharrer et al., 2007; Wold et 185 

al., 2014), although this is the first study to investigate bacterial removal at high flow rates in RAS. The MF system 186 

achieved approximately 2 log reductions of total bacteria, which was similar to previous MF studies (Guo et al., 2009; 187 
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Nakatsuka et al., 1996). In comparison, the UV system achieved 2 log reductions while a study by Sharrer et al. (2005) 188 

only achieved 0.5 and 0.7 log reductions of heterotrophic bacteria from a commercial RAS at UV doses of 78 and 150 189 

mJ/cm2. However, MF and UV systems in Sharrer et al. (2005) were challenged with approximately 10-fold and 2.5-190 

fold higher levels of bacteria and suspended solids compared with our study. High levels of suspended solids are 191 

known to block UV transmittance and reduce UV disinfection efficiency (Gomez et al., 2007; Lazarova et al., 1999; 192 

Wedemeyer, 1996). For example, Gomez et al. (2007) achieved higher pathogen removal efficiencies using MF 193 

compared with UV when treating municipal wastewater with UV transmittance levels between 37-76%. In comparison 194 

to our study, influent UV transmittance levels were higher (i.e. 89-95%), which suggested that the UV system was 195 

able to achieve maximum bacterial removal and match the efficiency of the MF system. The MF treatment may have 196 

been able to achieve higher bacterial removal efficiencies than UV if challenged with higher concentrations of 197 

suspended solids and bacteria, but more research is required. 198 

 Since UV disinfection efficiency is reduced by suspended solids, using MF as a small side-stream treatment or 199 

in combination with UV may be a better alternative. In this study, MF achieved high removal efficiency of suspended 200 

solids, which in turn improved UV transmittance (Table 3). Thus, if MF were used as a pre-treatment in RAS with 201 

more concentrated wastewater, the MF could remove particles that shield pathogens from UV and improve overall 202 

UV disinfection efficiency (Gomez et al., 2007; Liltved and Cripps, 1999; Wedemeyer, 1996). In addition, the MF 203 

system removed fine solids that bypassed micro-screen filtration that would have degraded in the rearing system and 204 

resulted in the secondary production of ammonia and pathogenic bacteria that can negatively impact fish health 205 

(Patterson et al., 1999; Piedrahita et al., 2003). Alternatively, MF could replace UV entirely and only treat part of the 206 

wastewater, similar to a foam fractionator, to reduce bacteria and solids in RAS while avoiding negative effects of 207 

UV. UV has been found to inactivate most bacteria and stimulate the rapid proliferation of opportunistic pathogens 208 

(r-selection) in their place that can destabilise the microbial community (Attramadal et al., 2012; Wold et al., 2014). 209 

The dominance of non-opportunistic bacteria (k-strategists) is proposed to inhibit proliferation of opportunistic 210 

bacteria in RAS, at least for marine fish larvae (Skjermo et al., 1997). Therefore, constant removal of bacteria and 211 

solids using MF would remove the substrate for bacteria and possibly prevent sporadic proliferation of opportunistic 212 

pathogens in RAS. MF may be an alternative to the questionable long-term use of UV, especially since disease control 213 

is still a major challenge in RAS that use UV.  214 
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 A low rate of membrane fouling found in the present study indicates that MF has potential for long-term 215 

operation in RAS as long as biweekly cleanings are performed. The highest TMP value achieved by the MF system 216 

over the 30-day study (i.e. 25.2 kPa) did not reach the maximum value of 70 kPa, which requires recovery cleaning in 217 

order to reduce TMP for continued operation. The membrane fouling rate may have been further reduced by applying 218 

more cleaning strategies, such as permeate backwashing, while the three strategies employed in the present study were 219 

sufficient. However, the MF system treated a low concentration of suspended solids, as mentioned previously, and 220 

additional studies are needed to evaluate this technology in larger-scale RAS. In addition, a study that used a MBR to 221 

remove nitrogen from a RAS of cod larvae (Gadus morhua) found that feeding dry feed resulted in higher membrane 222 

fouling than feeding live feed (Holan et al., 2014). In comparison with UV, no maintenance or recovery cleaning 223 

strategies were required, but again this may be due to low influent levels of suspended solids. Fouling is a larger 224 

challenge for long-term operation of MF compared to UV, but further advances in membrane resistance, cleaning 225 

strategies and design could reduce fouling rates and increase the long-term potential of MF in RAS.  226 

 New wastewater treatment technologies need to be affordable in order for their successful transition and use in 227 

the aquaculture industry. Increased affordability was reflected in the present study as the cost of the single MF system 228 

was cheaper and treated twice the flow rate of a similar MF system in RAS reported previously (Viadero and Noblet, 229 

2002). The cost comparison showed that the advantage of MF over UV is the low capital cost of the MF elements and 230 

their long lifespan, but the need for more pumps and frequent cleaning are disadvantages for MF. The capital cost of 231 

the MF system with one element was lower than the UV system (Table 4). However, a MF system composed of six 232 

elements are needed to treat the same flow rate as UV (i.e. 200 L/min) and this larger MF system would result in 233 

greater than 1.5x the capital cost and 3.5x the operating cost. The higher cost of MF reduces its potential to completely 234 

replace UV and treat a high flow rate of wastewater in RAS, but MF may be affordable as a small side-stream 235 

treatment.  236 

 This study demonstrated that MF can achieve equivalent bacterial removal efficiencies compared to UV 237 

irradiation in RAS. Removal of suspended solids and low membrane fouling rates achieved by MF indicate an 238 

additional advantage and potential for long-term operation in RAS while frequent cleaning and higher 239 

capital/operating cost of a larger MF system are potential disadvantages. Results from this study indicate that MF may 240 

be best used as a side-stream treatment complementary to UV in RAS in order to minimise UV-shielded and tolerant 241 
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pathogens that induce disease. However, large-scale evaluations of MF in RAS under various operating conditions are 242 

required before MF can be confidently used as a pathogen control measure in commercial aquaculture systems. 243 
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