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Abstract 

T cells have the capacity to eradicate diseased cells, but tumours present considerable 

challenges that render T cells ineffectual. Cancer cells often make themselves almost 

'invisible' to the immune system, and they sculpt a microenvironment that suppresses T 

cell activity, survival and migration. Genetic engineering of T cells can be used 

therapeutically to overcome these challenges. T cells can be taken from the blood of 

cancer patients and then modified with genes encoding receptors that recognize cancer-

specific antigens. Additional genes can be used to enable resistance to 

immunosuppression, to extend survival and to facilitate the penetration of engineered T 

cells into tumours. Using genetic modification, highly active, self-propagating 'slayers' of 

cancer cells can be generated. 

Introduction 

Antibody-based drugs have become a mainstay of cancer treatment, but their use is 

limited to the small fraction of cancer targets that present as whole proteins on the cell 

surface (Mosmann, Cherwinski, & Bond, 1986). Most cancer targets are hidden inside 

cancerous cells where antibodies cannot reach them. By contrast, T cells employ T Cell 

Receptors (TCRs) which target the peptide antigens found on the cell surface as a marker 

of cancer and viral infection inside the cell. TCRs can potentially target any of the 

markers that are hallmarks of cancer and enables the development of drugs against 

cancers for which no antibody targets are known.  

Unfortunately, the TCRs found naturally on the surface of killer T cells are primarily 

designed to recognise virally infected cells, and are often not sensitive enough to 

recognise cancer, which is then ignored by the immune system (Hirota et al., 2011).  The 

issue of cancer recognition has been overcome by boosting the ability of cancer-specific 

TCRs to bind to their targets with several million fold higher affinity than natural TCRs. 

These high affinity, soluble TCRs have been equipped with the ability to activate all the T 

cells of the body to kill cancer, even those that would normally not recognise cancer, 

thereby bringing the entire weight of the immune system to bear against the disease. 
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These, engineered TCRs, called ImmTACs (Immune Mobilising mTCR against Cancer) 

created by Oxfordshire biotechnology company, Immunocore (www.immunocore.com), 

mobilise T cells to kill cancer cells and overcome immune tolerance to cancer. In this 

paper we will describe how this process is applied. 

 
T Cells 
 
Helper T (TH) cells are critical to coordinating the activity of the immune response. The 

chemical messages they secrete (cytokines) stimulate the non-specific immune response 

to continue, and strengthen and boost appropriate specific responses. Helper T cells 

have sometimes been called the "conductors" of the immune system because they 

coordinate activity like the conductor of a symphony (Larsen et al., 2011). They have also 

been called the "generals" of the immune system because they call up troops of B cells, 

cytotoxic T cells, and other helper T cells to go into battle against invading pathogens 

(Fig. 1).  

 

 

Macrophages alert helper T cells to the presence of pathogens. These phagocytic 

macrophages engulf bacteria and viruses, and can display foreign antigens - the 

identifying proteins of the bacteria or viruses - on the surface of their cell membrane 

(Said et al., 2010). Embedded within the macrophage cell membrane is a molecule 

produced by the human leukocyte antigen (HLA) complex. The helper T cells bind 

simultaneously to the foreign antigen and the HLA molecule. Only TH cells with 

receptors that match those of the foreign antigen on the activated macrophage are able 

 

 

 

Figure 1. Helper T cells regulate both humoral and cellular immunity 

http://www.immunocore.com/
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to bind and respond to the call to action. Once bound, the ‘helper’ T cell proliferates to 

form a clone of cells, each capable of recognizing the same antigen. The members of the 

‘helper’ T clone, the generals, generate the chemical signals that attack the foreign body 

(Saraiva et al., 2009). 

 

Some signals sent by helper T cells stimulate cytotoxic T cells (TC). Cytotoxic T cells (also 

known as killer T cells) bind cells that have been altered, such as by viral infection; they 

avoid healthy cells. Surface antigens on the altered cell perform the binding. These 

antigens are specific to the offending agent, and match receptors in the membrane of the 

specific TC cell. In addition, the TC cell simultaneously binds an MHC molecule on the 

surface of the infected cell. Once bound by both the foreign antigen and the HLA 

molecule, the cytotoxic T cell secretes a chemical called "perforin," which destroys the 

offending cell (Fig. 2).  

 

 
 

Helper T cells stimulate the production of antibodies. Chemical signals from helper T 

cells stimulate the production of B cells specific to an infecting pathogen, and then 

stimulate the B cells to differentiate into plasma cells. The plasma cells are factories for 

the production of antibodies, which are specific to given pathogens circulating in blood 

or lymph (Hu, 2007). Antibodies work by blocking the receptors that allow pathogens to 

attach to target cells, or by creating clumps of bacteria. Clumping makes the job of 

phagocytes easier, as they will more readily engulf bacteria in clumps. Bound antibodies 

sometimes serve as tags, called opsonins, enhancing phagocytosis. Antibody binding can 

 

 

Figure 2. A cytotoxic T cell attacking a host cell that is expressing foreign 
antigens 
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also initiate a cascade of biochemical reactions, activating a set of chemicals known as 

complement. Activated complement components can form holes in bacterial membranes 

and enhance inflammation (Rang, 2003). 

 
Nature of Research 
 
Harnessing the power of the immune system's killer T cells is a key to the treatment of 

certain cancers. The T-cells of the blood are designed to seek out and kill invading 

pathogens, such as viruses and bacteria. T-cells are not naturally effective at seeking and 

destroying cancer cells (Harrington et al., 2005). Immuno-oncology represents a sea 

change in terms of cancer treatment. Cancer in the past has been largely treated by 

surgery, chemotherapy or radiotherapy. However, all are burdened with the inherent 

problem of how to spare healthy tissue from irreparable damage while ensuring that 

every cancer cell is destroyed, deactivated or removed (Nakayamada et al., 2012). 

 
This not withstanding, there is another approach based on the immune system, a 

complex web of cells, tissues and organs that constantly strive to keep the body free of 

disease, which almost certainly includes keeping cancerous cells in check.  Jones et al. 

(1999) noted that the immune system plays a key role in cancer prevention. The immune 

system has two basic ways of fighting invading pathogens and the body's own cells that 

have been affected. One involves the release of free-floating proteins, or antibodies, that 

lock on to an invader, triggering other immune cells to come in and sweep them away. A 

second is cellular immunity, where T-cells seek out and destroy invading pathogens.  

 

This research has allowed the creation of a process where protein molecules attach 

themselves to cancer cells, strongly and very specifically, whilst ignoring healthy cells. 

The technology, called ImmTAC is based on the "T-cell receptor", the protein that sticks 

out of the surface of the T-cell and binds to its enemy target. ImmTACs are bispecific 

proteins that bind strongly to cancer cells at one end, and T-cells at the other – so 

introducing cancer cells to destruction. 
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Image courtesy of Immunocore: T cell (grey) killing a tumour cell (yellow) 
 
 

 
 
 
Image courtesy of Immunocore: Melanoma cancer cells (red) are targeted and killed by T 

cells (blue) when activated by Immunocore’s  drug, IMCgp100 (a melanoma specific 

ImmTAC). Healthy cells (green) are ignored and left undamaged.  

 

This process uses the scaffold of the T-cell receptor to make something that is very good 

at recognizing cancer even if it doesn't exist naturally. Although T-cells are naturally 

constructed to recognise cancer cells they can be forced to do so. The potential you have 

if you can engineer T-cell receptors is quite enormous. You can find any type of cell and 

any kind of target. This means the approach can in theory be used against any cancer, 

whether it is tumours of the prostate, breast, liver or the pancreas.  

 

The key to the success of the technique is being able to distinguish between a cancer cell 

and a normal, healthy cell. Immunocore's drugs do this by recognising small proteins or 
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peptides that stick out from the surface membrane of cancer cells. All cells extrude 

peptides on their membranes and these peptides act like a shop window, informing 

practitioners of what is going on within the cell, and whether it is cancerous or not. 

 
As T Cell Receptors naturally recognise diseased cells engineering high affinity T Cell 

Receptors and linking them to an antibody fragment, anti-CD3 can activate the immune 

system to kill the targeted cancer or viral cells. These bi-specific proteins, called 

ImmTACS, have the potential to be extremely potent anti-cancer or anti-viral agents.  

 

The most advanced ImmTAC drug, IMCgp100, is currently in clinical trials in melanoma 

patients in both the US and UK. This research has the potential to have a profound 

effect upon the way cancer is treated. 

 
Conclusion 
 
Using the body's immune system to fight cancer is one of the most promising areas of 

therapy, and could prove particularly helpful in the treatment of metastatic disease, when 

the cancer has spread from its original site.  The immune system is complex and is 

composed of many kinds of cells, proteins and chemical messengers that modulate how 

it works. The challenge is to build a database of peptide targets on cancer cells in order to 

design T-cell receptors that can target them, leaving healthy cells alone and so minimising 

possible side effects – or that is the hope.  

 

The first phase clinical trial of IMCgp100 in 31 patients with late stage malignant 

melanoma was designed to evaluate the safety of IMCgp100 and to establish a tolerable 

dose. Dose dependent toxicity has been demonstrated and the Maximum Tolerated Dose 

established as 600 ng/kg. Data from the Phase I trial indicated promising early signs of 

efficacy and Immunocore has initiated a Phase IIa study to optomise the dosing regimen 

and maximise the efficacy of IMCgp100. A danger with deploying T-cells against cancer 

is their potency. Yet it is this very potency that it is so exciting because it could lead to a 

cure for metastatic disease that has spread around the body. It is not possible currently to 

make a single-mechanism drug that would come anywhere near to a T-cell in terms of its 

potency. To make an impact on cancer, a potent treatment is required. Exploiting the 

immune defences to recognise and eliminate cells that have become cancerous has this 

potency and immunotherapy may hold one of the keys to the treatment of cancer. 
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