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Abstract 

Atlantic salmon (Salmo salar) possess enzymes required for the endogenous biosynthesis of n-3 long-

chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic 

acid (DHA), from a-linolenic acid (ALA). Linoleic acid (LA) competes with ALA for LC-PUFA 

biosynthesis enzymes leading to the production of n-6 LC-PUFA, including arachidonic acid (ARA). 

We aimed to quantify the endogenous production of EPA and DHA from ALA in salmon fed from 

first feeding on diets that contain no EPA and DHA, and to determine the influence of dietary LA 

and ALA:LA ratio on LC-PUFA production. Salmon were fed from first feeding for 22 weeks with 

three diets formulated with linseed and sunflower oils to provide ALA:LA ratios of approximately 

3:1, 1:1 and 1:3. Endogenous production of n-3 LC-PUFA was 5.9, 4.4 and 2.8 mg per g fish and that 

of n-6 LC-PUFA was 0.2, 0.5 and 1.4 mg per g of fish in salmon fed diets with ALA:LA ratios of 

3:1, 1:1 and 1:3, respectively. The ratio of n-3:n-6 LC-PUFA production decreased from 27.4 to 2.0, 

and DHA:EPA ratio increased and EPA:ARA and DHA:ARA ratios decreased, as dietary ALA:LA 

ratio decreased. In conclusion, with a dietary ALA:LA ratio of 1, salmon fry/parr produced around 

28 µg n-3 LC-PUFA per g of fish per day, with a DHA:EPA ratio of 3.4. Production of n-3 LC-PUFA 

exceeded that of n-6 LC-PUFA by almost 9-fold. Reducing the dietary ALA:LA ratio reduced n-3 

LC-PUFA production, and EPA:ARA and DHA:ARA ratios, and increased n-6 LC-PUFA 

production, and DHA:EPA ratio. 
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Introduction 1 

      The omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA; 2 

20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids, are recognised as being key essential nutrients 3 

in the human diet, providing a range of health benefits through their molecular, cellular and 4 

physiological actions(1,2). While n-3 LC-PUFA have physiological functions in their own right as key 5 

components of cellular membranes(3) and regulators of gene expression(4), many effects are dependent 6 

upon their antagonism of n-6 PUFA, especially arachidonic acid (ARA, 20:4n-6), metabolism(5). 7 

Specifically, both EPA and DHA are precursors of eicosanoids and other highly biologically active 8 

derivatives that have important roles in blood homeostasis and the regulation of inflammation, which 9 

help to mitigate the pro-inflammatory effects of the high and imbalanced dietary n-6 PUFA content 10 

of the Western-type, industrialised diet(6-9). Thus, dietary n-3 LC-PUFA are critical in promoting 11 

neural development and function(10-11), and have beneficial impacts in several pathological conditions 12 

including cardiovascular disease, certain inflammatory diseases, and some cancers(12-15). 13 

      Fish and seafood are the major dietary source of n-3 LC-PUFA with so called “oily” fish such as 14 

Atlantic salmon (Salmo salar) being one of the best in delivering a physiologically effective dose to 15 

human consumers(16-18). This is largely due to the primary production of n-3 LC-PUFA being almost 16 

exclusively of aquatic origin and thus marine food chains are rich in EPA and DHA with fish 17 

accumulating them from their diet(19-21). However, global fisheries are at maximum levels of 18 

exploitation, and production has stagnated for almost a quarter of a century, with the increasing 19 

demand of the burgeoning human population for fish and seafood being met by aquaculture(22). While 20 

over 50 % of all fish and seafood is derived from aquaculture(22), the n-3 LC-PUFA content of farmed 21 

produce could only be guaranteed by basing feeds on fishmeal (FM) and fish oil (FO), which are 22 

derived from marine fisheries that are also at sustainable limits(23). Therefore, FO and FM are finite 23 

resources on an annual basis, and their supply would limit aquaculture growth if they were not 24 

increasingly replaced in aquafeeds by plant meals and vegetable oils (VO) derived from agriculture(24-25 
26).  However, terrestrial plants do not produce LC-PUFA and, consequently, the use of VO in 26 

aquaculture has reduced the level of n-3 LC-PUFA in feeds with subsequent impacts on the levels of 27 

these nutrients in farmed fish(18,23).  28 

         In contrast, VO can be rich sources of C18 PUFA including both a-linolenic acid (ALA; 18:3n-29 

3) and linoleic acid (LA; 18:2n-6)(27). Atlantic salmon possesses all the genes/enzymes required for 30 

the endogenous biosynthesis of both EPA and DHA from ALA(28,29). Specifically, salmon have been 31 

shown to have fads2 genes, coding for distinct desaturase proteins with separate D6 and D5 activities, 32 

and an elovl5 elongase that are necessary for the production of EPA from ALA(30-32).  The D6 fads2 33 

desaturase along with elovl2 and/or elovl4 elongases that are also present enable the production of 34 

DHA from EPA(33-34). Linoleic acid competes with ALA for the LC-PUFA biosynthesis pathway 35 
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enzymes leading to the production n-6 LC-PUFA, particularly ARA(19). Although several studies have 36 

measured LC-PUFA biosynthesis in salmon fed diets with varying ALA and LA levels(35-38), the 37 

precise impact of competing dietary LA and the dietary ALA:LA ratio on the endogenous production 38 

of EPA and/or DHA has not been quantified in Atlantic salmon. The primary aims of the present 39 

study were to quantify the endogenous production of EPA and DHA from ALA in salmon fed from 40 

first feeding on diets that contain no EPA and DHA, and to determine the influence of dietary LA 41 

and ALA:LA ratio on LC-PUFA production. 42 

 43 

Materials and Methods 44 

Ethics statement 45 

All animal experimentation was conducted in compliance with the Animals Scientific Procedures Act 46 

1986 (Home Office Code of Practice. HMSO: London January 1997) and in accordance with EU 47 

regulation (EC Directive 86/609/EEC). The feeding trial was carried out in accordance with 48 

Norwegian national legislation via the Norwegian Animal Welfare Act (LOV-2015-06-09-19-65) 49 

Regulations on the Use of Animals in Experiments (FOR-2017-04-05-451) that was amended to 50 

implement the requirements contained in the European (EU) Regulations for the use of animals in 51 

scientific experimentation (Directive 2010/63/EU). Norway fully implemented the EU Directive 52 

within its legislature on 1 August 2016 via the European Economic Area Agreement. In addition, all 53 

experimentation performed by the Institute of Aquaculture, University of Stirling (UoS) is subjected 54 

to thorough ethical review carried out by the UoS Animal Welfare and Ethical Review Board 55 

(AWERB) prior to any work being approved. This involves all projects, irrespective of where they 56 

are carried out, to be submitted to AWERB for approval using detailed Ethical Approval forms that 57 

require all aspects of the experimentation to be described including all animal health and welfare 58 

issues as well as other ethical considerations. The present research was assessed by the UoS AWERB 59 

and passed the ethical review process of the University of Stirling. 60 

 61 

Fish, diets and feeding trial  62 

A triplicated feeding trial was run in Atlantic salmon (Salmo salar) from first-feeding (initial weight 63 

~ 0.18 g) for 22 weeks at the Institute of Marine Research (IMR, Matre Research Station, Norway). 64 

Around 3000 Atlantic salmon eggs were sourced (Aquagen, Trondheim, Norway) and transferred to 65 

IMR, Matre, where the eggs were hatched and alevins maintained under standard rearing conditions. 66 

A series of three isoenergetic (digestible energy, DE = 18 MJ.Kg) and isoproteic (digestible protein, 67 

DP = 49 %; DP:DE, 27) diets were formulated and manufactured at the University of Stirling (Table 68 

1). The fishmeal and fish oil-free diets (A-C) contained 15 % lipid that was supplied by linseed and 69 

sunflower oils to provide three different ALA/LA ratios of approximately 3:1 (A), 1:1 (B) and 1:3 70 
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(C).  The dry ingredients were ground, mixed with oil and water, and pelleted using a screw-press 71 

cold extruder (DollyTM, Imperia & Monferrina S.p.A, Moncalieri, Italy). Each diet was prepared as 72 

two batches of the same formulation, processed through either a 1 mm or 2 mm die. After drying 73 

overnight at 40 oC, the feeds were ground and sieved to produce pellet sizes of 0.5-0.8, 0.8-1.0, 1.0-74 

1.5 and 1.5-2.0 mm.  A further feed (REF) was included in the feeding trial as a reference to provide 75 

commercial context. The REF feed was a standard commercial feed used in the facility for rearing 76 

Atlantic salmon parr and contained primarily FM and FO. The analysed fatty acid compositions of 77 

all four feeds used in the trial are shown in Fig. 1. Analysed ALA/LA ratios were 2.61, 0.95 and 0.36 78 

in diets A, B and C, respectively. Prior to first feeding the alevins/fry were distributed into 4 tanks (1 79 

x 1 m) supplied with aerated freshwater with 750 fish per tank. In consideration of the fact that the 80 

experimental diets were fishmeal and fish oil-free, first feeding was performed in the single replicate 81 

tanks with higher fish density to ensure a good feeding response. During this initial 3-week phase, 82 

feeds were provided by hand so that feeding behaviour could be observed. At approximately 0.5 g, 83 

fish from each single tank were redistributed into 3 x 1 m diameter tanks (500L volume; 12 tanks in 84 

total) in a freshwater throughflow system with 200 alevins/fry per tank at a water temperature of 13 85 
oC and 24:0 LD. Fish were fed to excess by automatic feeders with pellet size increasing as fish size 86 

increased.  87 

 88 

Sampling 89 

At distribution of fish into tanks prior to first feeding, a triplicate sample of 50 - 60 alevins (~ 10 g 90 

wet weight) were sacrificed by anaesthetic overdose (tricaine methanesulfonate, MS-222; 400 mg.L-91 
1 in hydrogen carbonate-buffered solution) prior to being bulk weighed on an electronic top-loading 92 

balance to 0.1 g accuracy. The initial samples for compositional analyses were immediately frozen in 93 

liquid nitrogen and stored at -70 oC prior to analyses.  At the end of the trial after 22 weeks feeding, 94 

40 fish per tank were sacrificed by anaesthetic overdose as above prior to being individually weighed 95 

on an electronic top-loading balance to 0.1 g accuracy. Twenty whole fish per tank were collected as 96 

two pooled samples of 10 fish and immediately frozen in liquid nitrogen and stored at -70 oC prior to 97 

analyses. Another 10 fish per tank were sampled for tissues as two pooled samples of 5 fish with 98 

samples immediately frozen in liquid nitrogen. Tissues collected were liver, intestine, flesh, gill, brain 99 

and eye.  A further 10 fish per tank were sacrificed as above and liver collected into RNAlaterTM as 100 

120 individual samples.  These samples were stored overnight at 4 oC before freezing at -70 oC prior 101 

to RNA extraction and analysis of gene expression.  102 

 103 

Lipid and fatty acid analyses 104 
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Total lipid was extracted from feeds, whole fish, and fish tissues by homogenising in 105 

chloroform/methanol (2:1, v/v) using an Ultra-Turrax tissue disrupter (Fisher Scientific, 106 

Loughborough, UK), and content determined gravimetrically(39). Total lipids were resuspended in 107 

chloroform/methanol (2:1, v/v) at a concentration of 10 mg.ml-1. Total phospholipids (PL) and 108 

triacylglycerols (TAG) were prepared from total lipid by thin-layer chromatography on silica gel 60 109 

plates (20 × 20 cm; Merck KgaA, Darmstadt, Germany) and developed to full distance with 110 

isohexane/diethyl ether/acetic acid (85:15:1, by vol.)(40). Lipid classes were visualised by spraying 111 

with 0.1 % (w/v) 2-7-dichlorofluorescein in 97 % aqueous methanol (v/v) and viewing under UV 112 

light at 240 nm (UVP® Mineralight® R-52G; UVP Inc., San Gabriel, California, USA). Identified 113 

classes (TAG and total PL/origin) were scraped into glass tubes and lipids eluted with 114 

isohexane/diethyl ether (1:1, v/v). Fatty acid methyl esters (FAME) were prepared from total lipid, 115 

total PL and TAG by acid-catalysed transesterification at 50 ˚C for 16 h(41), and FAME extracted and 116 

purified as described previously(42). FAME were separated and quantified by gas-liquid 117 

chromatography using a Fisons GC-8160 (Thermo Scientific, Milan, Italy) equipped with a 30 m × 118 

0.32 mm i.d. × 0.25 μm ZB-wax column (Phenomenex, Cheshire, UK), on-column injector and a 119 

flame ionisation detector. Hydrogen was used as carrier gas with the initial oven thermal gradient 120 

from 50 oC to 150 oC at 40 oC.min-1 to a final temperature of 230 oC at 2 oC.min-1. Individual FAME 121 

were identified by comparison to known standards (Restek 20-FAME Marine Oil Standard; Thames 122 

Restek UK Ltd., Buckinghamshire, UK) and published data(42). The data were collected and processed 123 

using Chromcard for Windows (Version 1.19; Thermoquest Italia S.p.A., Milan, Italy).  124 

      The within assay precision of this test is based on 6 replicates of the same sample, prepared and 125 

analysed at the same time on the same instrumentation, and found to be no greater than 5 % relative 126 

S.D. (RSD) across the 12 main fatty acids of interest. Where a difference of > 5 % RSD occurs 127 

between within assay replicates the analysis is repeated. Between assay precision is based on 6 128 

separate analyses of the same sample at separate time points and the difference across 12 fatty acids 129 

found to be no greater than 5 % RSD. 130 

 131 

Liver gene expression 132 

Total RNA was extracted from individual liver samples of 10 fish per tank by homogenising in 1 ml 133 

of TriReagent® following the producer’s protocol (Sigma-Aldrich, Dorset, UK). The quantity and 134 

quality of RNA was determined by spectrophotometry (Nanodrop ND-1000; Labtech Int., East 135 

Sussex, UK) and RNA integrity assessed by agarose gel electrophoresis. cDNA was synthesised using 136 

a high capacity reverse transcription kit utilising 2 μg of total RNA and random primers in a total 137 

reaction volume of 20 μl following the manufacturer’s protocol (Applied Biosystems, Warrington, 138 
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UK). The samples were pooled (2 samples of 5 fish per tank) to obtain n = 6 per dietary treatment. A 139 

dilution of 1:20 was applied to the resulting cDNA using milliQ water. 140 

   Expression levels of key genes involved in LC-PUFA biosynthesis pathways (fads2d6, delta-6 fatty 141 

acyl desaturase; fads2d5, delta-5 fatty acyl desaturase; elovl2, fatty acyl elongase 2; elovl5a, fatty 142 

acyl elongase 5 isoform a; elovl5b, fatty acyl elongase isoform b), lipid biosynthesis (srebp1, sterol 143 

regulatory element-binding protein 1; srebp2, sterol regulatory element-binding protein 2; lxr, liver 144 

X receptor; fas, fatty acid synthase; hmgcr, HMGCoA reductase) and lipid catabolism (ppara, 145 

peroxisome proliferator-activated receptor a; pparg, peroxisome proliferator-activated receptor g; 146 

aco, acyl Co-A oxidase; cpt1, carnitine palmitoyl transferase 1) were determined by real-time 147 

quantitative RTPCR in liver, as described in detail previously(43) (primers as detailed in 148 

Supplementary Table 1). Results were normalised using reference genes, hypoxanthine guanine 149 

phosphoribosyl transferase (hprt), elongation factor 1 alpha (ef1α) and TATA box binding protein 150 

(tbp) that were shown as the most stable according to GeNorm(44) stability number (M = 0.239 for 151 

ef1a and 0.213 for both hprt and tbp). Primers were designed using Primer 3 and were previously 152 

tested for efficiency, which was always over 0.80(45). Quantitative PCR was performed using a 153 

Biometra TOptical Thermocycler (Analytik Jena, Goettingen, Germany) in 96-well plates in 154 

duplicate 20 μl reaction volumes containing 10 μl of Luminaris Color HiGreen qPCR Master Mix 155 

(Thermo Scientific), 1 μl of primer corresponding to the analysed gene (10 pmol), 3 μl of molecular 156 

biology grade water and 5 μl of cDNA, with the exception of the reference genes, which were 157 

determined using 2 μl of cDNA. In addition, amplifications were carried out with a systematic 158 

negative control (NTC-no template control) containing no cDNA. Standard amplification parameters 159 

contained an UDG pre-treatment at 50 °C for 2 min, an initial activation step at 95 °C for 10 min, 160 

followed by 35 cycles: 15 s at 95 °C, 30 s at the annealing Tm and 30 s at 72 °C. 161 

 162 

Statistical analyses 163 

Based on extensive prior experience the hypothesised effect sizes of phenomic and transcriptomic 164 

responses were expected to be >1.5x SD. Using this basis, the experimental power of the design was 165 

calculated post-hoc using the “ANOVA: Fixed effects” test within the G-Power software 166 

(http://www.gpower.hhu.de/). Using an a-value of 0.05 an average effect size of ~1.5x SD was 167 

applied for key response variables (e.g. growth, net LC-PUFA gain, and Log2FC). As an example, a 168 

power level (1-b) of 0.618 was determined for growth among diets A, B and C, whereas effect sizes 169 

of other parameters were larger (e.g. net LC-PUFA gain had a power level (1- b) of 0.999). 170 

      For biochemical analyses, mean values were calculated for each tank prior to statistical analyses 171 

(n = 3). Significance of differences was determined by one-way ANOVA followed when appropriate 172 

by Tukey’s post-hoc test using GraphPad InStat, Version 3.01 32 bit for Win95/NT (GraphPad 173 
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Software Inc., San Diego, CA, USA). For gene expression (n = 6), the relative expression levels (gene 174 

expression fold-change) of the target genes, normalised to the three housekeeping genes, were 175 

calculated following the method described by Pfaffl(46). Data were tested for normality and 176 

homogeneity of variances with Levene’s test prior to one-way analysis of variance (ANOVA) 177 

followed by Tukey’s post-hoc test. The statistical analyses were performed using SPSS software 178 

(IBM SPSS Statistics 23; SPSS Inc., Chicago, IL, USA). 179 

 180 

Results 181 

After 22 weeks, salmon fed the diets with essentially no EPA and DHA were less than half the weight 182 

of fish fed the reference diet containing fish oil (Fig. 2). While the fish fed the highest content of LA 183 

had the lowest weight, there was no significant effect of ALA:LA ratio on growth after 22 weeks. 184 

Mortality after the initial feeding phase was very low throughout the trial and unrelated to feed.  185 

      The aim of the present study was to very specifically quantify endogenous production of EPA 186 

and DHA and not to quantify overall desaturation of ALA (and LA). Although 20:4n-3 satisfies our 187 

definition of LC-PUFA (≥ C20 and ≥ 3 double bonds), it was not included in the calculations for total 188 

LC-PUFA production in the present study. Similarly, 18:3n-6 and 20:3n-6 were not included in the 189 

data for total n-6 LC-PUFA production. However, docosapentaenoic acid (DPA, 22:5n-3) was 190 

included along with EPA and DHA in total n-3 LC-PUFA, and 22:4n-6 and 22:5n-6 were included 191 

along with ARA in total n-6 PUFA (Figs. 3 & 4).  Full fatty acid compositions of whole fish after 22 192 

weeks of being fed diets containing essentially no EPA and DHA are presented in Supplementary 193 

Table 2. 194 

      Salmon fed diets with ALA:LA ratios of 3:1, 1:1 and 1:3 contained 107, 80 and 41 mg of total n-195 

3 LC-PUFA (EPA+DPA+DHA) per fish, almost all of which was the result of endogenous production 196 

as initial first feeding fry contained just under 1 mg total n-3 LC-PUFA per fish (Fig. 3). In the initial 197 

fry, DHA and EPA was present with a ratio of 2:1, whereas in fry fed an ALA:LA ratio of 3:1 DHA 198 

and EPA were in a ratio of over 2.6:1. This contrasted with the fish fed a standard commercial feed 199 

containing EPA and DHA, where they accumulated 757 mg of total n-3 LC-PUFA, with DHA and 200 

EPA in a ratio of 3.2:1 (Fig. 4). Fry fed the highest amount of LA (ALA:LA of 1:3) accumulated 21 201 

mg n-6 LC-PUFA, which compared to just over 28 mg in fish fed standard commercial feed, while 202 

initial fry contained only 0.07 mg of ARA (Fig. 5).  203 

      On a per fish basis, endogenous production of n-3 LC-PUFA was at least 5.9, 4.4 and 2.8 mg.g 204 

fish-1, and that of n-6 LC-PUFA was at least 0.2, 0.5 and 1.4 mg.g fish-1 in salmon fed diets with 205 

ALA:LA ratios of 3:1, 1:1 and 1:3, respectively (Fig. 6).  As daily (154 day trial) rates of production, 206 

these data corresponded to at least 38.1, 28.4 and 18.2 µg.g fish-1.day-1 for endogenous production of 207 

n-3 LC-PUFA, and at least 1.4, 3.4 and 9.3 µg.g fish-1.day-1 for n-6 LC-PUFA production in salmon 208 
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fed diets with ALA:LA ratios of 3:1, 1:1 and 1:3, respectively. The ratio of n-3 LC-PUFA production 209 

to n-6 LC-PUFA production decreased from 27.4 to 2.0 as dietary ALA:LA ratio decreased and, 210 

similarly, EPA:ARA and DHA:ARA ratios decreased as the dietary ratio of ALA:LA decreased. Less 211 

obviously, and more interestingly, the DHA:EPA ratio increased from 2.6 to 5.3 as the dietary ratio 212 

of ALA:LA decreased (Fig. 6). 213 

     The distribution of the endogenously produced LC-PUFA in specific lipid classes and tissues was 214 

also investigated. Comparing the proportion of fatty acids in total lipid and lipid classes, the 215 

percentages of n-3 LC-PUFA and n-6 PUFA were higher in total phospholipids (PL) than in 216 

triacylglycerols (TAG) (Fig. 7). To compare the distribution among tissues, the level of the particular 217 

fatty acid (DHA, EPA and ARA) in whole fish was compared with the levels in individual tissues. 218 

Setting the reference level as the amount of n-3 LC-PUFA in whole fish fed the diet containing 219 

ALA:LA at 3:1 (highest production), DHA was present at far higher levels in brain and also, to a 220 

lesser extent, liver (Fig. 8). In contrast, EPA was present in higher amounts in liver and, to a lesser 221 

extent, brain. With ARA, only liver showed a higher level than the reference, which was set as the 222 

level in whole fish fed the diet containing ALA:LA at 1:3 (highest ARA production) (Fig. 8). 223 

     Determination of the expression of key genes of LC-PUFA biosynthesis in liver by quantitative 224 

RTPCR showed that transcript abundances of D6 (fadsd6) and D5 (fadsd5) fatty acyl desaturases and 225 

elongase 2 (elovl2) were all significantly higher in fish fed the experimental feeds lacking LC-PUFA 226 

(Fig. 8). Although the differences were not statistically significant, expression levels of these genes 227 

were numerically lower in fish fed the diet with balanced (equal proportions) of ALA and LA. In 228 

contrast, diet did not affect the expression of elovl5a, and slightly reduced the expression of elovl5b 229 

(Fig. 9). The expression of some genes related to lipid anabolic pathways, srebp1, srebp2 and fas, 230 

showed increasing expression with increasing dietary LA (i.e. as ALA:LA decreased), while some 231 

genes related to lipid catabolism, ppara, pparg and aco, showed the same pattern of expression among 232 

the three experimental feeds with the lowest expression in fish fed the diet with an ALA:LA ratio of 233 

1 (Fig. 9). 234 

 235 

Discussion 236 

Although the fish fed the low ALA:LA ratio had the numerically lowest final weight there were no 237 

significant differences between fish fed the experimental diets indicating that the dietary n-3 PUFA:n-238 

6 PUFA ratio had little impact on growth. Of course, the fish fed the fishmeal- and fish oil-free feeds 239 

were significantly smaller than fish fed the REF feed, which was entirely expected. The REF feed 240 

was not a control feed in the present study, but simply a reference to place some of the data obtained 241 

into context. It has already been demonstrated that salmon post-smolts can be grown on essentially 242 

fishmeal and fish oil-free feeds without major impacts on growth using highly optimised feeds(47-48). 243 
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This was not the aim of the present trial, which was not a nutritional trial in terms of growth and feed 244 

efficiency and was not testing ingredients, but was focussed entirely on nutrients and, specifically, 245 

LC-PUFA. The experimental feeds were therefore formulated to supply nutrients at currently reported 246 

requirement levels for Atlantic salmon(49).  In this respect, it is also important to clarify that the 247 

experimental feeds were not essential fatty acid (EFA)-deficient despite containing no EPA, DHA or 248 

ARA, as ALA and LA are reported to satisfy EFA requirements in salmonids (with complete LC-249 

PUFA biosynthesis pathways) and the feeds contained ALA and LA at levels far above reported 250 

requirement levels(49). Certainly, the fish fed the experimental feeds showed none of the classical EFA 251 

deficiency signs(50). However, it is also known that LC-PUFA can supply EFA requirements at lower 252 

levels and so the lack of LC-PUFA may indeed be part of the reason for the lower growth 253 

obtained(51,52). However, the commercial start feed, as with the feeds used in the fishmeal- and fish 254 

oil-free studies above, would undoubtedly be supplying many nutrients in excess of the minimal 255 

levels reported in NRC(49). Thus, it was expected that the experimental feeds would impact growth 256 

and, hence, the reason to include the commercial feed (REF) to provide some context. Growth rate is 257 

linked to metabolic activity including intermediary metabolism and key anabolic pathways such as 258 

LC-PUFA biosynthesis and, therefore differences in growth rate could affect production rates per 259 

fish. However, growth rate is less likely to affect production per g of fish and so data presented this 260 

way should be unaffected by the differences in growth rate. 261 

      It had been shown previously that salmonids, Atlantic salmon and rainbow trout (Oncorhynchus 262 

mykiss), can be net producers of n-3 LC-PUFA by feeding diets with only low levels of fish oil(53,54). 263 

While no method for assessing in vivo production of LC-PUFA is perfect(55), production of EPA and 264 

DHA in these studies was calculated from total fatty acid intakes and final fatty acid contents in whole 265 

fish using “fatty acid production value, FAVP”(56) or the whole body mass balance method(57).  The 266 

present study used essentially similar methodology to these earlier studies except that the feeds were 267 

fed from first feeding and contained essentially no LC-PUFA. This simplified the calculations as, 268 

other than the very small amount of EPA, DHA and ARA in the alevins at first feeding, all the LC-269 

PUFA present in the fish at the end of the trial was derived from endogenous biosynthesis. Feeding 270 

diets with no EPA and DHA from first feeding had been done previously with rainbow trout, but 271 

quantitative LC-PUFA production was not reported(58). 272 

     The present study showed that in the trial period Atlantic salmon produced almost 6 mg n-3 LC-273 

PUFA from ALA per g of fish (~40 µg.g fish-1.day-1). There are some caveats to this figure. Firstly, 274 

it should be regarded as a minimum amount, and cannot be lower, as it is highly likely that some LC-275 

PUFA produced will be oxidised as demonstrated previously(54,57,59). While endogenously produced 276 

LC-PUFA may be less oxidised than dietary fatty acids, there is no biochemical/physiological 277 

mechanism to prevent this oxidation(60). Secondly, the data are limited to fry and the first half of the 278 
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parr (freshwater) stage and this could change over the entire life cycle. Biosynthesis of LC-PUFA 279 

from 14C-ALA was increased in hepatocytes of salmon undergoing parr-smolt transformation(61,62) 280 

and, therefore, this could increase the capacity for endogenous production. Therefore, existing data 281 

suggests 6 mg.g fish-1 is a minimum for production during the freshwater stage that may increase 282 

prior to seawater transfer. There are few data on how the capacity for LC-PUFA biosynthesis is 283 

affected by age per se and, indeed, this is identified as a gap in the knowledge for humans(63). 284 

However, there is evidence that the capacity for conversion of ALA to DHA is higher in human 285 

infants than adults(64). In salmon, based on assays of LC-PUFA production in hepatocytes it has been 286 

speculated that activity may be lower in post-smolts in seawater(61,62), but there are no in vivo studies 287 

to directly support this.  288 

      In humans, in vivo conversion of ALA to n-3 LC-PUFA has been estimated in a number of studies 289 

including stable isotope studies and is generally very modest, with some low conversion to EPA with 290 

conversion to DHA being even lower or not at all(63,65,66). In fish, there are no previous studies that 291 

provide equivalent data with which to directly compare the present results. However, in an in vivo 292 

stable isotope study using 4–15 g rainbow trout fed 5 % fishmeal and 11 % vegetable oil, the rate of 293 

DHA production was reported to be low at 0.54 µg.g fish-1.mg ALA consumed-1.day-1(67). This 294 

estimate is not directly comparable to the rate calculated in the present study. Extrapolating from data 295 

calculated via the whole body fatty acid mass balance method, total ALA conversion could be 296 

estimated at around 1.5 µg.g fish-1.day-1 when rainbow trout were fed a high ALA diet(68). While the 297 

methodology used in the earlier trout trial was somewhat similar to that used in the present study, the 298 

data are not directly comparable as the diets were formulated with fishmeal and contained ~ 1.5 % n-299 

3 LC-PUFA (EPA:DHA ~1), and the presence of dietary DHA would reduce D6 desaturation of 300 

ALA(69,70).  301 

      In humans, reducing dietary LA (increasing ALA:LA ratio) enabled increased conversion of ALA 302 

to EPA and, in some cases, also increased DHA(63,66). The present study demonstrated how the dietary 303 

ALA:LA ratio quantitatively impacted the overall production of both n-3 and n-6 LC-PUFA in 304 

salmon. Thus, irrespective of dietary ALA:LA ratio, n-3 LC-PUFA production always exceeded n-6 305 

LC-PUFA production, being 27-fold greater when dietary ALA exceeded LA by 2.6-fold, and it was 306 

still 2-fold greater when fish were fed a diet with a 2.6-fold excess of LA. This demonstrates clearly 307 

the preferences of enzymes in the LC-PUFA biosynthesis pathway for n-3 compared to n-6 fatty acid 308 

substrates, confirming results from studies on enzyme activities determined with radiolabelled tracers 309 

in hepatocytes(61), preferences of individual desaturase and elongase proteins in heterologous 310 

expression assays(71), and by the whole body mass balance method(72). While there are numerous 311 

studies investigating the effects of dietary ALA:LA ratio in fish, few have attempted to quantify 312 

impacts on LC-PUFA production. However, increasing dietary LA reduced n-3 LC-PUFA production 313 
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and increased n-6 LC-PUFA production in Murray cod (Maccullochella peelii peelii) (72). In contrast, 314 

while increasing dietary LA had a significant impact in increasing n-6 LC-PUFA production in 315 

rainbow trout, it only marginally impacted n-3 LC-PUFA production(68), reducing EPA production 316 

but with little effect on DHA production(73). A further noteworthy result in the present study was that 317 

increased dietary LA (reduced ALA:LA ratio) also resulted in a reduction in overall LC-PUFA 318 

production. The overall rate of LC-PUFA production decreased from around ~39.5 µg.g fish-1.day-1 319 

(38.1 n-3 + 1.4 n-6) in fish fed the high ALA:LA ratio to ~27.5 µg.g fish-1.day-1 (18.2 + 9.3) in fish 320 

fed the low ALA:LA ratio and, therefore, high dietary LA in effect inhibited the pathway. In contrast, 321 

this was not observed in rainbow trout, where total LC-PUFA production was largely unaffected by 322 

ALA:LA ratio(68).  Extrapolating from whole body fatty acid mass balance data, ~1.6 µg.g fish-1.day-323 
1 (1.5 ALA + 0.1 LA) to ~1.7 µg.g fish-1.day-1 (1.4 + 0.3) of C18 PUFA were converted in fish fed 324 

diets with high and low ALA:LA ratio, respectively(68). 325 

       The optimal dietary DHA:EPA ratio and its relationship to tissue DHA:EPA ratios presents a 326 

complicated situation and is poorly understood in salmon or, indeed, any species(59,74). The present 327 

study aimed to provide some insight to the optimal dietary ratio of DHA:EPA by extrapolating from 328 

the ratio actually produced endogenously in salmon when receiving no dietary input of preformed 329 

EPA and DHA. One initial point to note is that the level of DHA in whole fish always exceeded that 330 

of EPA and so the DHA:EPA ratio was always >1 in the present study. This was also the case in the 331 

earlier study in rainbow trout fed a diet completely devoid of EPA and DHA (and an ALA:LA ratio 332 

of around 1), where DHA:EPA ratio in both polar and neutral lipids in carcass, liver and intestine 333 

varied between 1.3 in carcass neutral lipid to 4.1 in liver polar lipids(58).  However, interestingly, the 334 

present study demonstrated that the DHA:EPA ratio produced through endogenous production of 335 

EPA and DHA was not fixed, but affected by the dietary ALA:LA ratio and, thus, as dietary LA 336 

increased, the DHA:EPA ratio also increased. While this is not something that had been highlighted 337 

previously, careful examination of existing literature has shown that increased dietary LA (i.e. 338 

reduced ALA:LA ratio) generally resulted in increased DHA:EPA ratios in whole fish and/or tissues 339 

of a range of freshwater and salmonid species(68,73,75-81), although not always(72,82,83). It must be 340 

stressed that the above results are not directly comparable with the present study as the fish in these 341 

earlier trials were all fed diets that also contained EPA and DHA, complicating interpretation of the 342 

data. However, a likely possible mechanism for the impact of dietary LA on DHA:EPA ratio is that 343 

increased LA would increase competition with ALA for the LC-PUFA pathway (D6 desaturase) and 344 

this could particularly impact production of EPA, but not the production of DHA from EPA to the 345 

same extent. This explanation reflects the chemistry/biochemistry and enzyme kinetics of the 346 

biosynthesis pathways in salmon(60,71), but an alternative explanation is that the result could possibly 347 

reflect a physiological driver with DHA being “more essential” than EPA for membrane structure 348 
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and function(59). In rats, the DHA:EPA ratio is highly dependent upon tissue with EPA > DHA in 349 

blood and liver, but DHA greatly exceeding EPA in heart and brain, and dietary ALA and ALA:LA 350 

ratio (no dietary EPA and DHA) had relatively little impact on tissue DHA:EPA ratios(84).   351 

      While the above discussed quantitative and semi-quantitative data were the primary focus, the 352 

present study also provided some additional insight into the fates of endogenously produced LC-353 

PUFA. Irrespective of diet, the relative proportions of total LC-PUFA, EPA, DHA and ARA were all 354 

higher in total phospholipids than in triacylglycerols as would be expected(60). However, this pattern 355 

was greatly enhanced in fish fed the experimental feeds compared to fish fed the reference diet, clearly 356 

indicating that endogenously produced EPA, DHA and ARA were highly preferentially incorporated 357 

into membrane phospholipids whereas greater proportions of dietary LC-PUFA are deposited in 358 

storage lipid.  To discriminate tissue preferences for the deposition of endogenously produced LC-359 

PUFA, we compared the contents of individual tissues with the content in whole fish. Thus, tissues 360 

showing higher contents per unit mass than whole fish indicates preferential deposition. This was 361 

clearly observed in the high DHA content of brain, which reflected the known importance of DHA 362 

in that tissue(60). The only other tissue that showed higher contents of LC-PUFA was liver, likely 363 

reflecting its key metabolic role in biosynthesis(28,60). Gene expression confirmed the active role of 364 

liver in the biosynthesis of LC-PUFA with the expression of D6 and D5 fatty acyl desaturases and 365 

elovl2 elongase all being upregulated in fish fed the experimental feeds devoid of EPA and DHA, 366 

consistent with many previous studies in salmon(32,71). However, dietary ALA:LA ratio appeared to 367 

have little effect suggesting that substrate levels were not a major driver of expression of these 368 

genes(38). Similarly, there was no effect of dietary ALA:LA ratio on the expression of D6 desaturase 369 

and elovl5 elongase in liver of rainbow trout(68). Dietary ALA:LA ratio affected the expression of D6 370 

and D4 desaturases and elovl5 elongase in the marine rabbitfish (Siganus canaliculatus), which has 371 

all the genes necessary for biosynthesis of EPA and DHA, but in a variable manner with no clear 372 

pattern(81). Interestingly, in the present study, brain showed relatively high contents of EPA in 373 

addition to DHA, which may indicate in situ production of DHA in brain. However, it is not possible 374 

to discriminate what proportion, if any, of brain DHA is actually the result of in-tissue production or 375 

simply deposition of DHA produced elsewhere, such as liver(28,60). Furthermore, the fact that the high 376 

content of DHA in brain was not also reflected in ARA content of brain was surprising(60).  377 

     The increased expression of the lipid anabolic genes, sreb1, sreb2 and fas, as dietary ALA:LA 378 

decreased was also unexpected. It is worth noting that the effect of diet on gene expression can be 379 

looked at in two ways. Either that high dietary ALA and high ALA:LA ratio resulted in lower 380 

expression, or that high dietary LA and low ALA:LA ratio increased expression.  Irrespective, the 381 

dietary effect does not have an obvious biochemical or physiological explanation. Similarly, while it 382 

was also interesting that genes related to lipid catabolism, ppara, pparg and aco, all showed a similar 383 
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pattern of expression among the three experimental feeds, with lowest expression at a dietary 384 

ALA:LA ratio of 1, the pattern was not readily explained. While it is perhaps noteworthy that the 385 

expression of the D6 and D5 fatty acyl desaturases and elovl2 elongase also showed the same 386 

expression pattern as for the lipid catabolism genes, it does not offer an explanation. Therefore, the 387 

precise mechanism(s) underlying how dietary ALA:LA ratio affected the expression of lipid anabolic 388 

and catabolic genes was not clear and requires further study.  389 

          The data obtained in the present study have provided a better understanding of the capacity for 390 

LC-PUFA production in a vertebrate, Atlantic salmon, that has a complete biosynthetic pathway (via 391 

the Sprecher shunt), and how dietary ALA and LA interact and affect LC-PUFA production. Salmon 392 

farming is currently still largely dependent upon fish oil for provision of EPA and DHA, but levels 393 

of fish oil in feeds continue to decline(85) resulting in reduced levels of EPA in DHA in farmed salmon 394 

products(18).  Presently, around 70 % of oil in salmon feeds is supplied by vegetable oils that can only 395 

supply C18 PUFA, LA and ALA(27) and,  although there are potential new algal and GM-derived 396 

sources of EPA and DHA on the horizon, it is uncertain exactly how these will be used(86). Currently, 397 

cost and availability restrict the use of these new sources, for the medium term at least, to being fish 398 

oil replacements to maintain EPA and DHA at current levels, and not as vegetable oil replacements 399 

and, therefore, salmon feeds will continue to contain high levels of vegetable oils. However, there are 400 

many options with oils containing differing proportions of ALA and LA, and the data from the present 401 

study enables the possibility to more precisely control dietary ALA and LA to maximise endogenous 402 

production of EPA and DHA. 403 

 404 

Conclusions 405 

With a dietary n-3/n-6 PUFA ratio of 1:1, Atlantic salmon fry/parr can produce at least 4.4 mg n-3 406 

LC-PUFA, with a DHA:EPA ratio of 3.4:1, per gram of fish. Production of n-3 LC-PUFA exceeded 407 

that of n-6 LC-PUFA by almost 9-fold. Reducing the dietary n-3/n-6 PUFA ratio reduced n-3 LC-408 

PUFA production, and EPA:ARA and DHA:ARA ratios, and increased n-6 LC-PUFA production, 409 

and DHA:EPA ratio. The data advance nutritional science by providing insight and a clearer 410 

understanding of the quantitative capacity of the pathway in a vertebrate that has complete LC-PUFA 411 

biosynthesis pathways (via the Sprecher shunt), and how dietary ALA and LA interact and 412 

quantitatively affect LC-PUFA production. 413 
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Legends to Figures  659 

 660 

Fig. 1. Fatty acid compositions (percentage of total fatty acids) of experimental feeds (A, B & C) and 661 

the reference feed (REF).  662 

 663 

Fig. 2. Final weights (g) of salmon after feeding the experimental and REF diets for 22 weeks (154 664 

days). Data represent means ± S.D. (n = 3). Different superscript letters indicate significant 665 

differences between diets as determined by ANOVA followed by Tukey’s multiple comparison test.  666 

 667 

Fig. 3. The n-3 LC-PUFA contents (mg.fish-1) of fry at first feeding/initiation of the trial (Initial) and 668 

whole fish after feeding the experimental diets for 22 weeks (Final). Data represent means ± S.D. (n 669 

= 3). Different superscript letters above columns for each fatty acid indicate significant differences 670 

between diets as determined by ANOVA followed by Tukey’s multiple comparison test. 671 

 672 

Fig. 4. The n-3 LC-PUFA contents (mg.fish-1) of whole fish fed the experimental diets (A, B & C)  673 

in comparison with fish fed the reference diet (REF) for 22 weeks. Data represent means ± S.D. (n = 674 

3). Different superscript letters above columns for each fatty acid indicate significant differences 675 

between diets as determined by ANOVA followed by Tukey’s multiple comparison test. 676 

 677 

Fig. 5. The n-6 LC-PUFA contents (mg.fish-1) of fry at first feeding/initiation of the trial (Initial) and 678 

whole fish after feeding the experimental diets for 22 weeks (Final). Data represent means ± S.D. (n 679 

= 3). Different superscript letters above columns for each fatty acid indicate significant differences 680 

between diets as determined by ANOVA followed by Tukey’s multiple comparison test. 681 

 682 

Fig. 6. Production of n-3 and n-6 LC-PUFA (mg.g fish-1) and n-3 LC-PUFA:n-6 LC-PUFA, 683 

DHA:EPA, EPA:ARA and DHA:ARA ratios in whole fish after feeding the experimental diets for 684 

22 weeks. Data represent means ± S.D. (n = 3). Different superscript letters above columns for each 685 

parameter indicates significant differences between diets as determined by ANOVA followed by 686 

Tukey’s multiple comparison test. ARA, arachidonic acid; DHA, docosahexaenoic acid; EPA, 687 

eicosapentaenoic acid; LC-PUFA, long-chain polyunsaturated fatty acids.  688 

 689 

Fig. 7. LC-PUFA composition (percentage of total fatty acids) of whole fish total lipid (TL), 690 

phospholipids (PL) and triacylglycerol (TAG). Data represent means ± S.D. (n = 3). Different 691 

superscript letters above columns for each parameter indicate significant differences between diets in 692 

contents in TL, PL and TAG as determined by ANOVA followed by Tukey’s multiple comparison 693 
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test. ARA, arachidonic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; LC-PUFA, 694 

long-chain polyunsaturated fatty acids; Total, total n-3 LC-PUFA (UPPER panel) and total n-6 LC-695 

PUFA (lower panel). 696 

 697 

Fig. 8. Tissue contents (mg fatty acid.100g of whole fish or tissue-1) of EPA, DHA and ARA. Data 698 

represent means ± S.D. (n = 3). Different superscript letters above columns for each tissue indicate 699 

significant differences between diets as determined by ANOVA followed by Tukey’s multiple 700 

comparison test. The dotted line in the upper and middle panels represents the EPA and DHA 701 

contents, respectively, of whole fish in fish fed diet A that gave highest production of EPA and DHA. 702 

Similarly, the dotted line in the lower panel represents the ARA content of whole fish in fish fed diet 703 

C that gave highest production of ARA.  ARA, arachidonic acid; DHA, docosahexaenoic acid; EPA, 704 

eicosapentaenoic acid; LC-PUFA, long-chain polyunsaturated fatty acids. 705 

 706 

Fig. 9. Relative expression (RE) of genes of LC-PUFA biosynthesis (upper panel), lipid anabolism 707 

(middle panel) and lipid catabolism (lower panel) in liver of Atlantic salmon as determined by qPCR. 708 

Results are normalised expression ratios (means ± SEM; n = 6). Different superscript letters above 709 

columns for each gene denote differences between diets as identified by one-way ANOVA. aco, acyl 710 

co-A oxidase; cpt1, carnitine palmitoyl transferase 1; elovl2, fatty acyl elongase 2; elovl5a, fatty acyl 711 

elongase 5 isoform a; elovl5b, fatty acyl elongase 5 isoform b; fads2d5, delta-5 fatty acyl desaturase; 712 

fads2d6, delta-6 fatty acyl desaturase; fas, fatty acid synthase; hmgcr, HMGCoA reductase; lxr, liver 713 

X receptor; ppara, peroxisome proliferator-activated receptor a; pparg, peroxisome proliferator-714 

activated receptor g; srebp1, sterol regulatory element-binding protein 1; srebp2, sterol regulatory 715 

element-binding protein 2.  716 

  717 
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Table 1. Formulations and analysed proximate compositions  
of experimental feeds    
        
 A B C 
Ingredient  (g/kg) (g/kg) (g/kg) 
Soy protein concentrate a 200.0 200.0 200.0 
Soy protein isolate b 200.0 200.0 200.0 
Wheat gluten a 200.0 200.0 200.0 
Hydrolysate c 20.0 20.0 20.0 
Casein b 17.0 17.0 17.0 
Linseed oil d 134.0 90.0 44.0 
Sunflower oil e 0.0 44.0 90.0 
Cellulose f 77.0 77.0 77.0 
Pregelled starch g 70.0 70.0 70.0 
Crystalline amino acids h 26.0 26.0 26.0 
Premix i 5.0 5.0 5.0 

CaHPO4 a 50.0 50.0 50.0 
Yttrium Oxide j 1.0 1.0 1.0 

    
Proximate composition (% dry weight) (% dry weight) (% dry weight) 
Crude protein 50.8 49.5 50.5 
Digestible protein 48.9 48.9 48.9 
Crude lipid 15.7 15.5 13.8 
Ash 7.3 7.1 7.8 
Moisture 5.6 5.7 4.0 
Digestible energy                                       18.0         18.1 18.1 

    
a BioMar Ltd., Grangemouth, UK; b Bulk Powders Ltd., Colchester, UK; 
c HP1 from Aquativ, Elven, France; d Cold-pressed, AniForte UK Ltd.,  
London; e Sainsbury's Supermarkets Ltd., London, UK;    
f Microcrystalline cellulose, Blackburn Distributions Ltd., Nelson, UK;  
g Sigma Pharmaceuticals, Gillingham, UK;   
h Includes methionine (10), lysine (10), taurine (5), and also choline (1); 
i OVN Salmonid from DSM Nutritional Products, Basel, Switzerland; 
j Stanford Materials, Lake Forrest, CA, USA.   

 718 

  719 
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Supplementary Table 1. PCR primers used in the present study for real-time quantitative PCR 729 
(qPCR). 730 

 731 
fads2d6, delta-6 fatty acyl desaturase; fads2d5, delta-5 fatty acyl desaturase; elovl2, fatty acyl 732 
elongase 2; elovl5a, fatty acyl elongase 5 isoform a; elovl5b, fatty acyl elongase isoform b; srebp1, 733 
sterol regulatory element binding protein 1; srebp2, sterol regulatory element binding protein 2; lxr, 734 
liver X receptor; pparα, peroxisome proliferator-activated receptor alpha; pparγ, peroxisome 735 
proliferator-activated receptor gamma; aco, acyl-CoA oxidase; cptI, carnitine palmitoyltransferase 736 
I; hmgcr, 3-hydroxy-3-methyl-glutaryl-CoA reductase; hprt, hypoxanthine-guanine 737 
phosphoribosyltransferase; ef1α, elongation factor 1 alpha; rpl2, ribosomal protein L2; tbp, TATA 738 
box binding protein. 739 
 aGenBank (http://www.ncbi.nlm.nih.gov/) 740 
bAtlantic salmon Gene Index (http://compbio.dfci.harvard.edu/tgi/) 741 
 742 
  743 

Transcript Primer sequence (5’→3’) Amplicon (bp) Ta Accession no 
fads2d6 F: TCCTCTGGTGCGTACTTTGT 163 59˚ C NM_001123575.2a 

R: AAATCCCGTCCAGAGTCAGG 
fads2d5 F: GCCACTGGTTTGTATGGGTG 148 59˚ C NM_001123542.2a 

R: TTGAGGTGTCCACTGAACCA 
elovl2 F: GGTGCTGTGGTGGTACTACT 190 59˚ C NM_001136553.1a 

R: ACTGTTAAGAGTCGGCCCAA 
elovl5a F: TGTTGCTTCATTGAATGGCCA 150 59˚ C GU238431.1a 

R: TCCCATCTCTCCTAGCGACA 
elovl5b F: CTGTGCAGTCATTTGGCCAT 192 59˚ C NM_001136552.1a 

R: GGTGTCACCCCATTTGCATG 
srebp1 F: GCCATGCGCAGGTTGTTTCTTCA 151 63˚ TC148424b 

R: TCTGGCCAGGACGCATCTCACACT 
srebp2 F: TCGCGGCCTCCTGATGATT 147 63˚ TC166313b 

R: AGGGCTAGGTGACTGTTCTGG 
lxr F: GCCGCCGCTATCTGAAATCTG 210 58˚ FJ470290a 

R: CAATCCGGCAACCAATCTGTAGG 
pparα F: TCCTGGTGGCCTACGGATC 111 60˚ DQ294237a 

R: CGTTGAATTTCATGGCGAACT 
pparγ F: CATTGTCAGCCTGTCCAGAC 144 60˚ AJ416951a 

R: TTGCAGCCCTCACAGACATG 
aco F: AAAGCCTTCACCACATGGAC 230 60° TC49531b 

 R: TAGGACACGATGCCACTCAG 
cptI F: CCTGTACCGTGGAGACCTGT 212 60° AM230810a 

R: CAGCACCTCTTTGAGGAAGG 
hmgcr F: CCTTCAGCCATGAACTGGAT 224 60˚ DW561983a 

R: TCCTGTCCACAGGCAATGTA 
fas F: ACCGCCAAGCTCAGTGTGC 212 60˚ CK876943a 

R: CAGGCCCCAAAGGAGTAGC 
hprt F: GATGATGAGCAGGGATATGAC 165 60˚ BT125296.1 

R: GCAGAGAGCCACGATATGG 
ef1a F: CTGCCCCTCCAGGACGTTTACAA 175 60˚ C AF321836a 

R: CACCGGGCATAGCCGATTCC 
rpl2 F: CTGCCCCTCCAGGACGTTTACAA 112 60˚ C XM_014137227.1a 

R: TGTTCACAGCTCGTTTACCG 

tbp F: TCCCCAACCTGTGACGAACA 117 60˚ C NM_001176374.1a 
R: GTCTGTCCTGAGCCCCCTGA 
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