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REVERSE ENGINEERING OF BIOCHAR
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Hanleyc, Johannes Lehmannc, Wei Zhangd
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dDepartment of Plant, Soil and Microbial Sciences; Environmental Science and Policy Program,
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Abstract

This study underpins quantitative relationships that account for the combined effects

that starting organic materialbiomass and peak pyrolysis temperature have on physico-

chemical properties of biochar. Meta-data was assembled from published data of diverse

biochar samples (n=102) to (i) obtain networks of intercorrelated properties and (ii)

derive models that predict biochar properties. Assembled correlation networks pro-

vide a qualitative overview of the combinations of biochar properties likely to occur in

a sample. Generalized Linear Models are constructed to account for the dependence

of biochar properties on single or multiple variables with additive and/or interactive

effects, non-Gaussian data distribution, and non-linear relationships.Generalized Lin-

ear Models are constructed to account for situations of varying complexity, including:

dependence of biochar properties on single or multiple predictor variables, where de-

pendence on multiple variables can have additive and/or interactive effects; non-linear

relation between the response and predictors; and non-Gaussian data distributions. The

web-tool Biochar Engineering implements the derived models to maximize their utility

and distribution. Provided examples illustrate the practical use of the networks, models

and web-tool to engineer biochars with prescribed properties desirable for hypothetical

∗Corresponding author.
Email address: morales@ifu.baug.ethz.ch (Verónica L. Morales )

1Present address: Inst. of Environmental Engineering, ETH Zürich, Zürich 8093, CH
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scenarios.

Keywords: physico-chemical properties, slow-pyrolysis, correlation networks,

Generalized Linear Models, web-tool

1. INTRODUCTION

Biochar, the product of biomass thermochemical conversion in an oxygen depleted

environment, has gained increasing recognition as a modernized version of an ancient

Amerindian soil management practice with at times wide-ranging agronomic and en-

vironmental gains (Lehmann et al., 2003; Atkinson et al., 2010; Novak and Busscher,

2013). Some of the most commonly acclaimed benefits of biochar application to soils

include: increased long-term C storage in soils (Atkinson et al., 2010; Joseph et al.,

2010; Cross and Sohi, 2011; Ennis et al., 2011; Karhu et al., 2011; Novak and Busscher,

2013), restored soil fertility (Glaser et al., 2002; Lehmann et al., 2003; Gaskin et al.,

2008; Novak et al., 2009; Atkinson et al., 2010; Laird et al., 2010; Beesley et al., 2011;

Lehmann et al., 2011; Enders et al., 2012; Spokas et al., 2012b; Novak and Busscher,

2013), improved soil physical properties (Novak et al., 2009; Joseph et al., 2010; En-

nis et al., 2011; Karhu et al., 2011; Lehmann et al., 2011; Novak and Busscher, 2013),

boosted crop yield and nutrition (Novak et al., 2009; Major et al., 2010; Lehmann et al.,

2011; Rajkovich et al., 2012; Spokas et al., 2012a; Novak and Busscher, 2013), enhanced

retention of environmental contaminants (Cornelissen et al., 2005; Loganathan et al.,

2009; Cao and Harris, 2010; Beesley et al., 2011), and reduced N-emission and leaching

(Spokas et al., 2012b; Novak and Busscher, 2013). Examples of the specific biochar

properties responsible for these benefits are summarized in Table 1.

Biochar quality can be highly variable, and its performance as an amendment –

whether beneficial or detrimental– is often found to depend heavily on its intrinsic

properties and the particular soil it is added to (Lehmann et al., 2003; Novak et al.,

2009; Atkinson et al., 2010; Major et al., 2010; Lehmann et al., 2011; Spokas et al.,

2012a). As has been previously concluded, biochar application to soil is not a “one

size fits all” paradigm (Spokas et al., 2012a; Novak and Busscher, 2013). Consequently,

2



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

detailed knowledge of the biochar properties and the specific soil deficiencies to be re-

mediated is critical to maximize the possible benefits and minimize undesired effects of

its use as a soil amendment. While soil deficiencies must be identified on a site-by-site

basis, it is conceivable that biochar properties can be engineered through the manipu-

lation of pyrolysis production parameters and proper selection of parent biomass type

(Zhao et al., 2013). The capacity to produce biochars with consistent and predictable

properties will, first, enable efficient matching of biochars to soils, and second, facilitate

the deployment of this soil management strategy at large and commercial scales. Al-

though the properties and effects of biochar samples produced from a variety of methods

and starting organic materialsbiomasses have been intensively studied, as yet, the an-

alytical techniques for characterization and effect quantification are not standardized.

This creates a challenge when comparing biochar properties and effects across studies.

At the same time, making such comparisons is imperative to gain a comprehensive

understanding of alterable biochar properties.

The prevailing hypothesis in the literature is that the selection of peak pyrolysis

temperature and parent organic materialbiomass –as two key production variables– fun-

damentally affects resulting biochar properties. Identification of relationships between

production variables and biochar properties has been pursued by many investigators,

but has been limited to the small number of samples produced and analyzed for each

study (e.g., Karaosmanoğlu et al., 2000; Zhu et al., 2005; Gaskin et al., 2008; Nguyen

and Lehmann, 2009; Cao and Harris, 2010; Joseph et al., 2010; Keiluweit et al., 2010;

Cao et al., 2011; Cross and Sohi, 2011; Hossain et al., 2011; Mukherjee et al., 2011;

Enders et al., 2012; Rajkovich et al., 2012; Zhao et al., 2013), with few reports com-

bining measurements from more than one source (Cordero et al., 2001; Glaser et al.,

2002; Atkinson et al., 2010; Ennis et al., 2011; Spokas et al., 2012a). The knowl-

edge gained from the above studies does not provide a quantitative understanding of

the relationships between production variables and biochar properties. The shortcom-

ings responsible for such lack of systematic insight include: (i) reported trends that

are primarily qualitative with respect to the independent effect of parent biomass or

3
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temperature (e.g., decrease in labile carbon with increasing pyrolysis temperature for

selected samples (Cross and Sohi, 2011)), (ii) trends that are often in conflict with sim-

ilar samples of other studies (e.g., positive effect (Rajkovich et al., 2012) vs. negligible

effect (Nguyen and Lehmann, 2009) of temperature on pH for oak biochar), and (iii)

correlations that are not convincing (e.g., correlation r = 0.5 between volatile matter

content and microporous surface area (Mukherjee et al., 2011)). A recent study by

Zhao et al. (2013) reports, for the first time, a quantitative evaluation of the individual

influence of feedstock source and production temperature on various biochar properties.

The authors classified a variety of physical and chemical biochar properties as predom-

inantly controlled by either feedstock or temperature. While this initial knowledge is

critical to guide the production of designed biochar, it falls short when the influence of

both parameters is significant, as is the case with most properties of interest.

The present study advances the quantitative approach one step further by con-

structing relationships that capture the combined influence that starting organic ma-

terialsbiomass and temperature has on various biochar physico-chemical properties of

agronomic and environmental interest. The first objective was to gather comparable

data from various sources to create an unbiased meta-data set on which to perform

statistical analyses. The second objective was to identify groups of inter-correlated

properties to gain an insight into how individual properties may be affected when oth-

ers are manipulated. The third objective was to underpin quantitative relationships

between production variables and the measured properties of biochar in the meta-data,

as listed in Table 1. The fourth objective was to implement the identified relationships

in a simple-to-use web application, which provides an estimate of the expected prop-

erties of biochar when produced under a user-defined set of production variables. The

overarching goal is to improve the efficiency in production of biochar with engineered

properties so that it can best match the needs of a particular soil or crop system.

4
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2. MATERIALS AND METHODS

2.1. Assembly of meta-data library

A library of meta-data (summarized in Table A.1) was created using information

from 102 different biochar samples measured for 22 unique physical and chemical char-

acteristics. To build the library, data were gathered from published studies that: (i)

used slow-pyrolysis biochar, (ii) reported the production details, and (iii) extensively

characterized the physical and chemical properties of biochar materials (Karaosmanoğlu

et al., 2000; Cordero et al., 2001; Gaskin et al., 2008; Keiluweit et al., 2010; Mukherjee

et al., 2011; Enders et al., 2012; Rajkovich et al., 2012). Production variable details

for each study are summarized in Table 2. These studies were chosen because the an-

alytical methods for characterization were similar, thus permitting the comparison of

data across studies. Based on these selection criteria, we focused our efforts to test the

effects of starting organic materialsbiomass and peak pyrolysis temperature on each of

the 22 biochar characteristics. It is important to note that although additional pyrolysis

production parameters varied among the samples in our meta-data, the distribution of

these variables was too skewed or not documented in a sufficient number of studies to

adequately test their effect.

2.2. Correlation matrix and networks

For the first statistical analysis, a correlation matrix was built to identify the links

among the physical and chemical properties of biochar in this study (see Fig. 1). To

construct the correlation matrix, the Pearson product-moment correlation coefficient

between each pair of variables was determined using all complete pairs of observations

on those variables. Significance of the relationships was simultaneously determined with

a confidence interval of 0.95. Absolute value of correlation and its significance (p-values

denoted by star symbols) are reported in the matrix. A threshold for the absolute value

of correlation coefficient, |r|, of 0.75 was usedarbitrarily chosen to resolve sufficiently

strong relationships. The correlation matrix gives a great deal of information that

is not always easy to interpret. In order to visualize the most relevant details, we

5
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identified the significant and strong enough correlated pairs of properties, and made a

network graph representation (see Fig. 2). The nodes of the graph represent the biochar

properties and edges are drawn between pairs of nodes if the properties are strongly

correlated and the relationship is significiant (|r| ≥ 0.75 and p-value < 0.001). Edge

thickness in the network graph is proportional to the correlation strength between node

pairs. From the correlation networks it is further possible to classify biochar properties

into interdependent groups or as independent properties. Alternative network graph

representations built with different correlation coefficient thresholds can be obtained

from the web-tool, as described in subsequent sections. The authors note that the only

difference between network representations of different correlation coefficient thresholds

is the number of connections which are displayed, meaning that weak correlations are

filtered out in order to ease analysis of network properties that are generally obscured

by the complexity of the complete (i.e., unfiltered) network.

2.3. Generalized Linear Model analyses

To accommodate for the different relationships between biochar properties and pro-

duction variables, a Generalized Linear Models (GLMs) approach was used. GLMs are

an extension of ordinary linear regression analysis that account for non-Gaussian dis-

tributions of the response as well as non-linear dependencies between explanatory and

response variables (the interested readers are referred to Myers et al. (2010) for greater

details). When there is a non-linear relation between the response and predictor, GLMs

can be used by applying a transformation to the response variable before fitting the

model. The other possibility consists in modelling the non-linear dependence by means

of a non-linear link function.

2.3.1. GLM candidates

The following steps have been used to build GLMs for the biochar system:

(a) In this study, the response variables are the biochar properties listed in Table 1.

The predictors correspond to the production variables which are parameterized
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by the pyrolysis peak temperature (T : 250-650 oC) and details about the starting

organic materialsbiomass, which can be introduced in the model by two categor-

ical variables. A first variable denoted as organic materialbiomass (B) contains

the categories: bull manure, corn, dairy manure, digested dairy manure, food

waste, grass, hazelnut, oak, paper waste, pine, poultry litter, and rapeseed. The

second variable corresponds to a nested category for B referred to as feedstock

class (F ), and contains the categories: animal waste, plant material, or combina-

tion. Variable T was introduced as covariate in the model, while B and F were

introduced as factors.

(b) Under GLMs, the response is assumed to follow a probability density function

p(Resp|X) belonging to the exponential family (Myers et al., 2010). In this study

the Gaussian and Gamma distributions were initially investigated. However, the

Gamma distribution did not show a good fit for any of the response variables and

therefore it will not be presented here. Instead, where the response variables did

not meet the criteria for a Gaussian distribution, transformation of the response

using the Log transform and the Box-Cox transform was applied. As a result,

the data distributions we have investigated include (untransformed) Gaussian and

two power-transformations for non-Gaussian data (Log transformed and Box-Cox

transformed) to describe the biochar system.

(c) A linear relation between the response (biochar property) and the predictors (pro-

duction variables) of the form

g(E(yi)) = βi0 +
Nc∑
j=1

βi,jxi,j +
Nc∑
j=1

Nc∑
k=1

βi,jkxi,jxi,k , (1)

is assumed, where E(yi) signifies the expected values of the i-th response, Nc is

the number of predictors, xi,j are the values of the predictor variables (dummy

values are used for categorical predictors), and g(·) is the link function. In par-

ticular, the link functions identity and log were explored for all models. The β

quantities are unknown parameters to be estimated by maximum-likelihood. The
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first contribution, βi0, is referred to as the intercept. The parameters βi,j quantify

the effects of individual variables, while the parameters βi,jk account for combined

effects associated with interacting pairs of variables. The predictor variables were

assessed in all possible individual (B, T, F ) and interacting (B:T, F:T ) combi-

nations, as summarized in Table 3. That is, possible formulas relating biochar

property (Resp) to temperature (T ), starting biomass (B) and feedstock class (F )

include: Resp ∼ T , Resp ∼ B, Resp ∼ B + T , Resp ∼ B : T , Resp ∼ B +B : T ,

Resp ∼ F , Resp ∼ F + T , Resp ∼ F : T , Resp ∼ F + F : T .

With all the available options, 54 iterations of GLM models (covering 9 formula

possibilities, 3 data transformations, and 2 link functions) were tested to describe each

biochar property. These options provide the extra flexibility in the model to describe

the biochar system with alternative data transformations and link functions that are not

included in ordinary linear regression models, which are limited to Gaussian p(Resp|X)

and identity g(·).

2.3.2. “Best” model selection and goodness-of-fit tests

The process of “best” model selection requires, first, grouping the GLMs by initial

data transformation type: untransformed, Log transformed, and Box-Cox transformed.

Quantitative diagnostics were determined for each model, including Akaike Information

Criterion (AIC) as an estimate of the quality of a model relative to the collection

of candidate models for the data, Shapiro-Wilk (SW ) test to determine whether the

sample came from a Normally distributed population, and Durbin-Watson (DW ) test to

detect autocorrelation in the residuals. Within each transformation group, the different

model formulations (summarized in Table 3) and the different link functions were ranked

by the individual model’s AIC score. The model with the lowest AIC was then selected

as the top candidate model in its group. This step reduces the list of candidate models

from 54 to 3, one for each transformation type.

In the second step, the three candidates belonging to each data transformation

group were compared against each other. To do this, diagnostic plots were gener-
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ated for each candidate model, including: (i) residual plots to illustrate the distance

of the data points from the fitted regression, (ii) Q-QNormal Quantile-Quantile plots

to graphically compare the probability distribution of the data against a theoretical

Normal distribution, (iii) square root of standardized residual plots to check for het-

erogeneity of the variance, and (iv) leverage with Cook’s distance to identify outliers

and points with disproportionate influence on regression estimates. Outlier points were

removed from a data set only when the Cook’s distance of a datum exceeded 0.5 and

re-evaluation of the model did not result in new points with large Cook’s distance. Per-

formance of the candidate models for SW and DW tests, together with the diagnostic

plots were used as goodness-of-fit tests to evaluate the assumptions of the models.

The following criteria were used to assess model adequacy. The residual plot was

checked for a random scatter of points producing a flat-shapped trend to verify that

the appropriate type of model was fitted. The Q-QNormal Quantile-Quantile plot was

assessed for deviation from the theoretical distribution to confirm Normality in the

residuals. The standardized residual plot was examined for a symmetric scatter and

flat-shapped trend to test the homogeneity of the variance. The leverage plot was

inspected for influential outliers when points fell far from the centroid or were isolated.

SW quantitatively tested for assumptions of Normality (p-value ≥ 0.05), while DW

evaluated the level of uncorrelation of the residuals (p-value ≥ 0.05). The “best” model

was finally selected as that which satisfied the most criteria, preferring the simpler data

transformation if diagnostics were comparable. All computations were performed using

RStudio, version 0.96.331.

2.4. Interactive web-tool

The interactive web application Biochar Engineering (available at: http://spark.

rstudio.com/veromora/BiocharEng/) was built to implement the GLMs constructed

in this study into a user-friendly tool, which requires no prior knowledge of advanced

statistics or programming language. It is accessible free of charge through a web browser

as a stand-alone application hosted by Shiny-RStudio. The primary intention of the

9
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tool is to maximize the utility of the models herein developed so that anyone can use

them to obtain a statistical outlook for expected physical and chemical properties of

biochar from user-defined production values. As is demonstrated in examples to follow,

the tool can be used to make informed decisions of the optimum selection of parent

biomass type and peak pyrolysis temperature that is required to produce biochars with

tailored physical and chemical properties.

3. RESULTS AND DISCUSSION

3.1. Correlation matrix and networks

Related biochar properties identified from the correlation matrix (Fig. 1) were used

to build a network representation of the 22 responses included in this study (Fig. 2).

From the generated networks, three groups of interdependent biochar properties were

distinguished and five individual properties found to be independent (i.e., the correla-

tion coefficient between any pair of properties was |r| <0.75). As illustrated in Fig. 2,

the first correlated group includes Fe, Yield, Ash, Ca, C, FixedC, and SSA(CO2), which

contains a mixture of positively and negatively correlated pairs. The second group in-

cludes EC, Na, P, K, Mg, Mn, Zn, and S, which contains all positive correlations (linked

by solid edges). The third group includes C:N and pHw, which are negatively correlated

(linked by dashed edges). The five independent properties are represented as edge-free

nodes and include BulkD, SSA(N2), N, MatVol, and CEC. Interestingly, SSA(N2) and

CEC were found to have mostly very weak and insignificant relationships with all other

biochar properties (|r| ≤ 0.53 with p-value ≥ 0.01 and |r| ≤ 0.44 with p-value ≥ 0.001,

respectively). The exception for CEC is its relationship with BulkD, which is signif-

icant albeit still weak (|r| = 0.58 with p-value < 0.001). As a result, SSA(N2) and

CEC could be considered the two most independent biochar properties, which are the

least likely to be affected when other properties are modified. It is noted that Principal

Component Analysis (analyzed with SPSS v.21) was initially explored to find clusters

of biochar properties. However, the meta-data contained too many samples that were
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not characterized in full, thus producing an incomplete matrix that required the omis-

sion of a vast number of samples or of entire response variables from the analysis. As

these omissions were considered to affect the results excessively, a correlation matrix

and network approach was adopted being considered less biased by missing data.

The networks of correlated properties provide an overview of which combinations of

biochar properties are more likely to occur in a given sample. The correlation networks

prove very useful as a tool for qualitative design of biochar samples with desired prop-

erties. For example, a hypothetically desirable biochar might be needed to neutralize

soil acidity (high pHw), return lost macronutrients P and S that were removed during

harvest (high P and S), prevent excess atrazine from leaching into the groundwater

(high SSA(CO2) and/or high Ash), and maximize the amount of biochar produced by

pyrolysis (high Yield). Using the network diagram of Fig. 2, it is possible for example

to infer the following. A biochar sample engineered for high pHw will not affect the

other desired properties, given that pHw is in a separate network to all other proper-

ties of interest. The addition of macronutrient P will concomitantly supply S, as these

properties belong to the same positively correlated network. The remaining three prop-

erties belong to the same network from which we extrapolate that a single sample of

biochar has a negative tradeoff between high SSA(CO2) and high Ash2, meaning that

it is less probable that a sample will have both high SSA(CO2) and high Ash. Yield

will be reduced if the sample is prioritized for high SSA(CO2) and (indirectly) maxi-

mized when high Ash content is favored. Networks obtained from different correlation

coefficient thresholds can be created in the web-tool as displayed in the Networks tab

and interpreted in the fashion described above. Increasing the correlation coefficient

threshold will simply result in the removal of weak connections from the final graphic,

while decreasing it will result in the display of more connections.

2While SSA(CO2) is not directly linked to Ash, high SSA(CO2) implies high C and FixedC which,

in turn, are negatively correlated with Ash. In other words, SSA(CO2) and Ash are indirectly anti-

correlated.
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3.2. Generalized Linear Models

In this section the versatility of GLMs as an extended linear regression approach is

leveraged to model the biochar system. The candidate GLMs are compared against one

another and the most appropriate models for each biochar property selected. Lastly,

the “best” models are evaluated for goodness-of-fit.

3.2.1. GLM candidates

As indicated in the methods section, selection of the “best” model is a two-step

process. First, the list of candidates is reduced to three. To do so, candidate mod-

els belonging to each of the three data transformation groups (untransformed, Log

transformed and Box-Cox transformed) are ranked according to their AIC score. Top

scoring models for each group are those with the lowest AIC value, and are reported

in tables for each biochar property in section II of the supplementary data. The tables

summarize the top candidate model for each data transformation group, where details

of the model are reported concerning: formula, type of data transformation used, link

function, AIC, p-value for the SW test, as well as d and p-value for the DW test.

Second, diagnostic plots are generated for the reduced candidate list, and the overall

“best” model is selected according to their relative performance in SW and DW tests

and diagnostic plot criteria. Diagnostic plots of the overall “best” model are included

in the same section of the supplementary data, and noted by a star in the table.

Model selection required a certain level of flexibility, as very few candidate models

met all evaluating criteria. This is a common feature of real data sets of a limited

size. Model performance in the SW test was relatively poor, since candidate GLMs

of 15 of the biochar properties failed SW for all types of data transformation. Nev-

ertheless, candidate GLMs of the remaining biochar properties consistently satisfied

this criterion for the overall “best” model. Performance in DW was useful in quanti-

tatively evaluating the assumption for uncorrelated residuals, but not to differentiate

the candidate GLMs against each other because often all candidates satisfied or failed

this criterion. Diagnostic plots, on the other hand, were much more insightful in il-
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lustrating the suitability and relative performance of the models, and were given more

consideration during “best” model selection.

In general, all four diagnostic plots corresponding to one candidate model performed

well above the other two, and demonstrated that the goodness-of-fit (GOF) assumptions

were satisfactorily met. For certain biochar properties two candidate models produced

diagnostic plots of similar performance, in which case the model corresponding to the

simpler data transformation was given preference; that is, untransformed is simpler

than Log transformed, which is simpler than Box-Cox transformed. In the case of Na,

for example, diagnostic plots for Log and Box-Cox transformation GLMs showed a

nearly identical model improvement (see Figs. A.15 and A.16), and all three candidate

models performed the same for SW and DW (see Table A.16). Consequently, the

Log transformed model was selected as the “best” model. The models for Fe, N,

and SSA(N2) were difficult to select given the pronounced heterogeneity in variance

and heavy deviation from the theoretical Q-QNormal Quantile-Quantile distribution

across all candidate models (see Fig. A.8, A.14 and A.21). These three models were

therefore considered to violate too many GOF criteria to be recommended for use with

confidence; the situation would improve with additional data. Irrespective of that,

the large proportion of properties found to be properly described by the corresponding

“best” model clearly demonstrates the feasibility of reverse engineering multiple biochar

properties simultaneously. We note that initial analysis with fewer samples comprising

the meta-data resulted in the selection of “best” models with satisfactory GOF criteria

that were very similar to those chosen from the larger data set (presented in Table 3).

This indicates that replication of suitable results (i.e., those that comply with GOF

standards) from different studies are consistent.

Table 3 summarizes the “best” models chosen for all biochar properties, where the

last column indicates whether the model complies with GOF standards. The Maximum

Likelihood Estimates (MLEs) of the “best” model coefficients for each biochar property

are reported in section III of the supplementary data and can be requested from the

web-tool in the Stats tab.
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3.2.2. “Best” GLMs

The formulas of the “best” models (column 2 in Table 3) indicate that for the

vast majority of cases it is imperative to have information about both starting organic

materialbiomass and peak pyrolysis temperature to properly define the relationship

between biochar properties and production variables. In the simplest case a single

predictor variable statistically dominates. We find that this only occurs for S, which

depends entirely on B, while T is not statistically significant (as shown in Fig. 3A). No

response variable was found to depend exclusively on T . The next level of complexity

is that in which the response depends on both B and T , but the two factors do not

interact (B+T ). This occurs for pHw, Ash, C:N, and most micronutrients. In this type

of relationship, B affects the response, but the rate at which T has an influence is the

same across all types of B (illustrated in Fig. 3B). The following level of complexity is

that in which there is a significant interaction between B and T , but no main effect of

B (B : T ), as in the case for SSA(CO2) and FixedC. A general trend in this type of

relationship is that the rate of change in the response with the increase in T is different

for the different B, whereas the intercept is the same (as shown in Fig. 3C). Finally,

the most complex relationship is given by the full model (B+B:T or F+F:T ). In this

model, both intercept and temperature regression slope are significantly different for the

different B (or F ). The relationships for BulkD, SSA(N2), Yield, EC, CEC, MatVol,

C, N, P, Ca, and K fall into this category. In this case, changes in B (or F ) and T are

not trivial, as the relationship permits the greatest level of flexibility and rules out any

general trends (as in Fig. 3D).

For the three simplest relationships (B, B+T , and B:T ), a change in B does not

affect the response order relative to the other types of B. Conversely, for the most com-

plex relationship (B+B:T or F+F:T ), a change in organic materialbiomass affects the

response in such a way that it crosses over responses from other organic materialbiomass

types as T changes; thereby not necessarily maintaining the relative order among the

different types of organic materialbiomass. This assessment of multiple predictor vari-

able influence corroborates the perception that biochar properties are deeply shaped by
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the collective effect of both production variables, whether additive and/or interactive.

Furthermore, it warrants against statistical bias that is introduced when biochar pro-

duction decisions are based on the dominance of a single variable on a biochar property

of interest. Interestingly, only the “best” model for MatVol favored the nested start-

ing organic materialbiomass, F . All other “best” models performed better when this

information was entered in its more detailed form, B.

The frequency in response variable transformation for the selected “best” models

(column 3 in Table 3) indicates that a minority of the data are Normally distributed and

meet the constant variance assumption. Most responses require power-transformation

to stabilize their variance. Specifically, 7 response variables were satisfactorily modeled

without transformation of the response values, while 9 others needed Log transforma-

tion and the remaining 6 required the more advanced Box-Cox transformation. This

observation draws attention to the fact that non-constant variance is ubiquitous in

the characteristics of biochar, which requires transformation of the response variable

to comply with Normality assumptions. Depictions of different functional shapes are

presented in Fig. 4 for models sharing the same formula (B+T ) and identity link. In

this figure, (A) is the reference for the untransformed response for pHw, (B) is the Log

transformed response for Mn, and (C) is the Box-Cox transformed response for Ash. In

these plots, it is evident that the untransformed data have a perfectly linear relation-

ship. In contrast, Log and Box-Cox transformations are suitable to describe non-linear

behavior associated with a more cumbersome relationship between biochar properties

and production variables.

Similarly, the prevalence of non-linear link functions in the “best” model population

(column 4 in Table 3) exposes the common violation of the linearity assumption. It is

interesting that all 7 responses that demonstrated constant variance (i.e., not requiring

data transformation) also met the linearity assumption (favoring identity link function).

This was also the case for 8 of the responses with unequal variances that required data

transformation. The remaining 7 responses required transformation to address variance

instability and the log link function to further correct for non-linearity. The log link
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function contributes to the non-linear function shape of the response in a way that

resembles that of Log and Box-Cox data transformation. Fig. 4 illustrates this effect

for responses that have been Log transformed. The data in (B) satisfies the linearity

assumption and is adequately modeled with the identity link function. In contrast,

the property in (D) needs a log link function to adjust for non-linearity. In short,

both non-Gaussian and non-linear features were found to be ubiquitous in the biochar

system.

3.3. Biochar Engineering: the web-tool

The Biochar Engineering tool is an integrated calculator for the biochar models

in Table 3. The web-tool can be navigated through the various tabs on display at

the top of the page. The About tab introduces the tool, the Graphic and Table tabs

contain the model results, the Stats tab summarizes individual model parameters, and

the Networks tab displays networks of correlated biochar properties. The side bar

panel is always visible and can be modified at any time to re-run the model with new

input variable values for organic materialbiomass, peak temperature, and confidence

coefficient, request the statistical summary of a specific response model, set a correlation

coefficient cutoff for the networks, and download the output of any tab. The model

output for the user-defined production variables is automatically generated and updated

in the Graphic and Table tabs. Correlation networks are similarly updated in the

Networks tab for newly defined correlation coefficients. Ultimately, this information can

be used to select production variable values that yield biochar with the most desirable

set of properties for the user, thereby facilitating the possibility to efficiently engineer

biochar resources to meet multiple agricultural demands.

3.4. Using GLMs and web-tool to engineer a biochar

Recommendations for the use of the GLMs in Table 3 cannot be generalized be-

cause they depend on the particular set of properties needed from biochar to mitigate

deficiencies in a specific soil or crop, as well as on the type of organic materialbiomass

available and limitations of the pyrolysis unit. Rather than attempting to examine all
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possible scenarios, this section presents two examples that demonstrate how the GLMs

and the web-tool can be used to engineer the hypothetical biochar described in section

3.1 (requiring high pHw, high P and S, high SSA(CO2) and/or high Ash, and high

Yield). In the first example we assume a situation where all production variables can

be modified, and identify the optimum combination of starting organic materialbiomass

and temperature that return the desired qualities. In the second example we assume a

situation where the type of starting organic materialbiomass is fixed (e.g., to concur-

rently dispose of a byproduct from another process), and determine the temperature

that is most suitable to obtain the desired qualities.

3.4.1. A worked example for total optimization of production variables

In the case where all production variables can be modified, we propose to refer to

the prediction plots corresponding to the properties of interest. Prediction plots for all

properties analyzed in this study are included in Fig. A.24-A.45 of the supplementary

data; see the particular case for pHw in Fig. 5. To facilitate interpretation of the model

results, the predictive plots are presented as composite figures where each subfigure

corresponds to a unique type of starting organic materialbiomass and the property of

interest is plotted as a function of pyrolysis temperature. The predicted (mean) values

are presented as a solid line, while regions corresponding to 75, 85, and 95% confidence

intervals are indicated by the shaded regions (dark gray, gray, light gray, respectively).

For reference, the data points from the meta-data are overlaid as solid circles.

We begin by analyzing Fig. 5 to identify the variables that can deliver biochar with

high pHw. This figure shows that as T increases pHw increases, and this rate is constant

across all B. Among the different types of B included in the pHw model, biochars

made from Poultry litter would typically result in the highest achievable pHw at any

T , followed by Digested dairy manure, Corn, Food waste, and Paper waste. Next, we

analyze the predictive plot for P (Fig. A.38). From this figure it is apparent that most

Bs result in biochars with low P concentrations that are minimally variable with T ;

crossovers associated with the B:T coupling are mainly observed on the low T range.
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Notably, samples made from Poultry litter contain the highest concentration of P (by

orders of magnitude greater than samples of lowest P), with Food waste and Digested

dairy manure following significantly behind in P concentration. Then, we examine the

predictive plot for S (Fig. A.40), which is exclusively dependent onB (in agreement with

the “best” model formula for S in Table 3). It is easy to distinguish that Poultry litter

has the highest S content, followed by Digested dairy manure and Dairy manure. Next,

we consider predictions for SSA(CO2) (Fig. A.41), which also show a general increase in

response with T at rates that depend on B (cf. formula B:T for the “best” SSA(CO2)

model). From these predictions we identify that Hazelnut, Pine and Oak produce

the highest possible SSA(CO2), which is enhanced as T is increased. Conversely, the

predictive plot for Ash (Fig. A.24) indicates that this property is typically around 30%

and generally increases with T . Paper waste, Poultry litter and Food waste are ranked

highest among the B types to show high ash at all T levels. Lastly, the predictive plot

for Yield (Fig. A.44) demonstrates a pronouncedly decreasing trend with increasing T

for all B types, with crossovers throughout, as expected from the “best” model formula

B+B:T given in Table 3 for Yield. It is evident that biochars from Paper waste and

Poultry litter produce the highest yield for the range of T investigated.

Based on the above observations, we conclude that Poultry litter pyrolysed at T

above 500◦C will return a biochar that meets most of the needed hypothetical prop-

erties. More concrete recommendations of T will depend on the producer’s choice to

compromise between Ash and Yield, which have opposing trends with T . One way to

facilitate this decision is to refer to the predictions made by the Biochar Engineering

web-tool at various temperatures. By specifying in the side bar panel the Organic Ma-

terialBiomass (Poultry), Peak Temperature (a value in the range 500-600◦C), and a

satisfactory Confidence Coefficient (e.g., 0.8), the web-tool automatically generates a

table (located in the Table tab) that summarizes the expected biochar properties for the

input variables. For discrete temperatures at 500, 550, and 600◦C, the biochar would

be expected to have an Ash content of 56.60, 61.31, and 66.4%, and Yield of 65.76,

64.38, and 63.03%, respectively. Considering that Ash is increased by 10% and Yield
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is only reduced by 2% when T is increased from 500 to 600◦C, one might accept the

small penalty in yield for gaining more ash. Assuming all other considerations are sat-

isfactory in this hypothetical scenario, one could conclude that the customized biochar

with the above listed characteristics is best produced by pyrolysing Poultry litter at

600◦C. For a comprehensive outlook on the expected range of all 22 physico-chemical

properties, the user may refer to the output generated in the Graphic or Table tabs of

the web-tool, and save the results with the download buttons for future reference.

3.4.2. A worked example for restrictions in starting organic materialbiomass

A similar approach to that followed in the first example can be used to engineer

a biochar for cases in which the type of organic materialbiomass is fixed. Take for

instance a corn farm, which is interested in selling its corn stover resources as high

quality biochar because livestock feed and bioenergy prices are low. The properties

required from the biochar, as specified by the client, are assumed to be the same as

those for the hypothetical biochar considered above. In this case, the farmer or py-

rolysis contractor would be referred to the web-tool directly. In the side bar panel,

the Organic MaterialBiomass should be set to Corn and a suitable Confidence Coeffi-

cient selected (e.g., 0.8). The Peak Temperature slider can then be used to study the

changes in biochar properties with temperature, as the only production variable that

can be adjusted. The model output results can be monitored in either the Graphic

tab (bar plots indicate predicted values with error bars marking the confidence interval

range) or in the Table tab (table summary of predicted values with their corresponding

standard error and confidence interval). By shifting the Peak Temperature slider from

low to high temperatures it is evident that Yield is diminished, SSA(CO2), pHw, Ash,

and P are intensified, and S remains constant. Assuming in addition to the required

biochar properties that in order to make a profit, the Yield should be at least 30%,

we can conclude that the corn stover should be pyrolysed at 467◦C, so the lower end

of the expected yield range is above 30%. The Table tab of the web-tool (see screen-

shot in Fig. 6) summarizes the expected value and confidence interval for each biochar
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property, according to the production variables specified. For corn pyrolysed at 467◦C,

the estimated range (with 80% confidence level) for the desired properties is: 8.6-9.9

pHw, 1647-2214 Total (mg/kg) P, and 633.1-869.9 Total (mg/kg) S, 330.6-450.6 m2/g

SSA(CO2), 11.8-16.2% Ash, and 30.0-33.1% Yield.

4. CONCLUSION

Statistical results demonstrate that arbitrary choices of starting organic materialbiomass

or peak pyrolysis temperature are unlikely to produce biochar with prescribed physico-

chemical properties. Generalized Linear Models were used to quantify the combined

effect that starting organic materialbiomass and peak temperature has on different

biochar properties. These properties are typically non-Gaussian and exhibit non-linear

dependence on the two predictor variables. Proper description of most biochar prop-

erties by GLMs demonstrates the feasibility to engineer biochar. A web-application

of the GLMs together with correlation networks are offered as tools to guide biochar

engineering.
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Captions, Figures and Tables

Figure 1. Correlation matrix of biochar properties. The diagonal indicates the

biochar properties. The upper triangular sector shows the absolute value of correlation

between pairs of properties and significance symbol (defined in the legend). Highly

correlated pairs (with |r| ≥ 0.75) are highlighted in bold font. The lower triangular

sector displays the respective bivariate scatterplots with a trend line.

Figure 2. Correlation networks of inter-correlated biochar properties (|r| ≥ 0.75).

Nodes represent individual biochar properties, and edges indicate whether the correla-

tion is positive (solid line) or negative (dashed line). Line thickness is proportional to

the correlation strength.

Figure 3. Formula interpretation for GLMs of link identity. (A) Resp ∼ B. (B)

Resp ∼ B + T. (C) Resp ∼ B:T. (D) Resp ∼ B + B:T.

Figure 4. Data transformation interpretation for GLMs of link identity and Formula

B+T . (A) Untransformed. (B) Log transformed. (C) Box-Cox transformed. (D) Log

transformed of link log.

Figure 5. Model predictions for pHw content (solid line) with confidence intervals

for 75, 85, and 95% (dark gray, gray, light gray shading, respectively). Data points

from meta-data are overlain (solid circles).

Figure 6. Interface of the Biochar Engineering tool. Model output compiled in the

Table tab.

Table 1. Benefits from specific biochar properties.

Table 2. Production details of meta-data.

Table 3. Possible GLM formulas relating biochar property (Resp) to starting organic

material biomass (B), feedstock class (F ), and temperature (T ).

Table 43. Summary of “best” models selected for each biochar characteristic.
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Table 1:

Biochar property Agronomic and environmental benefits

BulkD [Mg m−3] Low bulk density biochar can reduce the density of compacted soils, thereby improving root pene-

tration (Ennis et al., 2011; Atkinson et al., 2010; Novak and Busscher, 2013), water drainage and

aeration (Joseph et al., 2009; Laird et al., 2010). The latter may mitigate green house gas emissions

(Karhu et al., 2011).

SSA(N2), SSA(CO2) [m2 g−1] High nanopore and micropore specific surface area, respectively, may increase the sorptive affinity

of organic compounds to biochars (Beesley et al., 2011; Cornelissen et al., 2005), and improve water

holding capacity (Karhu et al., 2011).

Yield [%] Yield reflects the quantity of biochar material produced from the pyrolysis process.

EC [mS m−1] Electrical conductivity indicates the quantity of salt contained in the biochar. High EC can stabilize

soil structure (Joseph et al., 2009; Hossain et al., 2011).

CEC [Av (mmolc kg−1)] Increased cation exchange capacity can improve the soil’s ability to hold and exchange cations

(Chapman, 1965; Glaser et al., 2002).

pHw [-] Soil solution pH directly affects soil surface charge, which determines the type of exchangeable

nutrients and mineral ions it attracts (Mukherjee et al., 2011). Additionally, the buffering capacity

of biochar can neutralize acidic soils, redude aluminum toxicity and change the soil microbial

community structure (Abe, 1988; Lehmann et al., 2011).

Ash [%] Ash may improve the sorption capacity of biochar for organic compounds and metals (Cao et al.,

2011).

MatVol [%] Volatile matter affects biochar longevity in soil (Enders et al., 2012; Lehmann et al., 2011). Resid-

ual volatiles can also impact organic substance sorption by blocking pores and changing surface

chemical interactions (Novak and Busscher, 2013; Zhu et al., 2005; Sander and Pignatello, 2005).

C [mg g−1] Total carbon in organic matter benefits the soil.

N [mg g−1] Total nitrogen in the biochar supplies a macronutrient, but its availabiity is limited. Biochar may

strongly sorb ammonia and act as a nitrogen-rich soil amendment (Spokas et al., 2012b).

C:N [-] Carbon to nitrogen ratio influences the rate of decomposition of organic matter and release of soil

nitrogen (Novak et al., 2009).

FixedC [%] Fixed carbon is non-labile and therefore is a property attributed to biochar stability (Keiluweit

et al., 2010; Enders et al., 2012; Rajkovich et al., 2012).

P, S [Total (mg kg−1)] Macronutrients provided by biochar, which can improve soil fertility.

Ca, K, Mg, Na, Fe, Mn, Zn [Total (mg kg−1)] Micronutrients provided by biochar, which can improve soil fertility.

Notes: BulkD = Bulk Density, SSA = Specific Surface Area, EC = Electrical Conductivity, CEC = Cation Exchange Capacity,

MatVol = Volatile Matter, FixedC = Fixed Carbon
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Table 2:

Biomass Feedstock Milling size Moisture Reactor type Feed capacity Oxygen limitation Heat rate Holding time Peak temp. Reference

[µm] [%] [min] [◦C]

Bull manure animal 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Enders et al., 2012)

Corn plant 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Rajkovich et al., 2012; Enders et al., 2012)

Dairy manure animal 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Enders et al., 2012)

Digested dairy manure animal 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Rajkovich et al., 2012; Enders et al., 2012)

Food waste combo 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,400,500,600 (Rajkovich et al., 2012)

Grass (Tall fescue) plant <1500 na closed container muffle furnace na yesa na 60 300,400,500,600 (Keiluweit et al., 2010)

Grass (Tripsacum floridanum) plant 50,000 (5d drying at 60◦C) batch pyrolysis oven 4,749 cm3 N2 26◦C 60 250,400,650 (Mukherjee et al., 2011)

Hazelnut plant 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Rajkovich et al., 2012; Enders et al., 2012)

Oak (Quercus rotundifolia) plant 177-250 na horizontal tube furnace na N2 continuous flow 120 300,350,400,450,500,550,600 (Cordero et al., 2001)

Oak (Quercus lobata) plant 50,000 (5d drying at 60◦C) batch pyrolysis oven 4,749 cm3 N2 26◦C 60 250,400,650 (Mukherjee et al., 2011)

Oak plant 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Rajkovich et al., 2012; Enders et al., 2012)

Paper waste plant 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,400,500,600 (Rajkovich et al., 2012)

Pine (Pinus halepensis) plant 177-250 na horizontal tube furnace na N2 continuous flow 120 300,350,400,450,500,550,600 (Cordero et al., 2001)

Pine (Pinus ponderosa) plant <1500 na closed container muffle furnace na yesa na 60 300,400,500,600 (Keiluweit et al., 2010)

Pine (Pinus taeda) plant na na batch pyrolysis unit na N2 na na 400,500 (Gaskin et al., 2008)

Pine (Pinus taeda) plant 50,000 (5d drying at 60◦C) batch pyrolysis oven 4,749 cm3 N2 26◦C 60 250,400,650 (Mukherjee et al., 2011)

Pine plant 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Rajkovich et al., 2012; Enders et al., 2012)

Poultry litter animal na na batch pyrolysis unit na N2 na na 400,500 (Gaskin et al., 2008)

Poultry litter animal 149-850 10 kiln 3000 g N2 3◦C 15-20 min−1 80-90 300,350,400,450,500,550,600 (Rajkovich et al., 2012; Enders et al., 2012)

Rapeseed plant <1000 12.6 tubular reactor 30 g N2 5◦C min−1 30 400,500,600 (Karaosmanoğlu et al., 2000)

a Details not specified.
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Table 3:

Response Formula Transformation Link GOF

BulkD B + B:T Box-Cox Transf identity 3

SSA(N2) B + B:T - identity 7

SSA(CO2) B:T - identity 3

Yield B + B:T Log Transf log 3

EC B + B:T Box-Cox Transf log 3

CEC B + B:T Log Transf log 3

pHw B + T - identity 3

Ash B + T Box-Cox Transf identity 3

MatVol F + F:T - identity 3

C B + B:T - indentity 3

N B + B:T - identity 7

C:N B + T Box-Cox Transf identity 3

FixedC B:T - identity 3

P B + B:T Box-Cox Transf log 3

S B Log Transf identity 3

Ca B + B:T Log Transf identity 3

K B + B:T Box-Cox Transf identity 3

Mg B + T Log Transf identity 3

Na B + T Log Transf log 3

Fe B + T Log Transf log 7

Mn B + T Log Transf identity 3

Zn B + T Log Transf log 3
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Highlights: 

• Starting biomass and peak pyrolysis temperature jointly affect biochar properties. 

• 19 different physico-chemical properties of biochar were properly modeled by GLM. 

• Models reveal complex relationships between biochar properties and predictors. 

• Ubiquitous non-Gaussian and non-linear attributes were accounted for in GLMs. 

• Proposed correlation networks, models and web-tool can be used to engineer biochar. 
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