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Abstract 

An 8-week feeding trail was conducted in Acanthopagrus schlegelii with an initial body 

weight of 8.34±0.01g. Three isonitrogenous diets were formulated, (1) Control: 
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medium-fat diet (12%); (2) HFD: high-fat diet (18%); (3) HFD+FF: high-fat diet with 

fenofibrate (0.15%). Liver histological analysis revealed that, compared to HFD, 

vacuolar fat drops were smaller and fewer in fish fed fenofibrate. Expression of lipid 

catabolism regulator peroxisome proliferator-activated receptor alpha (pparα) was up-

regulated by fenofibrate compared with HFD. In addition, fenofibrate significantly 

increased the expression level of silent information regulator 1 (sirt1). Meanwhil e, the 

expression level of anti-inflammatory cytokine interleukin 10 (il-10) in intestine was 

up-regulated, while pro-inflammatory cytokine interleukin 1β (il-1β) in liver and 

intestine were down-regulated by dietary fenofibrate supplementation. Overall, the 

present study indicated that fenofibrate reduced fat deposition and attenuated 

inflammation response caused by HFD partly through a pathway involving regulation 

of pparα and sirt1. 

  



1. Introduction 

Lipids are the most important dietary energy source for aquatic animals, and can 

increase dietary protein efficiency and, consequently, high-fat diets have been widely 

used in aquaculture (Boujard et al., 2004). Within a certain range, increasing dietary 

lipid/fat level can promote growth performance, spare dietary protein and reduce 

production costs, as demonstrated in hybrid tilapia (Oreochromis niloticus × 

Oreochromis aureus) (Chou and Shiau, 1996) and hybrid snakehead (Channa 

maculata♀× Channa argus♂) (Zhang et al., 2017). However, excessive dietary fat can 

cause metabolic disorders, fat deposition, endoplasmic reticulum stress and 

inflammation as reported in blunt snout bream (Megalobrama amblycephala), large 

yellow croaker (Larmichthys crocea) and black seabream (Acanthopagrus schlegelii) 

(Cao et al., 2019a; Jin et al., 2019a, b; Wang et al., 2015b). In addition, our previous 

study revealed that a high fat diet induced lipid accumulation, hepatic steatosis and NF-

κB activation, and a resultant inflammatory response in black seabream (Jin et al., 

2019b). Recently, studies have demonstrated that dietary fenofibrate supplementation 

can have functionally important effects on lipid metabolism and the inflammatory 

response of fish (Luo et al., 2019; Ning et al., 2019). Dietary fenofibrate 

supplementation appears to impact lipid metabolism through mechanism that can 

potentially reduce lipid deposition, alleviate hepatic steatosis and attenuate 

inflammation response. 

Fenofibrate belongs to the group of fibrate drugs, which are generally used in the 

treatment of hypertriglyceridemia and combined hyperlipidemia patients (Packard, 

1998). However, in fish, fenofibrate has been shown to also enhance peroxisomal lipid 

oxidation, reduce liver fatty acid and serum triacylglycerol (TAG) contents, and 

decrease embryonic yolk sac resorption (Du et al., 2004; Du et al., 2008; Prindiville et 

al., 2011; Raldúa et al., 2008). It has also been shown that the mechanism whereby 

fenofibrate can affect lipid metabolism is by activating peroxisome proliferator-

activated receptor alpha (PPARα) (Koh et al., 2012). The transcription factor PPARα 

is one of the nuclear receptor family that, upon activation, regulates the mRNA levels 

of a series of genes such as acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase 

I (CPT1) that, in turn, directly regulate lipid metabolism decreasing plasma TAG 

concentration in mammals (Mandard et al., 2004). Similar results have been reported 

in fish species, showing that dietary fenofibrate supplementation could modulate lipid 

deposition by up-regulating the expression of lipid metabolism genes, such as cpt1a in 

yellow catfish (Pelteobagrus fulvidraco) (Zheng et al., 2015) and Nile tilapia 

(Oreochromis niloticus) (Ning et al., 2019). Furthermore, Pparα not only affects genes 

of lipid metabolism, but also impacts inflammatory signaling pathways by directly 

interacting with nuclear factor kB (NF-κB) to influence mRNA expression levels of 

inflammatory genes such as interleukin 6 (il-6) receptor (Desvergne and Wahli, 1999; 

Lee et al., 2013; Stienstra et al., 2007). Moreover, studies in mammals indicated that 

PPARα works in combination with silent information regulator 1 (sirt1) to relieve 

inflammation and metabolic dysregulation to protect heart (Oka et al., 2012; Planavila 

et al., 2010). Furthermore, Wang et al. (2015a) reported that PPARα suppressed 

expression of inflammation markers through deacetylation of NF-κB by a SIRT1-

mediated mechanism in adipocytes and human vascular endothelial cells. PPARs 

inhibit the mRNA expression of a number of important genes involved in the 

inflammatory response including cytokines, cell adhesion molecules and other pro-

inflammatory signaling mediators such as interleukin 8 (IL-8), IL-6, interleukin 2 (IL-

2), tumor necrosis factor-ɑ (TNFα) and metalloproteases by inhibiting NF-κB, 



activation protein-1 (AP1) and signal transducers and activators of transduction (STAT) 

(Chinetti et al., 2000).  

SIRT1, is a highly conserved NAD+ dependent protein deacetylase, recognized as 

a master switch in energy homeostasis, which plays an important role in cellular 

metabolic processes, including stress responses and inflammation (Rodgers and 

Puigserver, 2007; Wu et al., 2020). A previous study reported that hepatic SIRT1 is an 

important factor in the regulation of lipid metabolism that is also regulated by 

transcription factors including PPAR and, as a vital pathway for the regulation of 

hepatic lipid metabolism, SIRT1 positively regulates PPARα to reduce lipid 

accumulation in liver (Rodgers and Puigserver, 2007). Furthermore, in mammals, 

SIRT1 could repress NF-κB signaling that, in turn, greatly attenuated NF-κB-driven 

inflammation (Salminen et al., 2008; Yao and Rahman, 2012). Accumulating evidence 

confirmed that PPARα regulated metabolism and inflammation via SIRT1 (Wang et 

al., 2015a). Meanwhile, as a vital pathway for the regulation of hepatic lipid 

metabolism, SIRT1 positively regulates PPARα to reduce lipid accumulation in liver 

(Rodgers and Puigserver, 2007). However, the metabolic regulatory functions of 

fenofibrate in reducing lipid accumulation and inflammation caused by a high fat diet 

in fish, and whether it works in association with PPARα and Sirt1 has not been 

investigated. 

Black seabream is an important marine fish species that is cultured commercially 

on the southeast coast of China, Japan, South Korea and other countries in Southeast 

Asia. It has been regarded as an excellent species for intensive aquaculture since it 

exhibits rapid growth, high disease resistance, and can tolerate a wide range of 

environmental conditions (Jin et al., 2019a,b). Moreover, our previous study verified 

that feeding black seabream a high fat diet can induce excess lipid deposition and 

inflammation making it a good experimental model to study the metabolic mechanisms 

(Jin et al., 2019a,b). The mechanism of the hypolipidemic effect of fenofibrate has been 

partly revealed in mammals, but little information is available for fish (Du et al., 2008). 

The activation effects of fibrates vary in different species, and does not always include 

effects on ppar as it does in mammals (Kondo et al., 2007; Luci et al., 2007; Mimeault 

et al., 2006; Raldúa et al., 2008). Therefore, the present study aimed to explore how 

fenofibrate supplementation impacts lipid metabolism and inflammatory responses in 

black seabream fed a high fat diet, and provide further insight into the mechanism of 

action of dietary fenofibrate in fish. 

2. Materials and Methods 

Ethics statement 

Animal experimentation within the present study was conducted in accordance with the 

Animal Research Institute Committee guidelines of Ningbo University, China and 

approved by the Committee of Animal Research Institute, Ningbo University, China.  

2.1 Experimental design and diet preparation 

Three isonitrogenous (41 % crude protein) diets with two levels of lipid (12 % and 18 

% crude lipid) were formulated and termed as (1) control: medium-fat diet (12 %), (2) 

HFD: high-fat diet (18 %), (3) HFD+FF: high-fat diet with fenofibrate supplement 

(1.5g/kg dry diet; MCE, USA) (Table 1). Fishmeal, soybean protein concentrate and 

soybean meal were used as protein sources, with fish oil, palmitic acid and soybean 



lecithin used as the main lipid sources. All ingredients were purchased from Ningbo 

Tech-Bank Feed Co. Ltd., Ningbo, China. The experimental diets were produced 

according to the method described in detail previously (Jin et al., 2019a,b). Briefly, 

the ground ingredients were mixed in a Hobart type mixer and cold-

extruded pellets produced (F-26, Machine factory of South China 

University of Technology) with pellet strands cut into uniform sizes (2 

mm and 4 mm diameter pellets) (G-250, Machine factory of South 

China University of Technology). Pellets were steamed for 30 min at 90 

°C, and then air-dried to approximately 10 % moisture, sealed in vacuum-

packed bags and stored at − 20 °C until used in the feeding trial. 

Insert Table 1 here. 

2.2 Feeding trial and experimental conditions 

Juvenile black seabream (initial weight 8.34 ± 0.01 g) were obtained from a local 

commercial hatchery at Xiangshan Bay, Ningbo, China. Prior to the start of the 

experiment, black seabream juveniles were acclimated to the experimental facilities and 

fed a commercial diet (45 % protein, 12 % crude lipid, Ningbo Tech-Bank Corp.). The 

feeding trial was carried out with a completely randomized design. A total of 270 black 

seabream juveniles were randomly allocated to 9 floating net cages (1.5 m × 1.5 m × 

2.0 m) with triplicate cages for each of the three dietary treatments. Fish were hand-fed 

twice daily at 07:00 and 17:00 over 8 weeks, with the amount of feed being 6 % of body 

weight, which was adjusted according to feeding recommendations for growth stages. 

During the experimental period, seawater conditions including temperature (26.6 - 30.7 

°C), salinity (22.53 - 27.86 g/L), dissolved oxygen (4.7 - 6.8 mg/L) and pH (8.0 - 8.1 

mg/L) were measured with YSI Proplus (YSI, Yellow Springs, Ohio, USA). 

2.3 Samples collection 

At the end of the feeding trial, fish were sampled 24 h after the last feed, all fish 
were euthanized (MS-222 at 10 mg/L). All fish in each cage were individually 
weighed and counted to determine final body weight (FBW), weight gain (WG), 
specific growth rate (SGR), feed efficiency (FE) and survival. Three fish from each 
cage (9 per treatment) were pooled (n = 3) and used for analyzing the proximal 
composition of whole body, where three fish (nine per treatment) were used to 
determine morphological parameters including condition factor (CF), 
viscerosomatic index (VSI), hepatosomatic index (HSI) and intraperitoneal fat (IPF) 
ratio (n=9). Liver, muscle and intestine samples were also collected from these fish 
and stored at −80 °C until analysis. Fresh liver tissues were collected into 4 % 
formaldehyde from one fish per tank for histological analyses. Blood samples were 
taken from the caudal vasculature of 10 fish per cage by using non-heparinized 

syringes (2 ml) for serum biochemical indices.  

2.4 Proximate composition analysis 

The moisture, crude lipid, crude protein and ash contents of feeds and whole fish body 



samples were determined by AOAC (2006) methods. Moisture content was measured 

by drying the samples to a constant weight at 105 ℃. Crude lipid was extracted via the 

ether extraction method using a Soxtec System HT (Soxtec System HT6, Tecator, 

Sweden). Crude protein (N × 6.25) was determined according to the Dumas combustion 

method with a protein analyzer (FP-528, Leco, USA) and ash content was measured 

using a muffle furnace at 550 ℃ for 8 h. Protein productive value (PPV) and lipid 

retention (LR) were determined based on the measured crude protein and lipid contents 

of diet and fish. 

2.5 Assay of serum and liver biochemical indices 

Blood was stored at 4 °C for 24 h and then serum collected by centrifugation at 956 g 

for 10 min at 4 °C. Aspartate aminotransferase (AST) and alanine aminotransferase 

(ALT) activities, and triacylglycerol (TAG) and cholesterol (CHOL) contents in serum 

were assayed using an automatic biochemistry analyzer (VITALAB SELECTRA 

Junior Pros, Netherlands). TAG and CHOL contents in liver were assayed using a 

diagnostic reagent kit purchased from the Nanjing Jiancheng Bioengineering Institute 

(Nanjing, China). 

2.6 Histological analysis of liver 

Fresh liver tissue was fixed with 4% paraformaldehyde before paraffin sections were 

prepared (Servicebio, Hangzhou, China). Briefly, after fixation for at least 24 h, tissue 

samples were trimmed appropriately in a fume hood before being dehydrated in ethanol 

with concentration increasing incrementally from 75 % to 100 %. Liver samples were 

then embedded in paraffin and sliced into sections of 4 μm using a microtome. They 

were stained with haematoxylin and eosin (H&E) and Oil Red O, and images were 

acquired under a microscope (Nikon Eclipse CI, Tokyo, Japan). 

2.7 Total RNA extraction, reverse transcription and real-time PCR 

Total RNA in the liver and intestine were extracted by the TRIzol method, and quality 

and quantity of isolated RNA assessed by 1.0 % agarose gel electrophoresis and 

spectrophotometer NanoDrop 2000 (Thermo Fisher Scientific, USA). The cDNA was 

prepared from 1000 ng of DNAase-treated RNA and synthesized using PrimeScriptTM 

RT Reagent Kit with gDNA Eraser (Perfect Real Time) (Takara). The housekeeping 

gene β-actin was used as reference gene after confirming its stability across the 

experimental treatments. Specific primers for the candidate genes pparα, atgl, cpt1a, 

accα, fas, srebp-1, tnfα, il-1β, nf-κb, tgfβ-1, il-10, sirt1 used for qPCR were designed 

by Primer Premier 5.0 (Table 2). Amplification was performed using a quantitative 

thermal cycler (Lightcycler 96, Roche, Switzerland). The qPCR assays were performed 

in a total volume of 20 μL, containing 0.4 μL of each primer, 10 μL of 2×ChamQ SYBR 

qPCR Green Master Mix (Vazyme), 0.8 μL of 1/8 diluted cDNA and 8.4 μL DEPC-

water. The thermal-cycling conditions used for qPCR were as follows: 95 °C for 2 min, 

followed by 45 cycles of 95 °C for 10 s, 58 °C for 10 s and 72 °C for 20 s. Standard 

curves were generated using six different dilutions (in triplicate) of the cDNA samples, 

and the amplification efficiency was analyzed using the equation E=10(–1/Slope)-1(40). The 

amplification efficiencies of all genes were approximately equal and ranged from 87 to 

109 %. In the present study, all the gene expression data were presented as relative gene 

expression with regards to the expression values in fish fed the high fat diet (HFD) 



(reference group). The expression levels of the target genes were calculated using the 

2–ΔΔCt method as described by Livak and Schmittgen (2001). 

Insert Table 2 here. 

2.8 Calculations  

The parameters were calculated as follows: 

Weight gain (WG, %) = 100× ((final body weight – initial body weight) / initial 

body weight) 

Specific growth ratio (SGR, % day-1) = 100 × ((Ln final body weight (g) 

−  Ln initial body weight) (g) / days) 

Feed efficiency (FE) = weight gain (g, wet weight) / feed consumed (g, dry 

weight); 

Survival (%) = 100 × (final fish number / initial fish number) 

Protein productive value (PPV, %) =100× (final body weight × final body protein-

initial body weight ×initial body protein)/ (feeding diets × diet protein) 

Lipid retention (LR, %) = (final body weight × final body lipid-initial body weight 

× initial body Lipid) / (feeding diets × diet lipid) 

Hepatosomatic index (HSI, %) = 100 × (liver weight / wet body weight) 

Viscerosomatic index (VSI, %) = 100 × (visceral weight / wet body weight) 

Intraperitoneal fat ratio (IPF, %) = 100× (intraperitoneal fat weight / wet body 

weight) 

2.9 Statistical analysis 

Results are presented as means and SEM (number of replicates as indicated). The 
relative gene expression results (qPCR analyses) were expressed as mean normalized 
ratios corresponding to the ratio between the copy number of the target gene and 
the copy number of the reference gene, β-actin. The homogeneity of variances 
(Levene's test) were checked prior to one-way analysis of variance (ANOVA) 
followed by Tukey's HSD test at a significance level of P ≤ 0.05 (IBM SPSS Statistics 
20). 

3 Results 

3.1 Growth performance, feed utilization, survival and lipid content  

No statistical differences in final body weight (FBW), weight gain (WG), feed efficient 

(FE), specific growth rate (SGR) or survival were found among treatments (Table 3). 

However, the lowest values of protein productive value (PPV) and lipid retention (LR) 

were recorded in fish fed the HFD and HFD+FF diets, respectively. The lipid contents 

of whole body and liver were both significantly increased in fish fed the HFD diet 

compared to fish fed the other diets. Dietary fenofibrate supplementation significantly 

reduced the lipid content of whole body compared to fish fed HFD. Intraperitoneal fat 

ratio (IPF) and hepatosomatic index (HSI) were also significantly reduced by dietary 

fenofibrate supplementation. However, no significant differences were found in muscle 

lipid content among treatments (Fig. 1).  

Insert Table 3 here. 

Insert Figure 1 here 



3.2 Serum and hepatic biochemical indices 

There were no significant differences in serum TAG and CHOL concentrations among  

treatments (Fig. 2). The highest activities of AST and ALT were found in fish fed diet 

HFD, and AST activity was significantly reduced by dietary fenofibrate 

supplementation (Fig. 2). Fish fed the HFD diet showed significantly higher TAG 

content in liver, whereas diet had no significant effect on hepatic CHOL concentration 

(Fig. 3). 

Insert Figure 2 here. 

Insert Figure 3 here. 

3.3 Hepatic histological analysis 

The results of staining liver sections with hematoxylin and eosin (H & E) and Oil Red 

O are presented in Figs. 4 and 5, respectively. In the control group fed MFD, the 

distribution of hepatocytes was regular, the arrangement was relatively tight and most 

of the nuclei were in the middle of cells (Fig. 4A). In fish fed HFD, the hepatocytes 

were mostly swollen and nuclei were offset to the edge of the cell, or difficult to 

distinguish, and many vacuolar lipid drops of varying size were observed (Fig. 4B). 

Compared with fish fed HFD, the shape of hepatocytes were more regular and fewer 

vacuolar fat drops were observed in fish fed fenofibrate (Fig. 4C). The above results 

were confirmed by Oil Red O staining with red stained lipid droplets significantly more 

numerous in fish fed HFD compared to the control group (Figs. 5A & B). Furthermore, 

the amount of red fat droplets in the fenofibrate group showed a decreasing trend and 

were smaller compared to fish fed HFD (Fig. 5C). 

Insert Figure 4 here. 

Insert Figure 5 here. 

3.4 Regulatory factor, lipogenesis and lipolysis pathway key markers 

Compared to fish fed the HFD treatment, the expression level of sirt1 in liver was 

significantly up-regulated in fish fed the diet with fenofibrate supplementation. In the 

lipolysis pathway, the mRNA levels of pparα and cpt1a were significantly up-regulated 

in fish fed HFD+FF compared to the control group (Fig. 6). There were no significant 

differences in the expression levels of accα, fas or srebp-1 in livers of fish fed HFD 

compared to fish fed the control diet, MFD. However, the hepatic expression levels of 

accα, fas and srebp-1 were significantly up-regulated by dietary fenofibrate compared 

to fish fed both the other diets (Fig. 7). 

Insert Figure 6 here. 

Insert Figure 7 here. 

3.5 Inflammatory markers  

In liver, the expression levels of tnfα, il-1β and nf-κb were significantly higher in fish 

fed HFD than in fish fed the control diet. There were no significant differences in the 

liver expression levels of anti-inflammatory cytokine il-10 and tgfβ-1 among treatments 

(Fig. 8). In intestine, fish fed HFD showed a significantly lower expression level of il-

10 than fish fed the other treatments. On the contrary, the expression level of il-1β was 

highest in fish fed HFD and down-regulated by dietary fenofibrate supplementation. 

Although a similar tendency was recorded for the expression levels of tnfα and nf-κb, 

there were no statistical differences among the three treatments (Fig. 9). 



Insert Figure 8 here. 

Insert Figure 9 here. 

4 Discussion 

Various mechanisms have been identified in mammals for the functional effects of 

dietary fibrates including increasing lipoprotein lipolysis, stimulating mitochondria and  

inducing fatty acid oxidation in liver, and reducing fatty acid and very low-density 

lipoprotein production (Kondo et al., 2007; Luci et al., 2007; Mimeault et al., 2006; 

Raldúa et al., 2008). The fibrate drugs clofibrate and fenofibrate have been tested in 

aquatic animal feeds, with studies showing that they had no effects on growth 

performance in various fish species, such as grass carp (Ctenopharyngodon idellal Val.) 

(Du et al., 2008; Guo et al., 2015), mosquitofish (Gambusia holbrooki) (Nunes et al., 

2004) or rainbow trout (Oncorhynchus mykiss) (Du et al., 2004). However, in contrast, 

dietary fenofibrate supplementation increased and reduced growth performance in 

yellow catfish and Nile tilapia, respectively (Zheng et al., 2015; Ning et al., 2019). In 

the present study, black seabream fed HFD with fenofibrate did not significantly affect 

FBW, WG, SGR, FE or survival, consistent with the results obtained in grass carp, 

mosquitofish and rainbow trout. The different inconsistent results with yellow catfish 

or Nile tilapia might be attributed to different nutritional background and experimental 

conditions, as the tilapia were fed a low protein level with fenofibrate, and the catfish 

were cultured in Zn-exposed water, while black seabream in the present study were fed 

a high fat diet (HFD) in normal water. Overall therefore, the present results indicated 

that, in black seabream fed HFD, fenofibrate had no impact on growth performance.  

Previous studies reported that whole body and muscle lipid contents were 

increased in black seabream fed a high fat diet (Jin et al., 2019a, b; Pan et al., 2018). In 

the present study, whole body and hepatic lipid contents as well as IPF and VSI were 

significantly higher in fish fed HFD than in fish fed the other two diets. Supplementing 

the HFD diet with fenofibrate significantly reduced IPF and VSI as well as lipid 

contents of whole body and liver. Similar results were obtained in grass carp (Guo et 

al., 2015), which indicated that dietary fenofibrate can reduce body fat reserves 

compared to levels in fish fed a high fat diet. Interestingly, it had also been shown in 

mammals that obesity in mice caused by a high fat diet can be reversed by fenofibrate 

treatment (Srivastava et al., 2006). Black seabream fed dietary fenofibrate 

supplementation had lower HSI than fish fed HFD, which was consistent with the 

results of fenofibrate treatment in Nile tilapia (Luo et al., 2019), which might be 

explained by the fact that high fat diets caused lipid accumulation and liver 

enlargement, while fenofibrate reduced hepatic lipid content and size. Moreover, the 

histopathological analyses further confirmed the lipid-lowering effect of fenofibrate in 

black seabream. The results showed that fish fed HFD showed liver damage, such as 

lysed nuclei and large cysts observed in H & E staining. Furthermore, Oil Red O 

staining was consistent with H & E staining, with almost all the cytoplasmic volume in 

hepatocytes of fish fed HFD being filled with a large amount of red-stained lipid 

droplets. Similar results were obtained in blunt snout bream (Megalobrama 

amblycephala) fed a high fat diet (Dai et al., 2019). The present study also revealed that 

dietary fenofibrate was beneficial in reducing hepatic lipid accumulation caused by a 

high fat diet, which was consistent with results observed previously in grass carp (Du 

et al., 2008), Nile tilapia (Ning et al., 2019) and rat (Dai et al., 2016; Lu et al., 2015). 

This has demonstrated that dietary fenofibrate could prevent or mitigate the 

histopathological alterations in key tissues such as liver induced by feeding high fat 



diets. Overall, the data obtained in the present study indicated that dietary fenofibrate 

supplementation can have beneficial lipid-lowing effects in black seabream fed high 

energy (fat) diets. 

Fenofibrate, as a known agonist of PPARα, has been used commonly as a clinical 

drug for modifying blood lipids in humans (Dai et al., 2016). The reported mechanism 

was that fenofibrate reduced plasma CHOL and TAG through inhibition of cholesterol 

synthesis and regulation of liver lipoprotein synthesis, and increasing fatty acid 

oxidation through a ppar-dependent mechanism (Du et al., 2008). Although, serum and 

hepatic TAG and CHOL were not significantly reduced after fenofibrate treatment in 

the present study, there was a trend of decreasing TAG contend in both serum and liver 

in fish fed the diet supplemented with fenofibrate compared to fish fed HFD. These 

results were consistent with previous studies in blunt snout bream (Cao et al., 2019b; 

Dai et al., 2018; Zhou et al., 2019) and common carp (Cyprinus carpio) (Abasubong et 

al., 2018) fed high fat diets. The aminotransferase enzymes, AST and ALT, play 

important roles in fish as in mammals and are used generally as key indicators of liver 

function and cellular damage (Ma et al., 2018). Exactly, cellular damaged with an 

increasing of AST and ALT in blood to cause hepatic steatosis and injury occurred 

(Cheng and Kong, 2010; Takeuchi-Yorimoto et al., 2013). In the present study, the 

highest levels of AST and ALT activities were found in fish fed HFD, and AST activity 

was significantly decreased after fenofibrate treatment, which demonstrated that dietary 

fenofibrate supplementation could mitigate the liver and tissue damage in fish fed a 

high fat diet. 

In order to further elucidate the molecular mechanisms underpinning the effects 

of fenofibrate on lipid metabolism and accumulation, mRNA expression levels of 

several related genes were determined. In the present study, no differences were found 

in the expression levels of pparα and cpt1a between fish fed the HFD and control diets. 

Similar results were obtained in blunt snout bream (Dai et al., 2018). These results 

suggested that these fish species were not able to establish a complete response and 

self-protection measures for adapting to a high dietary fat intake. As a pparα agonist, 

fenofibrate up-regulated the expression of pparα in mammals such as hamsters (Guo et 

al., 2001) and mice (Harano et al., 2006), and in fish including yellow catfish (Zheng 

et al., 2015) as well as hepatocytes of Nile tilapia (Ning et al., 2016). Another fibrate 

drug, clofibrate, induced pparα expression hepatocytes of Atlantic salmon (Salmo 

salar) (Ruyter et al., 1997). Meanwhile, as a key regulator of lipid metabolism, pparα 

induced the expression of multiple genes involved in fatty acid β-oxidation and up-

regulated expression of cpt1a (Guo et al., 2015). Interestingly, the present study showed 

that the mRNA expression level of pparα was increased and, in addition, atgl and cpt1a 

expression levels were upregulated in liver of fish fed HFD supplemented with 

fenofibrate. These results were largely in agreement with a previous study in Nile tilapia 

and any differences could be attributed to species-specific effects (Luo et al., 2019). In 

SIRT1-knockdown mice, it was reported that PPARɑ as well as β-oxidation gene 

expression in downstream signaling pathways were down-regulated (Rodgers et al., 

2007). Furthermore, the expression level of PPARɑ was up-regulated in SIRT1 

overexpression mice (Rodgers and Puigserver, 2007) indicating that SIRT1 can 

regulate lipid metabolism in mammals by positive regulation of PPARɑ. In the present 

study, the expression level of sirt1 was greatly up-regulated by dietary fenofibrate 

supplementation.SREBP-1 is a key modulator of lipogenesis regulating lipogenic genes 

such as accα, accβ and fas (Amemiya-Kudo et al., 2002; Minghetti et al., 2011; Rho et 

al., 2005) and, in the present study, the hepatic expression levels of accα, fas and srepb-

1 were all up-regulated by dietary fenofibrate supplementation. Similar results were 



observed in yellow catfish exposed to waterborne Zn and fed a diet supplemented with 

0.15 % fenofibrate for 8 weeks (Zheng et al., 2015). This may suggest that lipogenesis 

may also be enhanced in fish fed fenofibrate and, therefore, we speculate that it might 

be a normal homeostatic mechanism to maintain lipid balance, although further studies 

are required. 

A previous study concluded that pparα is not merely a regulator of lipid 

metabolism, but also has powerful inflammation-reducing capabilities (Zambon et al., 

2006). Moreover, Wang et al. (2015a) reported that the inhibitory effect of fenofibrate 

on TNF-α-induced apoptosis was enhanced by knockdown of SIRT1 in vascular 

adventitial fibroblasts (VAF), whereas cell apoptosis in VAFs was decreased by 

overexpression of SIRT1. In mammals, it was reported that PPARα could suppress 

nuclear transcription factor NF-κB, which is a transcription factor promoting 

inflammation as, once NF-κB is activated, it will increase gene expression of 

proinflammatory markers such as IL-1β, TNFα and COX2 (Pahl, 1999). Furthermore, 

high fat diets cause lipid deposition, which may lead to endoplasmic reticulum stress  

(ERS) and accelerate the release of cytokines like tnfα and il-1β (Jin et al., 201a, b). In 

the present study, compared with fish fed HFD, the expression levels of nf-κb, il-1β and 

tnfα in liver and intestine of fish fed dietary fenofibrate all showed decreasing trends, 

albeit not statistically significant with nf-κb and tnfα. However, a recent study in fish 

demonstrated that dietary fenofibrate supplementation reduced the expression levels of 

nf-κb and tnfα genes to attenuate inflammation responses (Luo et al., 2019). 

Additionally, the present study showed that the anti-inflammatory cytokine il-10 was 

up-regulated in liver of fish fed dietary fenofibrate compared with fish fed HFD. Hence, 

the present study revealed that the high fat diet HFD could induce inflammation, 

meanwhile, sirt1 regulated pparα activation to improve anti-inflammatory ability 

through up-regulating expression levels of anti-inflammatory cytokines and down-

regulating proinflammatory cytokine genes. 

Conclusion 

In conclusion, the present study has provided further insight into the pathway whereby 

dietary fenofibrate attenuates lipid accumulation, hepatic steatosis and inflammatory 

responses caused by high fat diets. Our findings demonstrated that dietary fenofibrate 

supplementation decreased aminotransferase activities and regulated sirt1 and activated 

pparɑ, consequently, increased the downstream expression of key lipolytic and anti-

inflammatory genes, which could significantly improve the health status of fish (Fig. 

10). Dietary fenofibrate also exhibited positive impacts on liver histology changes with 

no negative impacts on growth performance or feed utilization of black seabream fed a 

high fat diet. 

Insert Figure 10 here. 
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Table 1. Formulation and proximate composition of the experimental diets (% of dry matter) 

 

Ingredient (%) 

Diets 

Control HFD HFD+FF 

Peruvian fishmeala 26.00  26.00  26.00  

Soybean protein concentratea 10.00  10.00  10.00  
Soybean meal 20.00  20.00  20.00  
Wheat floura 25.05  25.05  25.05  

Palmitic acidb 0.00  6.00  6.00  
Soybean oil 8.00  8.00  8.00  
Soybean lecithina 1.00  1.00  1.00  

Vitamin premixa 0.50  0.50  0.50  
Mineral premixa 2.00  2.00  2.00  

Choline chloride 0.30  0.30  0.30  
Fenofibratec 0.00 0.00 0.15  
Ca(H2PO4)2 1.00  1.00  1.00  

Cellulose 6.15  0.15  0.00  
Sum 100.00  100.00  100.00  
 

Proximate composition (%) 
 

Dry matter 89.84 90.17 89.36 
Crude protein 40.79 41.72 41.74  

Crude lipid 12.22 17.78 17.62 

Ash 9.29 8.94 8.81 



a All the ingredients were obtained from Ningbo Tech-Bank Feed Co. Ltd., China. 
b Palmitic acid: 97 % of total fatty acids as palmitic acid methyl ester, Shanghai Yiji Chemical Co., 

Ltd., China. 
c Fenofibrate was obtained from MCE. 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
Table 2. Primers for real-time quantitative PCR for lipid catabolism genes, inflammation related 

genes, regulation fctor gene and β-actin of black seabream (Acanthopagrus schlegelii) 

 

Gene Nucleotide sequence (5’ –3’) Size (bp) 
GenBank reference 

or Publication 
Function 

pparα 1 F: ACGACGCTTTCCTCTTCCC 183 KX066234 Lipolysis pathway 

R: GCCTCCCCCTGGTTTATTC    

atgl 2 F: GCATCCAGTTCACCCTCAC 241 KX078570 Lipolysis pathway 

R: TTTGCCTCATCTTCATCGC    

cpt1a 3 F: TGCTCCTACACACTATTCCCA 203 KX078572 Lipolysis pathway 

R: CATCTGCTGCTCTATCTCCCG    

accα 4 F: AGTAGCCTGATTCGTTGGT 154 KX066238 Lipogenesis pathway 

R: GATTGAGGAGTCTGTTCGC    

fas 5 F: AAGAGCAGGGAGTGTTCGC 213 KX066240 Lipogenesis pathway 

R: TGACGTGGTATTCAGCCGA    

srebp-16 F: TGGGGGTAGGAGTGAGTAG 247 KX066235 Lipogenesis pathway 

R: GTGAAGGGTCAGTGTTGGA    

tnfα 7 F: GTCCTGCTGTTTGCTTGG 154 AY335443 Pro-inflammation 

cytokine 

R: AATGGATGGCTGCCTTGG    

il-1β 8 F: CATCTGGAGGCGGTGAA 231 JQ973887 Pro-inflammation 

cytokine 

R: CGGTTTTGGTGGGAGGA    

nf-κb 9 F: AGCCCAAGGCACTCTAGACA 154 MK922543 Nuclear transcription 

factor 

 R: GTTCTGGGCAGCTGTAGAGG    

il-1010 F: CCCAGATAGAAGCCCAGGAT 105 MK922542 Anti-inflammation 

cytokine 

 R: AAACGATGATTTGGACACAGC    

tgfβ-1 11 F: GGGTTTCCAACTTCGGC 209 Xue et al. (2008) Anti-inflammation 

cytokine 

R: TTGTGTCCGTGGAGCGT    

sirt1 12 F: TGGATGAAACTGTAGGAACC 238 MN871952 Metabolic sensor 
 R: ACAACAATGGACTGGGAA    

β-actin F: ACCCAGATCATGTTCGAGACC - Jiao et al. (2006) Housekeeping gene 
R: ATGAGGTAGTCTGTGAGGTCG    

 
1 pparα, peroxisome proliferators-activated receptor alpha;2atgl, adipose triglyceride lipase;3 cpt1a, 
carnitine palmitoyltransferase 1A; 4accα, acetyl-CoA carboxylase alpha; 5fas, fatty acid synthase; 



6srebp-1, sterol regulator element-binding protein-1 ; 7 tnfα, tumor necrosis factor alpha; 8 il-1β, 
interleukin 1 beta; 9nf-κb, nuclear factor-kappa b; 10il-10, interleukin-10; 11 tgfβ-1, transforming 

growth factor beta-1; 12sirt1, silent information regulator. 
 
Table 3. Growth response, feed utilization and biometric indices of juvenile black seabream 

(Acanthopagrus schlegelii) fed the experimental diets for 8 weeks. 

 

 

Diets 

Control HFD HFD+FF 

IBW1 (g) 
8.36±0.01 8.34±0.01 8.33±0.00 

FBW2 (g) 
39.55±1.06 35.92±1.71 36.39±0.84 

WG3 (%)   
373.33±12.13 330.53±21.03 336.69±10.07 

SGR4 (% day -1) 
2.73±0.04 2.56±0.09 2.59±0.04 

FE5  
0.61±0.02 0.53±0.03 0.55±0.02 

Survival (%) 
98.89±1.11 91.11±2.94 98.89±1.11 

PPV (%)6 30.80±0.69b 26.43±1.15a 27.75±0.46ab 

LR (%)7 35.59±0.97b 28.37±2.95ab 26.77±1.40a 

VSI (%)8 
9.28±0.28a 10.46±0.04b 9.47±0.25a 

HSI (%)9 
2.79±0.03b 2.47±0.01b 1.91±0.14a 

IPF (%)10 
3.11±0.06a 3.94±0.07c 3.49±0.05b 

Data are reported as the mean and SEM ((n = 3 for IBW, FBW, SGR, FE, Survival and PPV; n = 9 
for CF, VSI, HSI and IPF). Values in the same column with different superscripts are significantly 
different (P < 0.05). 
1 IBW, initial body weight; 2 FBW, final body weight; 3 WG, Weight gain;4 SGR, Specific growth 
ratio;5 FE, Feed efficiency; 6 PPV, Protein productive value; 7 LR, Lipid retention; 8 VSI, 
Viscerosomatic index; 9 HSI, Hepatosomatic index; 10 IPF, Intraperitoneal fat ratio. 

 
 

 
 
 

 
 

 



Figure 1. Whole body, muscle and liver lipid content of the juvenile black seabream 
(Acanthopagrus schlegelii) (% wet weight) fed the experimental diets for 8 weeks. Data are reported 

as means and SEM (n = 3). Values in the same line with different superscripts are significantly 
different (P ˂ 0.05). 

 
 
 

  

Figure 2. Serum parameters of juvenile black seabream (Acanthopagrus schlegelii) fed the 
experimental diets for 8 weeks. Data are reported as the mean and SEM of three replicates. Values 

in the same line with different superscripts are significantly different (P ˂0.05). ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; TG, triglyceride; CHOL, cholesterol. 
 

 
Figure 3. Hepatic biochemical indices of juvenile black seabream (Acanthopagrus schlegelii) fed 
the experimental diets for 8 weeks. Data are reported as means and SEM (n = 3). Values in the same 

line with different superscripts are significantly different (P ˂ 0.05). TG, triglyceride; CHOL, 



cholesterol.  

 

 
Figure 4. Paraffin section of liver in juvenile black seabream (Acanthopagrus schlegelii). The liver 

section was stained with H&E to enhance the contrast (400X). (A) Paraffin section of liver in 
Control group; (B) Paraffin section of liver in HFD group; (C) Paraffin section of liver in HFD+FF 

group.  
  

 

Figure 5. Paraffin section of liver in juvenile black seabream (Acanthopagrus schlegelii). The liver 
section was stained with Oil Red O to enhance the contrast (400X). (A) Paraffin section of liver in 

Control group; (B) Paraffin section of liver in HFD group; (C) Paraffin section of liver in HFD+FF 
group. 
  

Figure 6. Regulatory factor and lipid catabolism gene expression in liver of juvenile black seabream 
(Acanthopagrus schlegelii) fed the experimental diets for 8 weeks. Data are represented as the mean 
± SEM of three replicates (n = 3). Values in the same row with different letters are significantly 

different (P<0.05). The gene expression of the positive control diet group (dietary HFD) was set at 
1. sirt1, silent information regulator; pparα, peroxisome proliferators-activated receptor alpha; atgl, 



adipose triglyceride lipase; cpt1a, carnitine palmitoyltransferase 1A. 
   

Figure 7. lipid anabolism gene expression in liver of juvenile black seabream (Acanthopagrus 

schlegelii) fed the experimental diets for 8 weeks. Data are represented as the mean ± SEM of three 

replicates (n = 3). Values in the same row with different letters are significantly different (P<0.05). 

The gene expression of the positive control diet group (dietary HFD) was set at 1. accα, acetyl-CoA 

carboxylase alpha; fas, fatty acid synthase; srebp-1, sterol regulatory element binding protein-1.  

  
Figure 8. Inflammation gene expression in liver of juvenile black seabream (Acanthopagrus 

schlegelii) fed the experimental diets for 8 weeks. Data are represented as the mean ± SEM of three 
replicates (n = 3). Values in the same row with different letters are significantly different (P<0.05). 



The gene expression of the positive control diet group (dietary HFD) was set at 1. 

Figure 9. Inflammation gene expression in intestinal of juvenile black seabream (Acanthopagrus 
schlegelii) fed the experimental diets for 8 weeks. Data are represented as the mean ± SEM of three 

replicates (n = 3). Values in the same row with different letters are significantly different (P<0.05). 
The gene expression of the positive control diet group (dietary HFD) was set at 1. 



 
Figure 10. Proposed pathway of dietary fenofibrate attenuation of HFD-induced lipid accumulation, 
hepatic steatosis and inflammatory response in black seabream (Acanthopagrus schlegelii). Red 

arrows represent increase/up-regulation, blue arrows represent decrease/down-regulation. 

 




