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Abstract 17 

Moisture and nitrogen deficiency are major determinant factors for cereal production 18 

in arid and semi - arid environments. The ability to detect crop stress at early growth 19 

stages is crucially important if significant reductions in yield are to be averted.  In this 20 

context, remotely sensed data offers the possibility of providing a rapid and accurate 21 

tool for site - specific management in cereal crop production.  This research examined 22 

the potential of hyperspectral and broadband remote sensing for predicting maize 23 

properties under nitrogen and moisture stress conditions during 2015 and 2016 24 

seasons. Spectra were collected from drip irrigated maize subjected to various rates of 25 

irrigation regimes and nitrogen fertilization across two test seasons. A total of 60 26 

spectral vegetation indices were derived and examined to predict maize yield and 27 

other plant canopy properties (chlorophyll, and water content).  Highly significant 28 

correlations between maize crop properties and various vegetation indices were 29 

identified including; Ratio Vegetation Index (RVI) and Normalized Difference 30 

Vegetation Index (NDVI) sensitive to maize grain yield.  Cred edge demonstrated the 31 

strongest significant correlation with maize yield. The correlations with grain yield 32 

were found to be strongest at the flowering stage. Penalized linear discriminant 33 

analysis (PLDA) showed the possibility to distinguish between moisture and nitrogen 34 

stress spectrally. The implications of this work for the use of satellite based remote 35 

sensing in arid zone precision agriculture are discussed.      36 
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1. Introduction 40 

Maize (Zea mays L.) is among the most important grain and forage crop in irrigated 41 

agriculture (Shaddad et al., 2011) that provides a staple source of food in many 42 

countries worldwide (Namara et al., 2010). It is known as a sensitive crop to water 43 

stress (Saruhan et al., 2012) and therefore monitoring maize at different growth stages 44 

efficiently is important to enhance crop growth and productivity. In arid and semi arid 45 

environments, water induced stress is considered the main limiting factor to plant 46 

growth and productivity of maize more than any other environmental factors (Hao et 47 

al., 2016) especially at the flowering and grain filling stages. In another maize 48 

experiment, Oyekunle and Badu-Apraku, (2014) concluded that adverse effects from 49 

water stress can occur at any maize growth stage. It is evident that water deficiency 50 

induces different changes in physio – biochemical properties of crops causing 51 

inhibitory effects on crop growth and productivity (Ashraf, 2010). Mansouri-Far et 52 

al., (2010) noticed a reduction in maize yield with increased deficit irrigation 53 

conditions. 54 

Nitrogen is an essential crop nutrient that is important for plant growth and 55 

development and thus it is important to develop an appropriate water and nitrogen 56 

fertilization management strategy in order to enhance their application efficiency 57 

(Ajdary et al., 2007). Wang and Xing, (2016) showed that maize yield could be 58 

maximized with optimum irrigation and nitrogen management. Nilahyane et al. 59 

(2018) pointed out that water and nitrogen combination could lead to massive maize 60 

yield reduction in case of water shortage. Markovic et al. (2017) also concluded that 61 

maize yield is fundamentally influenced by the amount of available water and N and 62 

added that both factors significantly affected maize yield in a two-year maize 63 

experiment.       64 



Monitoring agricultural crop production in areas suffering from moisture and nitrogen 65 

deficiency is traditionally based on point-sampling techniques, an approach that is 66 

laborious, costly and tends to be spatially unrepresentative. Reliable and rapid 67 

techniques for spotting stress in agricultural crops are consequently required to 68 

improve current farming practices, especially in developing countries where existing 69 

agricultural systems hardly cope with the high demands of rapid population growth. 70 

The content of photosynthetic pigments within plant leaves tends to be the first parts 71 

of plants to respond to stress. This is especially the case for leaf pigments such as 72 

xanthophylls, chlorophylls, and carotenoids. These pigments are highly absorbent to 73 

light in the photosynthetically active portion of the electromagnetic spectrum (Prasad 74 

et al., 2007) and can be measured in spectral characteristics of crop canopies and 75 

leaves (Araus et al., 2001). Thus the spectra of plant canopy and leaves could be 76 

employed to assess foliar pigment content and thereby obtain a better understanding 77 

of crop growth. Previous studies have documented the role of vegetation indices 78 

calculated from remotely sensed data to detect stress in vegetation. These include for 79 

example, the determination of grain yield (weber et al., 2012: Kawamura et al., 2018; 80 

El-Hendawy et al., 2019); chlorophyll a concentration (Jin et al., 2012; Elmetwalli, 81 

2013; Schlemmer et al., 2013; Martinez and Ramos, 2015); pest injuries and plant 82 

diseases (Genc et al., 2008 Ashourloo et al. 2014), nitrogen deficiency (Feng et al., 83 

2014; Thorp et al., 2017); aerial plant biomass (Elmetwalli, 2008, Fu et al., 2014; 84 

Kanke et al., 2016 ) and water stress (Dejonge et al., 2016).   85 

Remote sensing can therefore be a robust tool for site-specific crop 86 

management, particularly for water and nitrogen fertilization management.  In 87 

agricultural crops, leaf chlorophyll is highly related to nitrogen status in plants. The 88 

ability to identify spatial variability in canopy chlorophyll concentration via remotely 89 



sensed data resulted in rapid quantification of crop N status across large field systems 90 

(Rodriguez and Miller, 2000).  Other studies have shown the possibility of remote 91 

sensing to predict crop grain yield (Babar et al., 2006; Padilla et al., 2012).  The 92 

potential of remote sensing to monitor crop health status has been demonstrated, but 93 

published work has focused on detecting moisture and nitrogen deficiency stress at 94 

the leaf scale. Therefore this research demonstrated the potential of using remote 95 

sensing to detect both nitrogen and moisture stress at both leaf and canopy scale. 96 

Measurements at the canopy scale are arguably important to evaluate the potential 97 

successful implementation of airborne or satellite remote sensing in precision 98 

agriculture. The overall aim of this research was to assess the potential role of 99 

remotely sensed data to detect and distinguish sources of stress spectrally.  100 

 101 

102 



2. Materials and methods  103 

2.1 Experimental design 104 

Two field experiments of maize were performed at Albasatin Research Station, 105 

Elbohaira Province, Egypt (latitude of 30°55`2.9``, longitude of 29°57`25.2``) over 106 

the summer seasons of 2015 and 2016. Three random soil samples were collected and 107 

analyzed showing low organic matter (0.13%), a pH of 7.4 and an Electrical 108 

Conductivity (EC) of 1.21 dS m-1. The soil of the experimental site was loamy in 109 

texture with typical particle size distribution of 68.2% sand, 22.5% silt and 9.3% clay 110 

with an average bulk density of 1.53 g cm-3. The experimental design was laid out as a 111 

split plot with three replicates. Irrigation regimes were assigned for the main plots 112 

while nitrogen rates were assigned for the sub-main plots. Maize plants were 113 

subjected to twelve different treatments of moisture and nitrogen deficiency stress; 114 

using the combinations of four levels of irrigation regimes at 1.25, 1.0, 0.8 and 0.6 115 

Evapotranspiration (ETc) and three rates of nitrogen fertilization at 120, 180 and 240 116 

kg N ha-1.  Maize seeds were sown on May 15th and 24th and harvested on September 117 

5th and 22nd of 2015 and 2016 seasons respectively.  Potassium in the form of 118 

potassium sulphate and phosphorus were applied to the soil during land preparation at 119 

rates of 120 and 60 kg ha-1 respectively.   120 

The amount of irrigation water applied (Table 1) for each treatment via drip irrigation 121 

was quantified using the following equation 122 

LR
Ea

ETcI
Wa +=

.
 123 

Where I is the empirical irrigation rate (1.25, 1.0, 0.8, and 0.6 ETc); Ea is the 124 

irrigation efficiency of drip irrigation system assumed at 80% and LR is the leaching 125 



requirements assumed at 20% of the estimated irrigation water, and crop 126 

evapotranspiration was calculated according to Allen et al. (1998) as follows: 127 

ETc = ETo * kc, 128 

Where ETo is the reference evapotranspiration and kc is the coefficient of crop and its 129 

values were recommended by Allen et al. (1998) and ETo was calculated using the 130 

following formula: 131 

ETo = Ep kp 132 

Where Ep is the cumulative evaporation amount of water; and kp is the evaporation 133 

pan coefficient assumed at 0.75 for the study area. Evaporation data were collected 134 

from a class A pan at Albasatin Research Station. Irrigation time was identified as 135 

follows: 136 

q

AWa
T

*
=  137 

Where T is the irrigation time (h); Wa is the depth of irrigation water applied (mm); A 138 

is the wetted area by each emitter in m2 and q is the emitter discharge rate (L h-1) 139 

2.2 Reflectance measurements 140 

Spectra were collected from crop canopies and leaves using an ASD FieldSpec 141 

spectroradiometer with a 3.5° field of view foropic.  The instrument was fixed at the 142 

end of a telescopic pole at a constant height of 2 m from the soil surface to have larger 143 

scanning area.  Spectra (350 -1050 nm) of the crop canopy were collected regularly 144 

under solar radiation on cloud-free days from 11:00 to 15:00 h GMT.  Spectra 145 

collection was started at early growth stages prior applying various moisture and 146 

nitrogen deficiency stress treatments.  Collection was repeated periodically 147 

throughout the growing season until harvest time. A white spectralon was used to 148 



calibrate reflectance acquired by the spectroradiometer. Spectra were then pre-149 

processed using the dedicated ASD software and then used to calculate different 150 

broadband and hyperspectral vegetation indices, of which the more successful are 151 

listed in Le Maire et al. (2004). Among these used indices Normalized Difference 152 

Vegetation index (NDVI), Ratio Vegetation Index (RVI), Simple Ratio (SR), Soil 153 

Adjusted Vegetation Index (SAVI). Table 2 details examples of commonly used 154 

vegetation indices showing the equations to calculate them.  155 

The spectra collected from each treatment were averaged and the overall mean 156 

spectrum was tested in principal component analysis (PCA) to initially notice 157 

differences in the spectral signature captured from healthy and stressed treatments. 158 

Thereafter penalized linear discriminant analysis (PLDA) (Hastie et al., 1995) was 159 

performed on the whole set of spectra captured from each treatment at the flowering 160 

time to notice if spectral response of maize could be used to identify the source of 161 

stress and its level (low , medium or high). The mda package in R software was 162 

employed to perform PLDA; the R package 'from the software R statistics v 3.0.2 (R 163 

foundation for statistical computing 2013).  164 

 165 

2.3 Determination of maize yield, leaf chlorophyll content, and canopy water content  166 

At harvest time, an area of 5 m2 from each treatment was sampled to calculate total 167 

maize grain yield. Cobs were weighed for the whole sample and then converted into 168 

Mg ha-1. Leaf chlorophyll content was measured at different growth stages 169 

immediately following the spectra measurements. A portable SPAD chlorophyll meter 170 

(Konica-Minolta, Osaka, Japan) was employed to measure leaf chlorophyll content 171 

which gives measures of chlorophyll as SPAV values. Twenty Apical leaves were 172 

sampled from each treatment and for all experimental plots. Thereafter, a 173 

representative subsample was placed in an oven at 70°C for 24 h until a constant 174 



weight.  Samples were weighed before and after drying to determine leaf water 175 

content as follows: 176 

100
FW

DWFW
WC

−
=  177 

Where FW is the fresh weight of plant sample and DW is the dry weight of the plant 178 

sample.  179 

    180 

 181 

2.4 Statistical analysis 182 

SPSS (SPSS Inc., Chicago, II, USA) was run to perform one and two-way analysis of 183 

variance (ANOVA) to establish significant differences in maize crop responses to 184 

moisture and nitrogen stress.  Nitrogen, moisture and nitrogen/moisture combinations 185 

were used as predictor variables, and yield records as the response variable.  Data 186 

were tested for normality using Anderson-Darling method with 95% significance 187 

level.  The Pearson Product Moment coefficient of correlation was employed to assess 188 

the relationship between different vegetation indices and crop properties and hence to 189 

identify optimum vegetation indices for predicting maize yield and properties.  Simple 190 

linear and multivariate regression analyses were performed to derive regression 191 

equations to retrieve grain yield from collected spectra. The collected spectra 192 

including all wavelengths from various treatments were then used in principal 193 

component analysis (PCA) (Minitab v.14; Minitab Inc., State college, PA, USA) to 194 

discover differences and differentiate between spectral responses of healthy and 195 

stressed maize plants. The mda package in R software was employed to perform 196 

PLDA to distinguish between moisture and nitrogen deficiency stresses.  197 

        198 

199 



3. Results 200 

3.1 Effects of moisture and nitrogen stress on maize grain yield 201 

 202 

The ANOVA was run to assess the effects of both moisture and nitrogen on maize 203 

grain yield.  The results are summarised in Table 3.  It is evident that both moisture 204 

and nitrogen significantly affected maize grain yield in both seasons.  The interaction 205 

between moisture and N showed significant effect on total grain yield in 2016 season 206 

only. Moisture stress strongly reduced grain yield in the 2015 and 2016 growing 207 

season (p < 0.005).  The highest grain yields of 8.41 and 9.42 Mg ha-1 were recorded 208 

with the combination 1.25 ETc and 240 kg N ha-1 in 2015 and 2016 seasons (Table 4). 209 

Nitrogen fertilization also significantly influenced maize grain yield in both seasons. 210 

Significant decreases in maize yield were observed with increased nitrogen deficiency 211 

levels.  Averaged over two seasons, the grain yields fell to about 54.1 and 25.3% of 212 

the maximum value when plants were subjected to the lowest irrigation regime and 213 

the highest nitrogen deficiency level respectively compared with the greatest records.  214 

The regression analysis showed a significant linear relationship between maize grain 215 

yield and moisture regime in both seasons (Table 5).  This indicates that yield 216 

reductions were highest in the combinations with the lowest watering regimes (0.6 217 

ETc).  A further significant linear relationship was found between maize grain yield 218 

and nitrogen deficiency levels showing that maize yield reductions were greater at the 219 

highest nitrogen deficiency level (120 kg N ha-1).   220 

221 



3.2 Effects of moisture and nitrogen stress on leaf chlorophyll content of maize  222 

 223 

The chlorophyll content of maize plants was significantly affected by both rates of 224 

moisture regime and N fertilization rates since in the combination of water stress and 225 

N deficiency treatments, the chlorophyll content decreased relative to full application 226 

of water and N treatments in both investigated seasons. The greatest chlorophyll 227 

content of 51.7 and 50.9 (SPAD values) was recorded with plots having full irrigation 228 

regime with 240 kg N ha-1 in 2015 and 2016 respectively (Table 6). In non-stressed 229 

plots, all N fertilization rates enhanced leaf chlorophyll content.  230 

3.3 Correlation between vegetation indices and maize grain yield, water content and 231 

chlorophyll content 232 

 233 

Some vegetation indices correlated strongly with the measured maize grain yield. 234 

From individual measuring dates, it is evident that at early growth stages (seedling) all 235 

vegetation indices produced non-significant correlations with the measured grain 236 

yield which may have been a result of the interference between vegetation and soil 237 

background.  Due to inconsistent performance of different indices over the growing 238 

season, the correlation coefficient values at different growth stages were averaged, 239 

and then ranked to identify the optimum index to predict maize properties.  The 240 

coefficient of correlation increased gradually to reach the peak at the flowering stage 241 

in both seasons. The Cred edge was identified as the optimum index to predict maize 242 

yield in 2015 and 2016 seasons.  Figures 1 and 2 show the relationship between Cred 243 

edge , NDVI, RVI and maize grain yield at the flowering stage in both seasons (R2 < 244 



0.83). Although RVI and NDVI produced higher correlations at the flowering stage 245 

compared with the Cred edge, their correlations were less from flowering onwards.   The 246 

results further demonstrated that the collected spectra at the canopy scale (until filling 247 

stage) produced higher correlations in comparison to those collected at the leaf scale.  248 

The maximum correlation values were recorded just before the flowering stage. 249 

The results of plant water content (WC), showed that the PSNDb and NDVI produced 250 

the greatest average correlations with WC with the coefficient of correlation over 0.86 251 

as seen in Figures 1 and 2. The optimum vegetation indices sensitive to chlorophyll 252 

content were OSAVI and R675/R700 in 2015 and RVI and R800-R550 in 2016. It is 253 

obvious that the red edge region of the electromagnetic spectrum seems to be 254 

sensitive to chlorophyll content in particular the 675 to 800 nm range. 255 

3.4 Distinguishing between moisture and nitrogen deficiency stresses 256 

 257 

The principal component analysis (PCA) was run on full spectra acquired at different 258 

growth stages over the growing season to distinguish between moisture and N 259 

deficiency stresses and revealed that at the flowering time, there was a possible of 260 

some variability between both sources of stress. The score plot of PCA showed a 261 

certain trend for nitrogen deficiency and moisture stress to plot in separate quarters 262 

especially fully irrigated and fertilized treatments (Fig. 3). The PCA score plots 263 

suggested that spectra in the VIS and NIR parts of the electromagnetic spectrum were 264 

strongly correlated with the level of stress; however, there was a need to have a clear 265 

distinguishing between both types of stress. As a result the PLDA was performed on 266 

spectra collected at different growth stages over the growing season. The results 267 

demonstrated that the spectra collected at the canopy scale showed better distinction 268 



between moisture and N stressors which are in broad agreement with previous 269 

findings of Wang et al. (2002) and Elmetwalli et al., (2012). Table 8 presents the 270 

results of the PDLA for the spectra acquired at the flowering stage. The training 271 

misclassification value was 0.11 whilst the prediction misclassification was 0.24. The 272 

user's accuracy reached 100% in five treatments out of twelve and over 65% in four 273 

other treatments. Also, the producer's accuracy reached over 70% in eight treatments 274 

five of those a 100%. The PLDA therefore demonstrated the possibility to distinguish 275 

most differences between N deficiency and moisture stresses. It is therefore evident 276 

that remotely sensed data have the potential to distinguish sources of stress which 277 

ultimately helpful to take the right decisions to avoid crop reductions.  278 

4. Discussion 279 

Quantifying crop productivity in cereals is considered a priority for agricultural 280 

research programmes (Steinmetz et al., 1990) in response to the demands of rapid 281 

population growth (Rudorff et al., 1996).  Increased efforts are therefore needed to 282 

detect the effects of moisture and nitrogen deficiency stresses in maize. There was no 283 

specific index to predict crop yield over the growing season. The correlation 284 

coefficient of the relationship between different vegetation indices and crop properties 285 

at different growth stages was averaged and ranked to come up with the optimum 286 

index to predict maize yield. The Cred edge seems to be the optimum vegetation index to 287 

predict maize yield.  The results further showed that the band ratios RVI and NDVI 288 

are efficient and could also be used to predict maize yield.  Moreover, these indices 289 

were ranked among the best five indices for predicting maize yield in both seasons. 290 

Our results demonstrated the potential of remotely sensed data to predict maize yield 291 

subjected to moisture and N deficiency stress conditions.  These results confirm the 292 



previous findings of Babar et al. (2006) and Prasad et al. (2007) who demonstrated 293 

that crop yield can be predicted before the plant maturation stage is reached.  Whilst 294 

hyperspectral data revealed a potential to differentiate between moisture and N 295 

deficiency stresses. Hyperspectral data provided no significant advantage over the 296 

broadband spectral indices for predicting maize yield.  With respect to time, Babar et 297 

al. (2006) concluded that measuring reflectance at the heading and the grain filling 298 

stages appears to be the most suitable time for selecting different genotypes for 299 

optimum wheat yield.  They also found that RNDVI, GNDVI and SR showed 300 

significant positive correlations with grain yield at the heading and the grain filling 301 

stages.  However, the present study showed that the measurements at the canopy scale 302 

have shown that the flowering stage seems to be the optimum stage for predicting 303 

maize yield and other properties. 304 

The present study revealed that moisture stress induced by irrigation deficiency 305 

resulted serious impairment of growth – related properties in terms of chlorophyll.   306 

Anjum et al. (2011) considered chlorophyll concentration as a symptom of water 307 

stress due to photo-oxidation. When plants are subjected to water stress, chlorophyll 308 

concentration decreases and hence photosynthesis causes reductions in plant growth 309 

and productivity. Under deficit irrigation conditions, the decrease in chlorophyll a 310 

content is more pronounced. The chlorophyll content was significantly declined with 311 

increased levels of water stress which was supported by the results obtained by 312 

Mafakheri et al. (2010).      313 

To distinguish sources of stress, the PCA analysis was performed using spectra 314 

captured at different growth stages and the results showed minor differentiation at 315 

early growth stages which can be related to the interference between spectra of 316 

vegetation and others of soil background. It was noticed that at the canopy scale the 317 



spectra collected from stressed maize plants was influenced by high moisture and N 318 

deficiency stresses. The PCA score plots at the flowering stage showed some 319 

differences between moisture and nitrogen deficiency stressed plants and high levels 320 

of stress. Our results therefore showed that the feasibility of determining spectral end 321 

members derived from new generation of hyperspectral imagery which can be 322 

employed to assess the degree and source of stress.  Broadly, the PLDA run on 323 

spectra acquired at the canopy scale demonstrated the possibility to predict the source 324 

of stress in maize plants and even differentiate between low, medium and high level 325 

of moisture and nitrogen deficiency stresses. Systematic changes were observed in the 326 

spectra collected from maize canopies that were subjected to stress. It is 327 

recommended that when this technique is conducted at a large scale (local or regional 328 

scale) using satellite-based platforms, the stochastic effects produced from small-scale 329 

heterogeneity might be much reduced. In conclusion, the work presented here has 330 

shown the novel possibility of predicting spectral end members resulted from either 331 

moisture or nitrogen deficiency stress in one of the main strategic agricultural crops.     332 

The results therefore importantly suggested that remote sensing could provide a 333 

robust approach to predict crop properties at relatively early stages of plant growth; 334 

enabling appropriate management practices to be implemented to limit crop 335 

reductions and enhance crop productivity. Moreover, existing remote sensing 336 

satellites with broad band but high spatial resolution (2 m resolution) such as 337 

GeoEye1 and Worldview2 or medium resolution such as ESA Sentienel 2 (10-20m 338 

resolution) have the ability to provide regional and field scale information for farmers 339 

to improve crop yield in semi-arid and arid environments. The resulting spatial 340 

perspective would also provide a valuable basis from which to offer a cost benefit 341 



analysis between improving water and soil resources, irrigation technologies and 342 

increasing crop yield.   343 

 344 

345 



5. Conclusion 346 

The effectiveness of hyperspectral and broadband remote sensing data for the 347 

prediction of maize yield in response to moisture and nitrogen deficiency stresses at 348 

both leaf and canopy scales. The results indicated that the flowering stage was the 349 

optimum to predict maize yield through remotely sensed data.  There was no 350 

significant advantage in using hyperspectral indices over broadband vegetation 351 

indices. The Cred edge provided the optimum index for predicting maize yield. 352 

Hyperspectral data provided no advantage in such predictions. The NDVI and PSNDb 353 

have shown importance in the prediction of plant water content. The 675 to 800 nm 354 

range seems to be feasible to predict leaf chlorophyll content. Consequently 355 

broadband satellite based remote sensing platforms with high spatial resolution 356 

capabilities would be well suited to predict grain yield in semi arid and arid 357 

environments. Further work is required at different sites and environments as well as 358 

different crops to validate the results obtained in this research. Moreover, statistical 359 

approaches such as partial least square regression (PLSR) may be of interest to 360 

improve the prediction of crop traits combining spectral measurements of various 361 

growth stages and seasons to identify the optimum vegetation indices.     362 
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Table 1 Total irrigation water applied (mm) to different treatments in 2015 and 2016 576 

growing seasons  577 

Season  Growth stage Total irrigation water applied, mm 

 1.25 ETc 1.00 ETc 0.80 ETc 0.60 ETc 

 

2015 

Initial 84.0 67.2 53.8 40.3 

Development 244.4 195.5 156.4 117.3 

Mid-season 235.5 188.4 150.7 113.0 

Maturation 38.0 30.4 24.3 18.2 

 Total  601.9 481.5 385.2 288.8 

 

2016 

Initial 82.3 65.8 52.6 39.5 

Development 234.8 187.8 150.2 112.7 

Mid-season 226.6 181.3 145.0 108.8 

Maturation 36.1 28.9 23.1 17.3 

 Total 579.8 463.8 371.0 278.3 

 578 

 579 

580 



Table 2 Examples of commonly used spectral vegetation indices  581 

Notation Formulae Reference  

SLAVI NIR/(Red+NIR) Lymburner et al., 2000 

RVI NIR/Red Pearson & Miller, 1972 

VI1 NIR/(green-1) Vina, 2003 

brGNDVI (NIR-green)/ (NIR+green) Osborne et al., 2004 

DVI NIR-Red Tucker, 1979 

SI Red/NIR Jiang et al., 2003 

OSAVI [(NIR-Red)/(NIR+Red+L)]*(1+L), 

 L = 0.16 

Rondeaux et al., 1996 

NDVI (NIR-Red)/(NIR+Red) Rouse et al., 1974 

IPVI NIR/(NIR+Red) Crippen, 1990 

RDVI DVINDVI Reujean & Breon, 1995 

Rshoulder Mean R750-850 Strachan et al., 2002 

SR NIR/Red Jiang et al., 2003 

rededgeC (R800/R700 – 1) Elmetwalli, 2008 

R695/R760 R695/R760 Carter, 1994 

R605/R760 R605/R760 Carter, 1994 

R710/R760 R710/R760 Carter, 1994 

R695/R670 R695/R670 Carter, 1994 

R750/R550 R750/R550 Gitelson & Merzlyak, 1994 

R750/R700 R750/R700 Gitelson & Merzlyak, 1994 

R725/R675 R725/R675 Gitelson & Merzlyak, 1994 

NDVI, Normalized Difference Vegetation Index; RVI, Ratio Vegetation Index; GNDVIbr, Green 582 

Normalized Difference Vegetation Index; DVI, Difference Vegetation Index; SR, Simple Ratio; 583 

SLAVI, Specific Leaf Area Vegetation Index; OSAVI, Optimized Soil Adjusted Vegetation Index; 584 

VI1, Vegetation Index One; RDVI, Renormalized Difference Vegetation Index; SI, Stress Index; IPVI, 585 

Infra-Red Percentage Vegetation Index  586 
 587 

588 



Table 3 Analysis of variance for the experimental variables on maize productivity. 589 

MS- Mean Square; DF-Degrees of Freedom; NS-Non Significant and **-highly 590 

significant at 0.01 probability level. 591 

Source 
2015 2016 

D.F MS D.F MS 

Replicates 2 0.07 2 0.19 

Water regime (A) 

(A) 

3 32.09** 3 34.38** 

Residual  6 0.034 6 0.12 

N rates (B) 2 5.42** 2 15.94** 

A*B 6 NS 6 0.79** 

Error 16 0.14 16 0.16 

 592 

593 



Table 4. Effect of irrigation regime and N fertilization rate on maize yield (Mg ha-1) 594 

in both investigated seasons. Least significant Difference (LSD) values are 595 

listed and values with different letters are statistically significant.   596 

Season  
Irrigation 

regime 

N Fertilization, kg ha-1 
Mean LSD 

120 180 240 

2015 

1.25 ETc 6.79 7.65 8.41 7.62a 0.32 

1.00 ETc 6.37 7.14 8.16 7.22b  

0.80 ETc 5.35 5.62 6.55 5.84c  

0.60 ETc 3.11 3.36 3.85 3.44d  

Mean 

LSD=0.44  

 

 

5.41c 5.94b 6.74a   

2016 

1.25 ETc 6.33 8.46 9.42 8.07a 0.59 

1.00 ETc 6.26 7.82 9.09 7.72a  

0.80 ETc 5.16 6.93 7.36 6.48b  

0.60 ETc 3.26 3.83 4.19 3.76c  

Mean 

LSD=0.47 

 5.25c 6.76b 7.52a   

 597 

 598 

599 



Table 5 Simple regression results for predicting maize grain yield as a function of 600 

evapotranspiration rate (ETc) and Nitrogen fertilization rate (N) in 2015 and 601 

2016 growing seasons. Regression equations and determination coefficient 602 

(R2) are listed. 603 

Growing  

season 

Crop parameter Equation  R2  

2015 

 

Yield (Y), Mg ha-1 

Y = 6.96 ETc – 0.39 0.83 

 Y = 0.014 N – 5.19 0.88 

2016 

 

Yield (Y), Mg ha-1 

Y = 7.93 ETc – 0.28 0.82 

 Y = 0.026 N – 3.43 0.87 

 604 

605 



Table 6 Effect of irrigation regime and N fertilization rate on chlorophyll content 606 

(SPAD values) of maize of various treatments in 2015 and 2016 growing 607 

seasons. Least significant Difference (LSD) values are listed and values 608 

with different letters are statistically significant.   609 

Season  
Irrigation 

regime 

N Fertilization, kg ha-1 
Mean 

LSD 

120 180 240 

2015 

1.25 ETc 41.0 48.6 51.7 47.10a 1.31 

1.00 ETc 39.9 45.4 48.9 44.73b  

0.80 ETc 39.6 42.6 43.2 41.80c  

0.60 ETc 38.6 40.5 41.4 40.17d  

Mean 

LSD=0.99  

 39.78c 44.28b 46.3a   

2016 

1.25 ETc 40.1 43.6 50.9 44.87a 0.56 

1.00 ETc 38.3 41.4 44.6 41.43b  

0.80 ETc 37.5 40.9 41.7 40.03c  

0.60 ETc 36.6 37.9 38.3 37.60d  

Mean 

LSD=0.79 

 38.13c 40.95b 43.88a   

 610 

611 



Table 7 Coefficient of correlation for the relationship between vegetation indices and 612 

maize grain yield at different growth stages in the 2015 and 2016 summer growing 613 

seasons. Values with ** are highly significant at 0.01 probability level.  614 

Season  
Vegetation 

Index 

Growth stage 

 seedlings jointing flowering filling maturation Mean 

 RVI  0.22 0.71** 0.94** 0.60** 0.49** 0.586** 

 NDVI  0.27 0.62** 0.90** 0.65** 0.57** 0.602** 

 SR  0.16 0.70** 0.92** 0.65** 0.49** 0.584** 

2015 RDVI  0.14 0.65** 0.94** 0.69** 0.49** 0.582** 

 GNDVIhy  0.23 0.61** 0.94** 0.64** 0.59** 0.602** 

 PSNDb  0.19 0.58** 0.94** 0.73** 0.50** 0.588** 

 R695/R760  -0.25 -0.52** -0.92** -0.74** -0.49** -0.584** 

 R750/R550  0.27 0.64** 0.93** 0.61** 0.60** 0.610** 

 R750/R700  0.20 0.70** 0.93** 0.71** 0.53** 0.614** 

 Cred edge  0.18 0.71** 0.93** 0.74** 0.54** 0.620** 

 RVI  0.24 0.62* 0.91** 0.75** 0.52* 0.608** 

 NDVI  0.31 0.60** 0.93** 0.67** 0.62** 0.626** 

 SR  0.24 0.63** 0.92** 0.76** 0.53** 0.616** 

2016 RDVI  0.19 0.49** 0.88** 0.69** 0.39 0.528* 

 GNDVIhy  0.33 0.55** 0.89** 0.69** 0.65** 0.622** 

 PSNDb  0.28 0.52** 0.81** 0.70** 0.57** 0.576** 

 R695/R760  -0.30 -0.46** -0.88** -0.65** -0.51* -0.560** 

 R750/R550  0.33 -0.60** 0.92** -0.72** -0.64** -0.642** 

 R750/R700  0.23 0.63** 0.89** 0.76** 0.63** 0.628** 

 Cred edge  0.25 0.65** 0.92** 0.78** 0.65** 0.650** 

615 



Table 8. Confusion matrix for PLDA performed on spectra measurements collected 616 

from maize canopies subjected to moisture and nitrogen deficiency stresses. Labels: T1-617 

I1F1; T2- I1F2; T3-I1F3; T4-I2F1; T5- I2F2; T6-I2F3; T7-I3F1; T8- I3F2; T9-I3F3;  T10-I4F1; T11-I4F2; T12-618 
I4F3.  I1, I2, I3 and I4 are 1.25, 1.0, 0.80 and 0.60 ETc and F1, F2 and F3 are 240, 180 and 120 kg N 619 
respectively.    620 

PDLA T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Total 
User's 

accuracy 

T1 5 0 0 0 4 0 0 0 0 0 0 0 9 0.55 

T2 0 7 0 0 0 5 0 0 0 0 0 0 12 0.58 

T3 0 0 8 0 0 0 0 0 0 0 1 0 9 0.89 

T4 0 0 3 6 0 0 0 0 0 0 0 0 9 0. 67 

T5 2 0 0 0 3 0 0 0 0 4 0 0 9 0.33 

T6 0 0 0 0 0 5 0 0 0 0 0 0 5 1.00 

T7 0 0 0 0 0 1 7 0 0 0 0 2 10 0.70 

T8 0 0 0 0 0 0 0 4 0 0 3 0 7 1.00 

T9 0 0 0 0 0 0 0 0 6 0 0 0 6 1.00 

T10 0 0 0 0 0 0 0 0 0 4 1 0 5 0.80 

T11 0 0 0 0 0 0 0 0 0 0 7 0 7 1.00 

T12 0 0 0 0 0 0 0 0 0 0 0 5 5 1.00 

Total 7 7 11 6 7 11 7 4 6 8 12 7 78  

Producer's 

accuracy 

0.71 1.00 0.72 1.00 0.43 0.45 1.00 1.00 1.00 0.50 0.58 0.71   

Training misclassification rate 

0.11 

 Prediction misclassification rate 

0.24 

621 



 622 

  

  

  

Fig. 1. The relationship between different vegetation indices derived from spectra 623 

obtained using solar illumination and maize yield, water content and chlorophyll 624 

content at the flowering stage in 2015 summer season 625 



  

  

  

Fig. 2. The relationship between different vegetation indices derived from spectra 626 

obtained using solar illumination and maize yield, water content and chlorophyll 627 

content at the flowering stage in 2016 summer season. 628 

 629 

 630 

 631 



 632 

 633 

Fig. 3. PCA score plot for the whole dataset of spectra collected from various 634 

treatments of moisture and nitrogen deficiency induced stressed maize canopies at the 635 

flowering stage in 2015 growing season. Labels: T1-I1F1; T2- I1F2; T3-I1F3; T4-I2F1; T5- I2F2; 636 
T6-I2F3; T7-I3F1; T8- I3F2; T9-I3F3;  T10-I4F1; T11-I4F2; T12-I4F3.  I1, I2, I3 and I4 are 1.25, 1.0, 0.80 and 637 
0.60 ETc and F1, F2 and F3 are 240, 180 and 120 kg N respectively.     638 


