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Abstract

Context Intact tropical rainforests are considered

robust to plant invasions. However, land-use change

alters the structure and species composition of native

forest, opening up tropical landscapes to invasion. Yet,

the relative roles of key drivers on tropical forest

invasions remain little investigated.

Objectives We examine factors affecting plant inva-

sion of rainforest remnants in oil-palm dominated

landscapes in Sabah, Malaysian Borneo. We hypoth-

esized that invasion is greater in highly fragmented

landscapes, and in disturbed forests with lower native

plant diversity (cf. old-growth rainforests).

Methods Native and exotic plants were surveyed in

47 plots at 17 forest sites, spanning gradients in

landscape-scale fragmentation and local forest distur-

bance. Using partial least squares path-modelling, we

examined correlations between invasion, fragmenta-

tion, forest disturbance, propagule pressure, soil

characteristics and native plant community.

Results We recorded 6999 individuals from 329

genera in total, including eight exotic species (0–51%

of individuals/plot, median = 1.4%) representing

shrubs, forbs, graminoids and climbers. The best

model (R2 = 0.343) revealed that invasion was corre-

lated with disturbance and propagule pressure (high

prevalence of exotic species in plantation matrix), the
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latter being driven by greater fragmentation of the

landscape. Our models revealed a significant negative

correlation between invasion and native tree seedlings

and sapling community diversity.

Conclusions Increasing landscape fragmentation

promotes exotic plant invasion in remnant tropical

forests, especially if local disturbance is high. The

association between exotic species invasion and young

native tree community may have impacts for regen-

eration given that fragmentation is predicted to

increase and so plant invasion may become more

prevalent.

Keywords Agricultural landscapes � Forest

degradation � Fragmentation � Non-native species � Oil

palm � Structural equation modelling

Introduction

Exotic species invasion is recognised as a major

agent of environmental change across all ecosystems

(Sala et al. 2005). Invasion is considered to be a

function of four factors: propagule pressure, the

abiotic characteristics of the invaded system, and the

biotic characteristics of both the invaded system and

invading species, all of which can be altered by

human activity (Pyšek and Richardson 2006). In a

given invasion scenario these factors contribute to

varying degrees, and it is crucial to identify the

relative role of each in driving invasion in a particular

ecosystem (Catford et al. 2009). Many temperate

forests are highly invaded by exotic plants due to

historic land-use change causing substantial forest

cover loss and resulting in highly fragmented and

disturbed landscapes (McNeely 1995; Williams

2003; Haddad et al. 2015). Conversely, intact,

lowland, humid tropical forests are usually consid-

ered to be robust to plant invasions due to low

propagule pressure, low forest disturbance and

because exotic species typically do not thrive in the

strongly shaded conditions within undisturbed forests

(Fine 2002; Denslow and DeWalt 2008). In addition,

it has been hypothesised that the typically high native

diversity in tropical rainforests means there are fewer

empty niches, providing biotic resistance to invading

exotic plants (Fine 2002; Denslow and DeWalt

2008). However, land-use change is impacting large

tracts of forest across the tropics (Pütz et al. 2014;

Haddad et al. 2015; Qie et al. 2017), opening up these

landscapes to exotic propagules and further distur-

bance in the remaining patches of forest (Hulme

2009). Forest degradation alters the availability of

light and other resources, changing the nature of

inter-specific competition (Denslow and DeWalt

2008; Carson and Schnitzer 2011), and potentially

exposes these forest patches to invasion of exotic

plants. Yet, despite this, little is known about plant

invasions within human-modified tropical landscapes

(Kueffer et al. 2013), including remnant forests

which are crucial for maintaining local and regional

native biodiversity.

Large-scale deforestation in the tropics is predom-

inantly driven by expansion of agriculture, and these

agricultural areas have high levels of disturbance and

abiotic conditions which differ from those of intact

tropical forests (Malhi et al. 2014; Curtis et al. 2018).

Abiotic conditions in tropical agricultural areas (e.g.

high light levels, high temperature, low humidity,

altered soil nutrients and pH) promote establishment

of ruderal exotic plant species that are transported and

introduced by humans via extensive networks of roads

(With 2002; Von der Lippe and Kowarik 2007;

Padmanaba and Sheil 2014; Fee et al. 2017), resulting

in exotic-rich weed-covered banks along disturbed

roadsides (Fee et al. 2017). These highly disturbed

agricultural areas provide an on-going source of

propagules and may promote invasion of natural

forest remnants embedded within these landscapes.

From the few studies of plant invasions within humid

tropical forests, the presence of exotic species corre-

lates with variables that are associated with propagule

pressure, including distance from source population

and to forest edge (Edward et al. 2009; Dawson et al.

2014). If propagule pressure is high enough, seed

swamping of new environments can result in success-

ful exotic establishment, regardless of whether the

conditions of the invaded system are ideal for that

species (see Propagule pressure hypothesis; Lock-

wood et al. 2005; Colautti et al. 2006). Nonetheless,

abiotic and biotic factors also contribute to the

invasion process.

Disturbance has been foundational in the formula-

tion of several invasion hypotheses (e.g. Disturbance,

Habitat filtering, Empty niche and Increased Resource
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Availiabilty hypotheses; see Catford et al. 2009 for

invasion hypothesis overview), therefore invasion is

expected to be higher in the most disturbed tropical

rainforests. Commercial selective logging and the

impact of fragmentation (e.g. via edge effects) alter

the structure of remaining rainforest due to timber

removal and disturbance-related tree mortality (Lau-

rance et al. 2002; Malhi et al. 2014; Gibbs and Salmon

2015). The reduction in canopy cover increases light

in the forest understorey, which affects the abiotic

conditions of remnant forest patches, when compared

with continuous, undisturbed forest (Laurance et al.

2002). Gradients from forest edge to interior have been

recorded for temperature, humidity, wind intensity

and soil erosion, with the most extreme differentiation

seen at forest edges, known as edge effects (Laurance

et al. 2002). In disturbed tropical forests, more exotic

plants have been recorded at forest edges, driven by a

combination of increased propagule pressure and

increased canopy openness and soil disturbance asso-

ciated with forest edge conditions and anthropogenic

influence (Peters 2001; Harper et al. 2005; Edward

et al. 2009; Dawson et al. 2014; Döbert et al. 2017).

However, these studies only looked at a few forest

sites, only one studied a gradient of disturbance

(Döbert et al. 2017) and none have considered

gradients in landscape fragmentation.

In addition to forest structural changes caused by

logging and fragmentation, changes to species com-

munity composition also occur due to disruption of

native species interactions (Laurance et al. 2011;

Arellano-Rivas et al. 2016). For example, removal of

large timber trees and isolation from larger tracts of

forest reduce the regeneration of native old-growth

tree species through reduced fruiting and dispersal

events, shifting tree species composition to earlier

successional states with lower community-average

wood density (Laurance et al. 2006; Lôbo et al. 2011;

Pütz et al. 2014; Gibbs and Salmon 2015; Qie et al.

2017). The negative impacts of fragmentation on

native species communities are greater in small,

isolated fragments and accumulate over time (Gonza-

lez 2000; Ferraz et al. 2003; Hill and Curran 2003;

Haddad et al. 2015), with the understorey tree

community strongly affected due to adult trees

producing fewer viable seeds (i.e. extinction debt;

Stride et al. 2018). Therefore, forest remnants may be

particularly vulnerable to invasions due to reduced

biotic resistance arising from the loss of native forest

species. However, evidence for biotic resistance to

exotic plant invasion in tropical rainforests is limited

(Fine 2002; Levine et al. 2004; Denslow and DeWalt

2008), with no consensus currently (Teo et al. 2003;

Brown et al. 2006). Thus it is still unclear whether

biotic interactions between native and exotic species

(i.e. biotic resistance from the native community as

well as suppression of native growth by invading

exotic species) play a significant role in mediating

invasion of tropical forests.

South-East Asia has the highest rates of deforesta-

tion (Achard et al. 2002; Sodhi et al. 2004) and logging

(primarily trees from Dipterocarpaceae; Hansen et al.

2008; Lewis et al. 2015; Brearley et al. 2016) in the

world (Bryan et al. 2013; Gaveau et al. 2017), due in

particular to the expansion of oil palm (Elaeis

guineensis Jacq.) cultivation in Malaysia and Indone-

sia in recent decades. This expansion of agriculture

results in a highly fragmented forest landscape made

up of commercial oil palm plantations with unculti-

vated, often heavily logged forest remnants (Reynolds

et al. 2011). These remnant forests are therefore

usually highly degraded and contain reduced assem-

blages of both plants and animals, compared with old-

growth continuous forest, particularly if very little

core forest area remains within the remnants (Lucey

et al. 2017). However, these forest remnants can be

important for conserving biodiversity and ecosystem

services and for connecting forest patches within oil

palm dominated regions, even if they are highly

degraded (Yeong et al. 2016; Lucey et al. 2017;

Scriven et al. 2017; Fleiss et al. 2020).

In this study, we examine the relative influence of

fragmentation, forest disturbance, propagule pressure,

soil characteristics and native community composition

on exotic plant invasions of forest remnants within oil

palm-dominated landscapes in Sabah, Malaysian

Borneo. Studies examining invasion of tropical forests

are rare, and this study is the first to examine a range of

environmental and ecological factors leading to inva-

sion of forest remnants embedded within an oil palm

landscape. We use partial least squares path modelling

(PLS-PM) to test the expectation that invasion is

positively correlated with landscape-scale fragmenta-

tion, local forest disturbance and propagule pressure,

and negatively correlated with native community

diversity, whilst accounting for soil characteristics.

We also expect the native community to respond

negatively to land-use change.
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Material and methods

Study sites

Between July and October 2017, we sampled 47 plots

within 17 sites distributed widely across the state of

Sabah, Malaysian Borneo (Fig. 1a). Sites were

selected to span a wide gradient of fragmentation

and disturbance, including isolated, heavily logged,

small forest remnants (\ 15 ha) that were fully

surrounded by oil palm, as well as larger, heavily

logged forest remnants ([ 100 ha) that were con-

nected at the plantation boundary to larger tracts of

government protected forest. Forest sites in oil-palm

dominated landscapes (n = 13 sites), which have

between 1 and 64% natural forest cover remaining

within a 2 km radius buffer surrounding study plots

(see section below; characterising fragmentation),

were compared with four sites within an extensive

tract of intact ‘continuous’ logged and unlogged

protected forest ([ 1 million ha; Fig. 1a). These

continuous forest sites provided baseline data for

Fig. 1 a Map of study locations, forest cover and industrial oil

palm plantations within Sabah, on the island of Borneo (inset).

b Schematic diagram of experimental plot design within

fragmented and continuous forest sites. Distance of plots from

forest edge and between plots are shown along with the radiuses

of each plot and subplot, and location of quadrats.

Measurements are as follows: C1 = trees C 25 cm DBH;

C2 = trees 10–25 cm DBH; C3 = tree saplings 2–10 cm DBH

and Q = tree seedlings (\ 2 cm DBH) and other ground

vegetation (including shrubs, forbs and grasses). See text for

full details on floristics surveys. CIFOR forest cover dataset

available at Gaveau, Salim and Arjasakusuma (2017)
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comparison of forest remnants within an oil palm

landscape and also represented variation in levels of

forest disturbance in the region, including both fully

protected unlogged forest (n = 2) and commercially

logged sites (n = 1 site in once-logged forest; n = 1

site in twice-logged forest). Thus, our choice of sites

spanned a gradient in the degree to which the

landscape surrounding our sites was fragmented as

well as the intensity to which the forest areas were

previously commercially selectively logged.

Sites within oil palm plantations were conservation

set-asides, and the majority were managed as sites

with ‘High Conservation Values’ (HCVs, Senior et al.

2015), which the plantations retain and manage as part

of the Roundtable on Sustainable Palm Oil (RSPO)

certification process for sustainable palm oil (RSPO

2018). These sites were selectively logged to varying

degrees in the 1990s prior to oil palm cultivation (see

details below on disturbance quantification) and were

generally unsuitable for planting oil palm (i.e. too

steep or too rocky). Study sites were at least 1 km

apart to avoid spatial autocorrelation. The maximum

distance between sites is c. 192 km with elevation

range from 42–267 m above sea level, hence we do not

expect the climate to vary greatly between sites.

Plot-level surveys of native and exotic plants

We surveyed plants in two or three circular plots

(30 m radius; 0.28 ha) per site, depending on forest

extent at each site, with only two in the smallest

remnants (\ 12.5 ha; n sites = 4). We used a four-

level nested approach to sample plants within different

size classes (Fig. 1b). The diameter-at-breast height

(DBH) was recorded for all large trees C 25 cm DBH

within the 0.28 ha plot (Fig. 1b; C1), all small trees

10–25 cm DBH within a sub-plot of 20 m radius

(Fig. 1b; C2), and all tree saplings 2–10 cm DBH

within a sub-plot of 5 m radius (Fig. 1b; C3). Tree

seedlings and other ground vegetation (forbs, shrubs,

climbers, ferns and graminoids, from herein referred

to simply as ground vegetation) were surveyed in eight

1 9 1 m quadrats (Fig. 1b; Q) located 25 m from the

plot centre along eight randomly chosen bearings.

Within each of these quadrats, we recorded all plants

(tree seedlings, shrubs, climbers, forbs, graminoids

and ferns) rooted inside the quadrat, and B 2 cm

DBH. We considered an individual as a plant with a

distinct root system; for adult trees, tree saplings and

tree seedlings individuals were straightforward to

distinguish. All ground vegetation, including clonal

species (e.g. graminoids and climbers) that can appear

as distinct individuals above ground yet connected

below ground, was manually removed from the soil to

determine number of individuals for each morpho-

genus, with unknown individuals taken as vouchers

for identification. Adult trees and saplings were

identified to genus in the field by an experienced local

botanist (co-author AJ). Voucher specimens and

photographs of plants in the quadrats were used to

identify individuals by a botanist at Danum Valley

Field Centre (co-author BBO) and the herbarium at the

Forest Research Centre, Sepilok. Exotic species were

identified based on lists and guides of Sabah’s known

exotic plants prepared prior to fieldwork (see Palle-

watta et al. 2003; Bakar, 2004; Peh, 2010; Döbert et al.

2017; Fee et al. 2017; CABI 2017) and confirmed by

botanists from vouchers. The observed number of

exotic species and number of exotic stems per plot

were used as measurements of invasion within a plot.

All analyses were carried out at plot-level, and at the

level of genus, due to the challenges of reliably

identifying native plants to species level in diverse

tropical forests. Exotic plants were identified to the

species level.

Quantifying the native community

We computed two measures of native community

alpha diversity; observed genus richness and Faith’s

phylogenetic diversity (PD; Faith 1992). Faith’s PD is

the total sum of phylogenetic branch lengths between

species—we chose this measure because it is intended

to capture the evolutionary signal in functional traits

and as such is associated with functional diversity and

can be a valuable predictor of ecosystem-level

responses (Flynn et al. 2011). These diversity metrics

were calculated per plot (n = 47) for the total dataset

and separately for trees, saplings, seedlings and the

ground vegetation. Individuals that could not be

identified to genus (n = 17;\ 1% of all stems) were

removed from the dataset prior to phylogenetic

analyses. A phylogeny was created using Phylomatic

v.3 (Webb and Donoghue 2005; available at https://

phylodiversity.net/phylomatic/ [accessed 4 May

2018]) and a pruned version of the Angiosperm Phy-

logeny Groups APGIII maximally resolved supertree

of angiosperms (R20120829). Two genera could not
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be included in the phylogeny, as they were not part of

the original supertree, leaving 303 genera for inclu-

sion. The phylogeny was rooted and branch lengths

were based on node ages (most recent common

ancestor) of Wikstrom et al. (2001) and estimated

using the ‘BladJ’ algorithm in Phylocom (Webb et al.

2008). From the resulting phylogeny, phylogenetic

diversity (PD; the sum of the total branch lengths

measured in millions of years; Faith 1992) was cal-

culated using the ‘picante’ package (Kembel et al.

2010) in R Studio 2.14 (R Core Team 2019).

Characterising fragmentation, disturbance,

propagule pressure and soil

We measured forest fragmentation in the surrounding

landscape by quantifying the area of forest and non-

forest habitat (m2) within a 2 km radius buffer

surrounding each plot. This buffer is a proxy for the

dispersal potential of native forest species (i.e. more

forest in the buffer would likely indicate a higher

presence of mother trees as well as pollinators and

animal dispersers). This buffer included forested areas

not connected to forest remnants where plots were

carried out, as well as connected forest within which

the plots were embedded. Quantification of buffer

habitat was carried out using drone images provided

by plantation managers taken during May–November

2016, after which we assume no or negligible change

to forested area within plantations had occurred before

fieldwork took place (July–October 2017), due to

protections in place. Plots in ‘continuous’ sites were

almost entirely forest, but the tract of continuous forest

nonetheless contains some small settlements (i.e. field

research centre) and so there were small areas of non-

forest (\ 0.5%) in buffer zones around these plots.

Within the 2 km buffer, the amount of forest edge in

the landscape was also calculated using the ‘rgeos’ and

‘raster’ packages (Hijmans and van Etten 2012;

Bivand and Rundel 2013), and was equal to the

number of raster grid cells (5 9 5 m) the forest edge

passed through. A unitless index of edge density was

calculated for each plot as the area of edge cells

divided by the area of forest cells. This edge density

index was a proxy for the amount of edge habitat in the

landscape that would likely be highly degraded based

on edge effects. The time since fragmentation was

calculated from the year of first planting of oil palm

(between 1991 and 2009) as provided by estate

managers.

At all sites, we derived two proxy variables for local

forest community structure and recovery since distur-

bance (primarily the result of previous commercial

selective logging, except at the two unlogged ‘contin-

uous’ sites). These two variables were: (i) the number

of large stems ([ 25 cm DBH) belonging to the tree

family Dipterocarpaceae, which comprises * 22% of

tree species and 61% of biomass in the region (Slik

et al. 2003; Saner et al. 2012), and provides a useful

comparison between disturbed remnants and unlogged

‘continuous’ forest; and (ii) average plot-level wood

density for trees[ 10 cm DBH was calculated,

because wood density can be an indicator of succes-

sional status in forest species (Slik et al. 2008; Feeley

et al. 2011; Qie et al. 2017). Wood density was

calculated for each genus using the ‘BIOMASS’

package in R (Réjou-Méchain et al. 2017), based on

the Global Wood Density Database (Chave et al. 2009;

Zanne et al. 2009).

As a direct proxy of propagule pressure, exotic

plant species richness and abundance were measured

along two 100 m transects located within the oil palm

matrix at each site. The first transect was along the

roadside of a major unpaved plantation road (lorries

and car traffic) and the second at the oil palm-forest

edge, either along an unpaved minor road (mostly

motorbike traffic) or oil palm terrace track (pedestri-

ans). Along both 100 m transects, the presence/

absence of 18 exotic species were recorded in each

1 m section and 1 m either side of the transect line (i.e.

2 m2 sections). Exotic species richness was computed

as the total number of exotic species (out of 18)

recorded across these two transects. Exotic species

abundance was the total number of 1 m transect

sections (n = 100 per transect) that species were

present in, and total abundance of all exotics was

computed across the two transects (i.e. out of 18

species 9 200 sections = 3600).

To measure soil available phosphorus and pH the

topsoil was sampled in each plot (20 cm core; n = 5

per plot: one at the plot centre and four 15 m from

centre in each of the cardinal directions). After drying

(at 50 �C) soil samples were thoroughly mixed and

sub-sampled for analyses at plot level (n = 47). Soil

chemistry was analysed at the Forest Research Centre,

Sepilok, Sabah. Available phosphorus was extracted

using water and measured using the molybdenum-blue
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method and read at 880 nm on a spectrophotometer

(following Anderson and Ingram 1994). Soil pH was

measured with a combination glass-calomel electrode

in a 1:2.5 ratio of soil to deionised water.

Data analysis

We analysed the relative importance of different

factors in invasion using partial least squares path

modelling (PLS-PM; see Table 1 for a summary of

variables and Supporting Information Appendix S1 for

full details on PLS-PM method and variable selection)

using the ‘plspm’ R package (Sanchez and Trinchera

2012; see Waddell and Chapman 2020 for the R code).

PLS-PM is a variance-based structural equation mod-

elling method, which fits multiple regressions using

measured and latent variables connected in a pathway

reflecting ecological theory (Sanchez 2013). Latent

variables are those which cannot be observed or

directly measured but are of conceptual interest and

are indicated by their associated measured variables,

which comprise at least two highly correlated mea-

sured variables. Some measured variables were

transformed (Table 1) to improve normality, in

accordance with modelling assumptions (SI Appendix

S1). All measured variables were centred and scaled

(mean of 0 and variance of 1) prior to input into the

PLS-PMs to assist with model convergence and

interpretation.

All models were developed starting from the full

specification in Fig. 2 and removing non-significant

terms in a stepwise manner until all retained links were

statistically significant (P\ 0.05; Sanchez, 2013).

Two-sided P-values for standardised path coefficients

(i.e. the extent of standard deviation change of one

latent variable attributed to one standard deviation

change to another latent variable) were estimated by

10,000 bootstrap estimations. In ‘plspm’, site identity

cannot be included as a random effect, so site effects

were accommodated by taking bootstrap samples at

the level of site, i.e. bootstrap samples were made by

randomly selecting sites and all their constituent plots,

with replacement.

We first fitted the model on the full dataset, i.e.

where native community diversity comprised recorded

native plants of all size classes. We then fitted separate

Table 1 Measured variables included in the structural equation models

Latent variable Measured variable Details Transformation

Fragmentation Area of non-forest m2 within 2 km buffer Untransformed

Edge density The amount of forest edge/forest area within 2 km buffer Untransformed

Age years since fragmentation ln ? 1

Disturbance Number of large

dipterocarps

Number of large stems ([ 25 cm DBH) per plot (sqrt)* - 1

Wood density average wood density of adult trees ([ 10 cm DBH) per plot (log10)* - 1

Soil

characteristics

Soil pH Average pH of five 20 cm soil cores log10

Available phosphorus (P) Average available P of five 20 cm soil cores log10

Propagule

pressure

Exotic richness outside Number of exotic species along two transects, in oil palm matrix Untransformed

Exotic abundance outside Abundance of exotic species along two transects, in oil palm

matrix

Untransformed

Native

community

Native genera richness Observed genera count per plot Untransformed

Native abundance Observed number of individuals per plot Untransformed

Native phylogenetic

diversity

Faith’s phylogenetic diversity per plot Untransformed

Invasion Exotic genera richness Number of exotic genera per plot ln ? 1

Exotic abundance Number of exotic stems per plot ln ? 1

Including details of each variable, transformations used to prepare data for analysis and which latent variables are indicated by each

measured variable. Abbreviations are: log10 = base 10 logarithm, ln ? 1 = natural log ? 1 and sqrt = square root. Measured

variables which were multiplied by minus one, to ensure the latent variable reflected the processes we labelled them with, are

indicated by *- 1
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PLS-PMs for native adult trees, tree saplings, tree

seedlings and ground vegetation to test whether

different subsets of the native community were more

strongly correlated with invasion. As we do not know

the directionality of the relationship between native

community diversity and invasion, we tested all

models in both directions for this relationship. In all

cases, models were assessed for validity and reliability

in both the measurement and structural model (see SI

Appendix S1 for details on PLS-PM model

evaluation).

Results

In the 47 plots we surveyed a total of 6999 individuals

(SI Table S2) from 329 genera, including eight exotic

species, ranging from 0 to 7 species (median = 1) and

0–51% of stems (median = 1.4%) per plot. Exotic

species included shrubs, forbs, graminoids and

climbers (there were no exotic trees). The most

abundant exotic was a common tropical exotic shrub,

Clidemia hirta (Melastomataceae), which made up

73.8% of all exotic stems (SI Table S3). The second

most common exotic was also a shrub, Chromolaena

odorata (11% of exotic stems), and the other six

species were either forbs, climbers or a graminoid

(1–4% of exotic stems).

Overall, native richness ranged from 18–69 gen-

era/plot (median 45) with plots in the 13 oil palm

remnant sites having lower richness (median of 42

genera/plot; range 18–69) compared with continuous

sites (median of 46.5 genera/plot; range 39–57). In

continuous sites the most common native genus

amongst adult trees was Shorea (Dipterocarpaceae),

for saplings Mallotus (Euphorbiaceae), for seedlings

Shorea (Dipterocarpaceae) and for ground vegetation

Selaginella (Selaginellaceae). By contrast in the oil

palm remnant sites, the most common native genera

were Ficus (Moraceae), Hopea (Dipterocarpaceae),

Glochidion (Phyllanthaceae) and Selaginella (Se-

laginellaceae) for the same size classes, respectively.

The final PLS-PMs (Figs. 3, 4, S1 and S2)

explained 34% of the variation in invasion, 74% of

variation in propagule pressure, between 26 and 53%

of native community diversity and 55% of soil

characteristics (all of which are latent variables

informed by 2–3 measured variables). There was

strong evidence in support of our final PLS-PMs in

terms of the reliability and validity of the measure-

ment model and an adequate fit of the structural model

(see Appendix S1 and Tables S4–6 for full details on

model evaluation).

Drivers of invasion

After removal of non-significant terms, the best model

with the full native community (i.e. combining data for

native adult trees, saplings, seedlings and ground

vegetation; Fig. 3), found a strong direct positive

correlation between propagule pressure and invasion

(P\ 0.001), with a strong indirect positive correlation

of fragmentation (P\ 0.01) on invasion via increased

propagule pressure. Forest disturbance also had a

direct positive correlation with invasion (P\ 0.05),

but there was no significant effect of total native

community diversity or soil characteristics (P[ 0.05)

on invasion.

Fig. 2 Hypothetical partial least squares path model showing

the relationships between fragmentation, disturbance, propagule

pressure, soil characteristics and native plant diversity on

invasion within of lowland tropical forests. Latent variables are

shown in ovals and the measured variables in rectangles.

Measurement model is represented by the dashed lines and the

structural model is represented by the solid lines. Models were

tested in both directions for the relationship between native

community and invasion indicated by the double arrows. Full

details on these variables are in Table 1 and within the text

123

1898 Landscape Ecol (2020) 35:1891–1906



Models accounting separately for native adult trees,

saplings, seedlings and ground vegetation communi-

ties did not support a role of native community

diversity on invasion (native ? invasion; Fig. S1 and

Table S7). However, when the direction of the biotic

relationship in the model was reversed, i.e. invasion ?
native, we found significant negative effects of

invasion on native tree sapling and tree seedling

communities (Fig. 4; tree saplings: standardised path

coefficients = - 0.348, P = 0.012, R2 = 0.4; tree

seedlings: standardised path coefficients = -0.28,

P\ 0.01, R2 = 0.299). In these models, there was no

significant effect of invasion on the total native

community, adult trees or ground vegetation (Fig. S2).

Responses of the native community to land-use

change

The exotic and native communities (both total and

subsets) responded differently to disturbance and

fragmentation (Figs. 3, 4, S1 and S2). The total native

community was indirectly correlated negatively with

both fragmentation and disturbance, via their positive

influence on soil characteristics (i.e. higher native

diversity and abundance when there was low soil pH

and available soil phosphorus; Fig. 3 and Table S7).

Instead, invasion was positively correlated with these

land-use change variables, as we hypothesised. In the

native subsets (Figs. 4, S1 and S2, and Table S7), adult

tree and tree sapling communities were directly

negatively correlated with disturbance, tree seedling

community was directly negatively correlated with

fragmentation, and the ground vegetation community

(forbs, shrubs, climbers, ferns and graminoids) was

indirectly negatively correlated with both fragmenta-

tion and disturbance, via interactions with soil char-

acteristics. Hence, all the native community subsets

(adult trees, tree saplings, tree seedlings and ground

vegetation) were negatively associated with distur-

bance and fragmentation.

Discussion

Our study found that a higher degree of landscape

fragmentation leads to higher invasion of exotic plant

species in forest remnants, due to a greater source

population of exotic plants found in the anthropogenic

(i.e. plantation) areas of these landscapes. In contrast,

we found little effect of soil characteristics and the

native community on exotic invasion, but a negative

influence of exotic invasion on the native tree sapling

and seedling communities.

Fragmentation drives propagule pressure

to increase invasion

Landscape fragmentation (i.e. lower forest cover,

more edge habitat and a longer history of forest

clearance) promotes higher invasion of the oil palm

matrix (planted areas and roads), which increases the

likelihood of remnant forests being invaded by exotics

due to increased propagule pressure. We expected that

greater numbers of exotic species would have

Fig. 3 Fitted partial least squares path model showing the

relationships between fragmentation, disturbance, propagule

pressure, soil characteristics and native plant diversity on

invasion within of lowland tropical forests. The model was

simplified from the specification in Fig. 2 by removing non-

significant effects. The goodness-of-fit index for the model and

R2 values for the endogenous latent variables are displayed.

Standardised path coefficients and P-values were estimated by

10,000 bootstrap estimations. Standardised path coefficients are

shown next to arrows, red indicates a negative correlation and

blue a positive correlation. They denote the extent of standard

deviation change of one latent variable attributed to one

standard deviation change to another latent variable. P-values:

*P\ 0.05; **P\ 0.01 and ***P\ 0.001
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established in the oil palm matrix because of enhanced

transport of propagules (Ansong and Pickering 2013)

and the higher availability of resources brought about

through disturbance, which would promote colonisa-

tion by exotic species (Fee et al. 2017). Small, isolated

forest remnants that are completely surrounded by oil

palm, or other agricultural areas (c.f. those contiguous

with larger tracts of forest) may therefore have more

exotic propagules arriving from all directions, facil-

itating the invasion process. Although exotic invasions

have not yet been thoroughly examined in fragmented

tropical rainforests, similar patterns to those in this

study have been reported in many natural habitats

within fragmented landscapes, with invasion highest

in small, isolated remnants (Vilà and Ibáñez 2011).

We conclude that propagule pressure, driven by

fragmentation, is the main factor influencing invasion

of exotics in our study (based on total effect sizes in

Table S7), however, invasion is generally low unless

there is high local disturbance of the forest.

Increased invasion in disturbed forests

We found that invasion is more likely in forests with

high levels of previous disturbance, represented by

those with fewer large dipterocarp trees and lower

average wood density, indicative of forest regressing

to an early successional state. The strong positive

relationship between disturbance and invasion is

likely to indicate increased resource availability (e.g.

light and space) associated with commercial selective

logging, providing opportunities for invading exotics

to colonize. The correlation between invasion and

increased resource availability following disturbance

is found across many habitats and disturbance regimes

(natural and anthropogenic), and underpins several

invasion hypotheses (Davis et al. 2000; Hood and

Naiman 2000; Colautti et al. 2006). In tropical forests,

increased light levels following selective logging can

also lead to increases in native pioneer species and

native weeds (Catford et al. 2009; Lockwood et al.

2013) and these environmental factors are likely to be

instrumental in driving the invasion of exotic species

observed in our data. Therefore, fragmentation and

disturbance may operate synergistically; land-use

change may bring exotic species propagules into the

oil palm matrix, but these exotic species will only

establish in the remnant forests if local conditions are

suitable and disturbance promotes these conditions.

Fig. 4 Partial least squares path model showing the relation-

ships between fragmentation, disturbance, propagule pressure,

soil characteristics and invasion on a native tree sapling and

b native seedling diversity. The model was simplified from the

specification in Fig. 2 by removing non-significant effects. The

goodness-of-fit index (GoF) for each model andR2 values for the

endogenous latent variables are displayed. Standardised path

coefficients and P-values were estimated by 10,000 bootstrap

estimations. Standardised path coefficients are shown next to

arrows, red indicates a negative correlation and blue a positive

correlation. They denote the extent of standard deviation change

of one latent variable attributed to one standard deviation

change to another latent variable. P-values based on 10,000

bootstrap estimations: *P\ 0.05; **P\ 0.01; ***P\ 0.001.

F fragmentation, D disturbance, P propagule pressure, S soil

characteristics, N native community and I invasion
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Little evidence for biotic interactions

We found no signal of biotic resistance to invasion

from the native community in our results when the

models specified an effect of the native community on

invasion, which is in line with wider meta-analysis of

terrestrial plant invasions (Jeschke et al. 2012).

However, when the models specified an effect of

invasion on the native community, we found signif-

icant negative correlations between invasion and

native tree sapling and seedling communities. This

may indicate either the impact of a dominant exotic

inhibiting native recruitment or be driven by indirect

effects of land-use change on these cohorts of native

trees (i.e. indirect effect of the disturbance latent

variable on saplings via invasion and similarly frag-

mentation on seedlings).

These findings may be explained by young native

trees and exotic shrubs (* 85% of exotic stems)

having higher niche overlap than other components of

the native community (i.e. adult trees and ground

vegetation) because they have a similar woody habit

and occupy the same lower understorey environment.

Exotic species may have disrupted the recruitment of

current tree saplings and seedlings, which would have

been young saplings or seeds when exotic species first

invaded these forests post-fragmentation (8–26 years

before sampling), by outcompeting them for

resources. The dominant exotic recorded in this study,

Clidemia hirta (74% of exotic individuals), exhibits

functional traits associated with high competitive

ability (e.g. high seed number, fast growth rate, early

age of reproduction, asexual reproduction, fruits

produced year round and very large seed bank),

allowing for rapid population growth (Rejmánek and

Richardson 1996; Singhakumara et al. 2000; Daehler

2003), making it a highly invasive species and a pest

throughout most of its introduced range (Wester and

Wood 1977; Gerlach 1993). Similar patterns have

been observed in temperate forests with dominant

invasive species disrupting native seedling growth

(Gorchov and Trisel 2003; Stinson et al. 2006), and in

selectively logged Malaysian tropical rainforests,

Döbert et al. (2017) found fewer Dipterocarpaceae

seedlings where exotic biomass was higher. Therefore,

high niche overlap may lead to strong competition

between young trees and exotic shrubs for resources

such as light. In addition, C. hirta and Chromolaena

odorata (the second most common exotic invasive

species recorded) both have allelopathic effects, which

have been shown to significantly reduce native seed

germination and growth during laboratory studies (Hu

and Zhang 2013; Ismaini 2015).

Our results are correlational and do not track

changes in the native community over time, so

inferring biotic interactions is problematic. Neverthe-

less, our results indicate that invasion of exotic plants

is more closely associated with the lack of young

native trees than other components of the native plant

community (e.g. ground vegetation and adult trees) in

these forests, and patterns are likely driven by

Clidemia hirta. However, in order to determine the

mechanisms driving observed biotic relationships in

our data, as well as the true directionality of observed

relationships, long-term manipulative field experi-

ments would be required.

Native and exotic plants respond differently

to disturbance and fragmentation

Our results suggest that different components of

human land-use change correlate, at varying strengths,

with different subsets of the native community (adult

trees, tree saplings, tree seedlings and ground vege-

tation). The strong direct correlation between distur-

bance and native adult tree diversity could potentially

be driven by the disturbance variables included in the

models being derived from the adult tree community

(i.e. number of large dipterocarp trees remaining and

mean adult tree wood density per plot). However, as

this relationship is also found with sapling diversity, a

true relationship between habitat disturbance and both

tree communities seems plausible. This may be due to

logging decreasing diversity by the physical removal

of specific species via timber extraction (i.e. diptero-

carps), affecting both timber trees (adult trees) and

collateral damage to other trees surrounding the

extracted tree, both over- and understorey (Malhi

et al. 2014). In addition, altered abiotic conditions

brought about by logging practices (e.g. increased

light, temperature, soil erosion) result in tree mortality

and reduced fruiting in adult trees which in turn reduce

recruitment (Gibbs and Salmon 2015), decreasing the

richness of old-growth forest species in fragments.

The association between fragmentation and tree

seedling diversity (and to a lesser extent the margin-

ally significant correlation with tree saplings) in our

data means there are fewer seedlings in areas with less
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forest in the landscape, more edge habitat and in older

plantations. This could reflect an extinction debt

driven by pollination and dispersal limitations in

highly fragmented landscapes (Ghazoul and McLeish

2001), which would have clear implications for the

future regeneration of these forests (Haddad et al.

2015). Stride et al (2018) found similar results in other

fragmented forest sites in our study region, with

seedling richness 30% lower in forest remnants than in

undisturbed old-growth forest.

The weak negative correlation between ground

vegetation community composition and both frag-

mentation and disturbance (SI Table S7), may be due

to this component of the plant community also

containing light-loving native weedy species (e.g.

grasses and forest edge shrubs), which act much the

same as exotics in that they proliferate with distur-

bance (Catford et al. 2009; Lockwood et al. 2013).

These native weeds could therefore dilute the rela-

tionship between native ground vegetation typical of

old-growth forest and the effects of land-use change in

our models. Changes in the native plant community

associated with disturbance, as well as the invasion of

exotic species, are likely to impact important ecosys-

tem services in these forests, such as biodiversity,

functional stability and carbon storage.

Conclusions and conservation implications

Exotic species are an understudied component of

fragmented tropical landscapes, despite being an

emerging threat to the natural regeneration of native

tree communities within remnant forests. Indeed, three

of the eight exotic species we found (Clidemia hirta,

Chromolaena odorata and Mikania micrantha) are

considered amongst the world’s worst 100 invasive

species due to their ability to modify the ecosystems

they invade (Lowe et al. 2000), with C. hirta in

particular, considered a pest across much of its

introduced range (Wester and Wood 1977; Gerlach

1993; Peters 2001; Teo et al. 2003). Our study shows for

the first time that fragmentation and local disturbance

increase the invasion of exotic species in rainforest

remnants within anthropogenic landscapes. Therefore,

we suggest that better management to control exotic

populations within oil palm plantations (e.g. along

roadsides and in oil palm planted areas), along with

active regeneration of forest remnants to improve

overall forest quality and canopy cover is important to

reduce exotic invasions. In a natural resource manage-

ment context, the way in which invasive species move

through a landscape should be considered in the design

of multi-functional landscapes, to ensure that these

species do not undermine the conservation of forest

remnants. This would involve consideration of main-

taining large interior and closed canopy forests and

reducing edge effects and propagule transport within the

landscape. Vulnerable recovering forests in particular

should be protected.

Our results highlight the consequences of fragmen-

tation and logging on the invasion of remnant forests

but also the impact on the native plant community.

These findings are of critical importance given that

around 80% of tropical forests are currently frag-

mented and/or anthropogenically modified (Potapov

et al. 2017). Fragmentation is predicted to increase,

with increases in the number of isolated forest

remnants as well as decreases in their average size

(Taubert et al. 2018) as a result of cyclical deforesta-

tion processes (i.e. deforestation and degradation

making new areas of forest more accessible and

susceptible to further degradation; Nowosad and

Stepinski 2019). Therefore, invasion of forest rem-

nants is likely to increase in future due to continuing

deforestation, leading to changes in plant community

composition and altered patterns of native regenera-

tion, thereby potentially impacting local and regional

biodiversity. Given, that maintaining regeneration of

remnant forests is necessary for the sustainability of

human dominated tropical landscapes, including

RSPO-certified oil palm plantations (Senior et al.

2015), it is vital that the impacts of invading exotic

species within these forests are properly evaluated and

included in future studies.
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Pütz S, Groeneveld J, Henle K, Knogge C, Martensen AC, Metz

M, Metzger JP, Ribeiro MC, De Paula MD, Huth A (2014)

Long-term carbon loss in fragmented Neotropical forests.

Nat Commun 5:5037
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