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1  | INTRODUC TION

A variety of strategies can be used to assess the nutritional quality of 
ingredients; however, the choice of strategies used can have a strong 
impact on the interpretation of that information. A landmark review 
paper published over a decade ago has been considered the benchmark 
approach by which to structure research assessing the quality of ingre-
dients (Glencross, Booth, & Allan, 2007). In that review, a series of five 
steps (and the order in which they should be done) to develop a compre-
hensive data set on which to base judgements about ingredient quality 
were proposed; 1. Characterization, 2. Palatability, 3. Digestibility, 4. 

Utilization and 5. Functionality (processability). Once these five steps 
had been achieved, a formulator could make the judicious choice as to 
whether to use, and with what constraints to impose, any ingredient 
that they were presented with. Without any one of these steps, the 
risk exposure substantially increased as the formulator needed to make 
assumptions, and this significantly increased the risk of a feed failing 
in one or more specifications (Glencross et al., 2019). Typically, many 
studies in this domain have skipped many of these early steps and gone 
straight to the assessment of utilization (step 4). However, in doing so, 
many of these studies have ended up with erroneous outcomes and/
or misleading assessments of the ingredients that they are testing, not 
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due to any limitations of the ingredient per se, but rather failure of the 
researcher to observe critical formulation constraints that allow the in-
gredient to be assessed on a basis commensurate with its potential to 
supply nutrients and energy. The remainder of this review will provide 
an oversight and some guidance on what steps should be undertaken 
to assess quality of ingredients and why those steps should be taken in 
that order and critically, what new steps should be considered for the 
assessment process in light of recent advances in the science.

1.1 | Step 1—Characterization

The characterization of ingredients is an often overlooked, but criti-
cal step in the evaluation process. As such, this initial step in the 
ingredient evaluation process remains as important as ever. For for-
mulators to make use of technical documentation on ingredients, the 
users of that information must be able to relate the data to a particu-
lar type of ingredient. However, there is substantial variability in both 
the composition and nutritional values (as defined by the digestibil-
ity of nutrients from the ingredient) of most ingredients (Anderson, 
Lall, Anderson, & McNiven, 1995; Glencross et al., 2008a;b). Details 
on the species, origins, processing and/or storage history, let alone 
a chemical characterization, are often absent in a much of the sci-
entific literature. Any chemical characterization needs to include, 
as a minimum, the basic parameters used to formulate feeds and/
or allow clear assessment of the ingredient. An example of what a 
standard characterization should include, in this case of five differ-
ent fishmeals, is presented in Table 1. Clearly for other types of in-
gredients, such as plant-derived materials, there would also be some 
merit in including data on parameters such as starch, non-starch pol-
ysaccharides, acid-detergent and neutral detergent fibre, and lignin 
(Petterson, Harris, Rayner, Blakeney, & Choct, 1999). The methods 
for analysis should follow standardized methods such as those rec-
ommended by analytical associations such as AOAC, UKAS or simi-
lar. Without some form of characterization, the value of the work is 
somewhat diminished as it becomes difficult for the reader/user of 
the data to effectively relate the work to their materials. By providing 
a comprehensive characterization, it becomes much easier to relate 
the assessment to other materials and/or obtain the same material. 
Another element to characterization that is gaining importance, and 
over time may warrant its own step, is an assessment of the sustain-
ability of an ingredient. Various strategies have been examined to 
define sustainability of ingredients, but life cycle assessment is per-
haps the approach gaining most favour (Boissy et al., 2011; Malcorps 
et al., 2019; Silva, Valente, Matos, Brandão, & Neto, 2018).

1.2 | Step 2—Palatability

Before the impact of the nutrients within a feed can be measured on 
animal performance, the animal clearly must ingest that feed. A decision 
hierarchy framework has been suggested as a means of defining the na-
ture of the responses to feeds to aid defining how the feed is specifically 

impacting the response (Figure 1). In this figure, the influence of a feed 
(and by inference its ingredients) on an animal's response can be assessed 
to define the specific aspect of palatability that is affected (and note that 
this response might be positive or negative). It is clear that any factor(s) 
that negatively impact this hierarchy are going to limit the potential of the 
ingredient. Therefore, one of the qualities of any ingredient that is criti-
cally important to a feed is its effect on palatability of the feed. Clearly, if 
an ingredient reduces feed intake due to negative effects on palatability, 
it has some limitations as a potential feed ingredient. Conversely, those 
ingredients that can stimulate intake, and thereby improve palatability, 
have added value as ingredients. It can be seen from some studies how 
this variation in palatability can affect greater than 80% of the variabil-
ity in growth response to diets trialling alternative ingredients (Figure 2) 
Kousoulaki et al., 2018). In studies where fish are fed a fixed ration, it be-
comes impossible to assess the impact of diet (and by extension the test 
ingredient) on palatability responses. It should also be noted that effects 
on palatability of diets can often be detected within days of introduc-
tion and are usually at their most sensitive point of assessment within 
the first 10 days (minus days 1 to 3) of an animal being fed that new diet 
(Figure 3). After this period, the animal may begin to adapt to the diet 
and the ability to discriminate palatability effects accordingly becomes 
diminished (Arndt, Hardy, Sugiura, & Dong, 1999; Glencross et al., 2006, 
2016; Kousoulaki et al., 2018; Suresh & Nates, 2011, Nunes et al., 2019).

1.3 | Step 3—Digestibility

The assessment of the digestibility of nutrients and energy from 
diets and ingredients provides one of the clearest ways of unam-
biguously defining the nutritional value of an ingredient to an ani-
mal (Aslaksen et al., 2007; Glencross et al., 2004; 2007; Sugiura, 
Dong, Rathbone, & Hardy,  1998). By measuring the relative dis-
appearance of nutrients between the feed and faeces, those 
nutrients available to an animal can be effectively measured. It 
is these nutrients that are used to drive feed intake (in response 
to digestible energy demands) and underpin growth. Therefore, 
variability in this digestibility is one of the critical points of vari-
ability in feed quality (Aslaksen et  al.,  2007; Bureau, Harris, & 
Cho, 1999; Glencross, Blyth, et al., 2017; Glencross, Blyth, Wade, 
& Arnold,  2018; Glencross et  al.,  2008b). There are a range of 
methods that can be used to assess diet digestibility, and these 
can all potentially influence the absolute values determined in any 
given assessment. The important element to the reliable and con-
sistent assessment of digestibility is to minimize non-nutritional 
effects (i.e. minimize effects of environment or sampling method). 
For a comprehensive review of the range of strategies and their 
limitations, see Glencross et al. (2007).

1.4 | Step 4—Utilization

The assessment of nutrient and/or energy utilization is mostly com-
monly undertaken by a growth/feeding trial approach (Glencross 
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TA B L E  1   An example of the characterization of different types of fishmeal. All values g/kg as received unless otherwise stated

Species Blue whiting Atlantic Mackerel Anchoveta Capelin Sandeel

Supplier Havsbrun Eskja HF TASA SVN TripleNINE

Material Whole Trimmings Whole Whole Whole

Origin Faroes Iceland Peru Iceland Denmark

Drying/Processing steam steam steam steam Con-Kix™

Dry matter 923 921 918 930 898

Moisture 77 79 82 70 102

Protein 675 672 670 667 695

Lipid 107 115 109 157 84

Ash 159 133 139 116 119

Energy (MJ/kg) 20.1 20.4 20.1 21.9 19.7

Sum Amino Acids 676 626 620 642 693

Alanine 44 42 41 41 43

Arginine 46 40 39 41 43

Aspartic acid 66 61 58 62 71

Cysteine 11 4 9 8 8

Glutamic acid 99 89 83 96 99

Glycine 51 45 43 41 41

Histidine 14 15 25 14 17

Isoleucine 30 27 30 27 31

Leucine 54 51 50 54 57

Lysine 57 52 53 53 61

Methionine 22 21 20 22 25

Phenylalanine 28 27 27 27 30

Proline 30 30 27 29 29

Serine 30 30 22 32 33

Taurine 6 7 10 7 6

Threonine 29 29 25 30 33

Tyrosine 24 24 21 23 28

Valine 36 32 37 36 39

Fatty Acids

C14:0 2.1 4.0 3.4 5.5 2.4

C15:0 0.3 0.3 0.3 0.4 0.4

C16:0 9.7 10.9 13.1 14.8 9.7

C18:0 1.7 2.2 3.0 1.6 1.9

C20:0 0.1 0.1 0.2 0.1 0.1

C22:0 0.1 0.1 0.1 0.0 0.0

C24:0 0.1 0.0 0.2 0.0 0.1

Total Saturates 14.0 17.6 20.2 22.3 14.5

C16:1n−9 0.2 0.2 0.1 0.3 0.1

C16:1n−7 3.1 3.1 3.8 6.9 5.5

C18:1n−9 9.0 8.7 6.0 9.6 4.0

C18:1n−7 2.2 1.9 1.8 2.8 1.4

C20:1n−11 0.1 0.7 0.1 0.0 0.2

C20:1n−9 5.1 6.6 0.6 11.2 1.7

C20:1n−7 0.2 0.2 0.1 0.4 0.1

(Continues)
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et al., 2007). In this strategy, a diet (or series of diets) is fed to the 
target species and the phenomic responses typically assessed. While 
primarily responses such as feed intake and weight gain are the main 
points of assessment, many other nutritional responses can also be 
measured. For a more comprehensive assessment of the vagaries of 
different growth trial strategies, read Glencross et al. (2007).

While these trials are the most commonly encountered among 
the literature, their outcomes are largely predictable subject to 
diet specification choices, digestibility of ingredients used and the 

palatability of the diets produced. In those situations where the diets 
are formulated to the same specifications and on a digestible nutri-
ent basis, the growth responses that result from the feeding study 
are usually largely just a reflection of feed intake (palatability) varia-
tion. Figure 2 shows a typical such response from the evaluation of a 
suite of alternative ingredients fed to Asian seabass (Lates calcarifer), 
where the feed intake alone accounts for over 80% of the variation 
in the growth response. Occasionally, unexpected responses do 
occur, and this is arguably where the true value of the utilization 

Species Blue whiting Atlantic Mackerel Anchoveta Capelin Sandeel

C22:1n−11 6.4 10.4 0.4 11.5 2.3

C22:1n−9 0.8 0.7 0.1 1.2 0.2

C24:1n−9 1.1 1.0 0.6 1.1 0.5

Total Monounsaturates 28.0 33.6 13.5 44.8 16.1

C18:2n−6 0.9 1.2 0.6 1.4 1.4

C18:3n−6 0.1 0.1 0.1 0.1 0.1

C20:2n−6 0.2 0.2 0.1 0.2 0.1

C20:3n−6 0.1 0.1 0.1 0.1 0.1

C20:4n−6 0.6 0.5 0.6 0.5 0.3

C22:4n−6 0.0 0.0 0.0 0.0 0.0

C22:5n−6 0.2 0.2 0.3 0.2 0.2

Total n−6 PUFA 1.9 2.3 1.9 2.5 2.2

C18:3n−3 0.5 0.8 0.5 0.8 0.5

C18:4n−3 1.0 2.4 1.4 1.9 1.4

C20:3n−3 0.1 0.2 0.1 0.1 0.1

C20:4n−3 0.3 0.9 0.5 0.5 0.3

C20:5n−3 5.2 5.9 9.5 11.0 6.7

C21:5n−3 0.2 0.3 0.4 0.4 0.2

C22:5n−3 0.5 0.9 1.4 1.2 0.5

C22:6n−3 9.4 10.2 14.6 16.7 9.5

Total n−3 PUFA 17.2 21.5 28.4 32.5 19.1

SFA 14.0 17.6 20.2 22.3 14.5

MUFA 28.0 33.6 13.5 44.8 16.1

PUFA 3.0 4.6 4.8 5.2 3.8

LC-PUFA 16.0 19.3 25.5 29.7 17.5

Total Fatty Acids 61.1 75.7 63.9 102.1 51.9

Minerals (mg/kg)

Ca 40.952 33.173 35.339 16.731 20.490

Cu 0.003 0.006 0.006 0.003 0.005

Fe 0.027 0.251 0.117 0.045 0.044

K 13.620 10.047 13.999 13.475 10.916

Mg 1.948 2.420 2.340 2.601 2.215

Mn 0.003 0.010 0.011 0.002 0.010

Na 9.044 12.350 7.673 15.423 7.888

P 23.571 22.418 25.317 16.893 17.664

Se 0.002 0.003 0.002 0.001 0.003

Zn 0.047 0.068 0.062 0.062 0.106

TA B L E  1   (Continued)
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study comes into effect. It can also be argued that such studies allow 
for subtle effects to amortize over time and then these minor vari-
ables can be then be observed more clearly. Certainly, such trials 
are critical for determination of nutrient requirement and metabolic 
response studies but are arguably less valuable for ingredient eval-
uation studies.

The formulation strategy used to develop test diets can have 
a strong bearing on the interpretation of the assessment of in-
gredients. While most commercial diets are now days formulated 
on a digestible protein and energy basis, a majority of scientific 
literature still presents diets formulated on a crude basis (Mock 
et al., 2019; Turchini, Trushenski, & Glencross, 2019). The reason 
why this is problematic can be demonstrated via the hypothetical 
example in Figure 4. In this example, we consider two diet formu-
lation strategies, one formulated solely to crude nutrient specifi-
cations and the other to a digestible nutrient specifications. In this 

example, we can see the impact of the inclusion of an alternative 
ingredient containing 650 g/kg protein, with a digestibility of 75%, 
added to each series of diets at 100 g/kg increments, with the 
remaining diet protein 85% digestible. From this model, we can 
see that in the crude specification scenario that the level of digest-
ible protein in the diet declines from 340 g/kg, with no alterna-
tive inclusion, to about 310 g/kg when the alternative is included 
at 400 g/kg. By contrast in the digestible specification scenario, 
the digestible protein level stays constant at 340 g/kg, while the 
crude protein level increases from 400 g/kg to about 430 g/kg. 
These differences in digestible protein levels in each series of diets 
would have direct impact on the digestible energy density in each 
scenario as well. In response to these differences, if we were to 
feed such diets to a species like Atlantic salmon, we would see 
a clear difference in feed conversion based on the fact that such 
species are clear responders to dietary energy density, typically 
responding with a 0.15 decline in FCR for every MJ increase in 
digestible energy content in a diet (Einen& Roem, 1997; Hillestad 
& Johnsen, 1994; Mock etal.,2019). Accordingly, we would then 
see quite different feed conversion ratio (FCR) responses in each 

F I G U R E  1   Decision hierarchy based 
on the nature of the response of a fish to 
the presence of a feed

F I G U R E  2   Growth responses of Asian seabass (Lates calcarifer) 
fed one of eight diets based on a range of alternative ingredients. 
Each of the diets focussed on the assessment of a particular 
ingredient when included in diets balanced for digestible protein 
and digestible energy. Clear effects of each diet on palatability 
were noted. This effect of palatability resulted in greater than 80% 
of the variation in weight gain response being explained by vagaries 
in feed intake. Data derived from

F I G U R E  3   Variation in daily feed intake in different treatments 
of fish (rainbow trout, Oncorhynchus mykiss) fed diets with a 30% 
inclusion of each of two different cultivars of yellow lupin kernel 
meal compared to a diet using fishmeal as its only protein source. 
All diets were formulated to the same digestible protein and energy 
specifications. Data derived from Glencross et al. (2006)
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scenario. In the crude specification scenario, it would be reason-
able to suggest that the alternative ingredient causes a decline in 
performance at all inclusion levels and therefore should be con-
sidered a low-grade ingredient. By contrast, the digestible speci-
fication scenario shows no response in performance to the use of 
the alternative, and therefore, it would be reasonable to suggest 
that the alternative ingredient is well utilized and tolerated at all 
inclusion levels and therefore should be considered a high-grade 
ingredient. Of course, between each scenario the ingredient is the 
same, only the formulation strategy has changed.

When diets are formulated to non-constraining specifications 
(i.e. specifications where no specific nutrients are limiting or close to 
limitation levels), as like occurs in typical commercial diet specifica-
tions, using this approach all too often results in a simple null-hypoth-
esis outcome with no differences observed among the diets. Results 

such as this provide little useful information in terms of application 
of the ingredients being assessed due to the large margins for error 
built into the diet formulations to specifically limit such responses 
being observed. An excellent example of how a change in diet speci-
fications changes the interpretation of the assessment of ingredients 
can be seen from to work of Anderson, Lall, Anderson, and McNiven 
(1993) as represented in Figure 5. In these figures, the responses of 
Atlantic salmon to diets made using three different qualities of fish-
meal included in diets with one of three different protein levels show 
clearly the sensitivity of diet specification to interpretation of the 
impact of ingredient quality. In this work, both the weight gain and 
feed conversion deteriorated with reducing diet protein levels, as 
expected. Perhaps the most important feature of this study is seen 
more clearly when the relative performance (growth) of each of the 
diets is mapped against each diet protein level (Figure 5). From this, 
it can be clearly seen that as the diet protein level increases that the 
differences between the responses to the different fishmeal begin 
to diminish. This difference between the three fishmeals continues 
to become negligible as the diet protein level increases up to a point 
at ~550 g/kg protein content where it would not be possible to dis-
criminate among the three fishmeals in terms using a growth study 
approach. Important to note is that with the size of fish used in that 
study (7.5 25 g), the typical commercial diet specification is between 
500 g/kg and 550 g/kg protein. As such, the use of a standard com-
mercial diet formulation approach to assess quality in this example 
would have resulted in a null-hypothesis outcome and no ability to 
discriminate between the three fishmeals. While the relevance of 
a commercial style specification might be argued, the lack of sen-
sitivity in using such a specification also needs to be considered. 
Sometimes a commercial analogy might not be the most appropriate 
strategy to answer a nutritional question.

F I G U R E  4   Theoretical outcomes of two different series of diets formulated on either a crude specification or digestible specification 
basis

F I G U R E  5   Effects of fishmeal quality and diet protein level on 
relative performance (weight gain) by Atlantic salmon. Data derived 
from Anderson et al. (1993)
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1.5 | Step 5—Immunological and health allied 
assessments

A growing priority in the assessment of feeds and ingredients in animal 
diets is their impact on the immune response and general robustness 
(health) of the animal. There are a variety of strategies that are being 
used to examine these parameters, including specific pathogen (dis-
ease) challenges, which can be undertaken to assess the impacts of 
diets on the immunogenic function of fish against a particular patho-
gen of interest (Martinez-Rubio et al., 2012; Sellars et al., 2015). In such 
studies, the animals are typically fed the diets and then challenged with 
a pathogen (usually a virus or bacterium) and the survival and immune 
responses of the population subsequently assessed. More recently, 
an alternative use of specific pathogens has been to use a pathogen-
associated molecular pattern (PAMP) challenge (Ruyra, Cano-Sarabia, 
MacKenzie, Maspoch, & Roher,  2013; Vallejos-Vidal, Reyes-López, 
Teles, & MacKenzie, 2016). PAMP challenges use a lipopolysaccharide 
or double-stranded RNA molecule included as part of a vaccine-like 
adjuvant to simulate the infection of the animal by a pathogen, without 
having to use live pathogens. Following injection of the PAMP, samples 
are collected to assess aspects of the immune response. In assessing 
the responses to such immunogenic challenges, in addition to measur-
ing animal survival, it is also common to measure a suite of cellular, 
biochemical and molecular parameters. The molecular ones will be 
considered in a later section. Some common cellular and biochemical 
assessments include a histological analysis to look at tissue-specific 
damage arising from the use of any particular ingredient (Caballero 
et al., 1999; Refstie et al., 2006). Biochemical tests include those such 
as measuring lysozyme or superoxide dismutase activity (Hartviksen 
et al., 2014; Metochis et al., 2013, 2017).

Additionally, the recent advent of relatively low cost and reliable 
DNA sequencing has made it much easier to analyse the microbial di-
versity of samples. This is now generally referred to as an assessment 
of the “microbiome” (Llewellyn, Boutin, Hoseinifar, & Derome, 2014; 
Rimoldi et al., 2018). In this analysis, changes in the microbial diversity 
and abundance in samples (usually faeces) are assessed by sequenc-
ing the 16S rRNA genes using universal primers targeting the V3-V4 
variable regions that allows the identity and abundance of the bacte-
ria present any sample to be identified in response to diet/ingredient 
use (Llewellyn et al., 2014; Lyons, Turnbull, Dawson, & Crumlish, 2017; 
Mente, Nikouli, Antonopoulou, Martin, & Kormas,  2018; Zarkasi 
et al., 2017). There has been considerable activity in this space in re-
cent years, with many studies demonstrating responses of the micro-
biome to changes in the use of ingredients. However, what appears to 
be lacking is the cause–effect evidence that such changes in the mi-
crobiome are relevant to the changes in performance of the diets and/
or animals and not just another concomitant change without impact.

1.6 | Step 6—Processing Effects (Functionality)

Physical constraints play an important role in the production of a 
viable feed with which to feed aquatic species. The fundamental 

logistics of handling ingredients play an often-overlooked role in the 
ingredient assessment process. Most modern aquaculture feeds are 
manufactured using extrusion processing, where the rheology of a 
given feed mix is managed to allow the plasticization of the compo-
nents to produce a well bound and durable product that can be tai-
lored to float or sink and contain a high- or low-oil content (Oterhals 
& Samuelsen, 2015; Samuelsen & Oterhals, 2016; Sørensen, 2012).

Some of those physical characteristics that are assessed are rel-
atively simplistic but remain fundamental to managing the logistics 
of using ingredients. Parameters include those such as the flow-fig-
ure, which defines the ability of a powder/meal to flow and/or be 
conveyed. The bulk density, which defines storage demands and hy-
groscopicity which defines how much moisture the product absorbs 
from liquid or vapour exposure, is all critical to effective manage-
ment of ingredients (Samuelsen, Mjøs, & Oterhals, 2013, 2014).

Typically, assessment in this area involves the practical production 
of feeds using laboratory or pilot-scale extrusion systems (Draganovic, 
van der Goot, Boom, & Jonkers,  2011; Glencross, Hawkins, Maas, 
Karopoulos, & Hauler, 2010; Opstveldt et al., 2003; Samuelsen, Mjøs, 
& Oterhals, 2013, 2014). Variables such as the type of ingredients used 
and/or their inclusion levels are the main variables being tested in such 
science, and a range of parameters are subsequently assessed to pro-
vide information on the physicochemical properties of the ingredients 
on the extrusion process (e.g. specific mechanical energy input and ex-
pansion among others). The feed pellets produced from such studies 
usually then go on to other testing (e.g. density and oil absorption ca-
pacity) to assess a range of physical parameters important to the feed 
and feeding management process (Sørensen, 2012). There are other as-
sessments which can now be used to provide alternative assessments 
of the extrusion process, including phase-transition assessment and 
rapid-viscosity assessment (Glencross et al., 2010; Oterhals, Ahmad, & 
Samuelsen, 2019; Samuelsen & Oterhals, 2016). An important feature 
of these physicochemical properties of ingredients is that they clearly 
play a role in impacting the physical qualities of feeds. Notably, these 
physical feed qualities can also directly impact feed intake and nutrient 
utilization and that this also should be taken into consideration when 
designing nutritional trials (Sørensen, 2012).

1.7 | Step 7—Product Quality Influences

In most cases, the animal species being fed are intended as a food 
product. Therefore, the sensory qualities (colour, taste and smell) 
are important criteria in determining quality of those products. 
Accordingly, the use of sensory evaluation studies is sometimes in-
cluded to evaluate the impact of different dietary treatments, includ-
ing the use of ingredients (Rosenlund, Obach, Sandberg, Standal, & 
Tveit, 2001; Turchini et al., 2003; Liu et al., 2010). There are various 
elements to this evaluation, but principal among them is the evalua-
tion of flavour and/or colour (Bjerkeng et al., 1997; Lie, 2001; Wade, 
Paulo, et al., 2014).

Flavour as a parameter has a large degree of complexity to 
it given that there are components defined by the tongue senses 
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(taste: salt, sweet, acid, bitter and umami), and there are those com-
ponents defined by the olfactory senses (smell). The evaluation of 
these sensory characteristics is typically undertaken using a range 
of strategies including the use of tasting panels, but increasingly 
the use of instrumentation is being used to assess colour, odour 
and texture (Chytiri, Chouliara, Savvaidis, & Kontominas,  2004; 
Liu, Zeng, & Sun,  2013; Olafsdottir, Högnadóttir, Martinsdottir, 
& Jonsdottir,  2000; Olafsdottir, Martinsdottir, & Jonsson,  1997; 
Olafsdottir et  al.,  2004). Sensory data are commonly considered 
qualitative in nature rather than quantitative. The advantage of 
using an instrumentation approach is that the data can be quantita-
tive rather than qualitative. For some aspects of sensory evaluation, 
modern instrumentation analyses are even considered to be more 
sensitive than human senses and therefore provide a greater level of 
assay fidelity. Although in some instances, like with the detection of 
the muddy taint of geosmin, the advantages of instrumentation over 
human sensory perception have been questioned (Howgate, 2004).

There have been several studies devoted to examining the influ-
ence of different ingredients on the flavour profile of a range of dif-
ferent aquaculture species (Al-Marzooqi, Al-Farsi, Kadim, Mahgoub, 
& Goddard,  2010; Jónsdóttir, Valdimarsdottir, Baldursdóttir, & 
Thorkelsson,  2003; Kousoulaki et al., 2020; Mock et  al.,  2019; 
Thomassen & Røsjø, 1989; Williams, Paterson, Barlow, Ford, & 
Roberts, 2003). Although a variety of effects of alternative ingre-
dients on sensory characteristics of animal products have been 
reported, including changes to meat texture, fatty acid profile, prev-
alence of melanin spots and pigmentation, the effects are usually 
quite limited and mostly confined to changes linked to use of dif-
ferent lipid sources (Glencross, Hawkins, & Curnow,  2003; Hardy, 
Scott, & Harrell,  1987; Kousoulaki et al., 2020; Mock et  al.,  2019; 
Thomassen & Røsjø, 1989).

Colour as a quality parameter, like flavour, also has many com-
plexities to it subject to the objectives being sought, which are 
largely defined by the species being farmed. There are various meth-
ods that have been developed to assess colour including the use of 
colour-fans, colour-meters (L*a*b* meters) and computer-assisted 
imaging assessment techniques (Liu et al., 2013; Wade, Paulo, et al., 
2014; Wathne, Bjerkeng, Storebakken, Vassvik, & Odland,  1998). 
Most studies examining elements of colour end to focus on the 
application of carotenoids or carotenoid containing meals (Wade, 
Budd, Irvin, & Glencross, 2015; Wathne et al., 1998).

2  | OTHER NUTRITIONAL A SSESSMENTS

A range of other nutritional assessment methodologies and strate-
gies exist that either value-add the primary in vivo work previously 
detailed and/or add new dimensions to that work by providing a 
greater mechanistic assessment of the functionality of the various 
nutritional responses seen. While many of these appear relatively 
academic in their intent, some have clear practical application in the 
ingredient assessment process.

2.1 | Rapid Analysis Technologies

The processes of in vivo assessment of diet and ingredient quality 
assessment are costly, laborious and time consuming. The develop-
ment of technologies for the rapid analysis of nutritional value of 
raw materials, such as the use of in vitro assays and scanning tech-
nologies, like NIR, has been the subject of research since the 1980s 
(Bassompierre et  al.,  1997; Carter, Bransden, Van Barneveld, & 
Clarke, 1999; Dimes & Haard, 1994; Eid & Matty, 1989). This next 
section will examine some of the various assessment methods that 
have been attempted.

2.2 | In vitro Assessments

There are several options for the use of in vitro assessments of ingre-
dient quality that can be applied. These extend from simple chemical 
analysis of specific parameters of the ingredient to provide a guide 
on various quality indices, to more complex in vitro assessments that 
aim to mimic the digestion process and provide an assessment of 
digestibility.

Perhaps the most commonly used in vitro assessment used as 
a quality criterion is those based on the level of certain indicators 
of quality/freshness in some ingredients, such as the TVN assay for 
fishmeals. Such indices have been used for other ingredients, like 
poultry and blood meals, though are less common, and new more 
rapid methods are being introduced (Johnson, Atkin, Lee, Sell, & 
Chandra, 2019; Lewis et al., 2019; Sheng et al., 2016). For fishmeals 
though, such assays have become so routine these days that they are 
used to provide demarcations between premium, high and average 
quality fishmeals (Jensen, Fiskeindustri, & Denmark,  1990). There 
are various methods that can be used to assess these parameters 
these days. In particular, the use of capillary electrophoresis (CE) 
provides a fast and sensitive procedure to simultaneously quantify 
volatile amines (TVN) and trimethylamine-oxide (TMAO) in samples 
(Bassompierre et al., 1998; Wu & Bechtel, 2008).

Various in vitro digestibility methods have been used to attempt 
to provide estimates of the nutritional (digestible) value of differ-
ent raw materials for some time (Bassompierre et  al.,  1997; Eid & 
Matty, 1989; Lewis et al., 2019). Most methods use an enzyme-me-
diated process, but the key variable is often what enzymes are used 
(purified preparations or crude homogenates) and how the various 
products of the enzymatic process are interpreted that vary across 
the different methods. However, critical to the viable use of any 
rapid assessment method must be their validation against in vivo 
methods of assessment. Without these validations, the in vitro re-
sponses are merely academic. Although there has been much work 
done on developing and testing a range of in vitro assays, a range 
of problems surrounding their use persist. While they are clearly 
quicker than using in vivo testing, they are still time-consuming 
and have continued to have problems surrounding their reliability 
and inconsistencies in their predictive ability, though recent studies 
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claim to have made significant gains in this area (Lewis et al., 2019; 
Yasumaru & Lemos, 2014).

2.3 | Near-infraRed and Nuclear Magnetic 
Resonance Spectroscopy

In contrast to in vitro assays, technologies like near-infrared (NIR) 
spectroscopy and nuclear magnetic resonance (NMR) spectroscopy 
have allowed the assessment of the nutritional value of raw materi-
als, on a near-real-time basis, and provide significant advancements 
in the responsiveness and cost savings in diet formulation by the 
feed industry (Conceição, Grasdalen, & Dinis, 2003; Cozzolino, 
Murray, & Scaife, 2002; Fontaine, Hörr, & Schirmer, 2001; Glencross 
et al., 2015). The use of NIR for determining the composition of raw 
materials is now relatively common in most modern feed production 
plants throughout the world. However, the use of NIR to assess the 
digestible value of protein and energy from raw materials is not as 
well established and reports on its successful application are scarce 
(Glencross, Bourne, Irvin, & Blyth, 2017; Glencross et al., 2015). To 
achieve a viable NIR calibration, it is critical that a wide range of sam-
ples is obtained from which to determine the nutritional (digestible 
protein and energy) values of the raw materials and to then correlate 
this with the NIR spectra of those same samples (Glencross, Bourne, 
et al., 2017; Glencross et al., 2015). The process of calibration de-
velopment can be laborious and costly, though the potential gains in 
functionality through this method are enormous. Not only can NIR 
be used to determine compositional and nutritional (digestible) pa-
rameters of feeds and ingredients, it has also shown some prospect 
in being used as a discriminatory tool to determine the origins of raw 
materials to make certain ingredients (e.g. the type of fish used to 
make fishmeal) (Cozzolino et al., 2002).

2.4 | Nutrigenomic and allied assessments

A variety of “omics” (e.g. transcriptomics, proteomics, metabolomics) 
applications have emerged in aquaculture research with varying de-
grees of success in their application and capacity to deliver meaning-
ful outcomes to nutritional science (Panserat & Kaushik, 2010).

2.5 | Transcriptomic analysis

Transcriptomic analysis is an assessment of the gene expres-
sion changes that occur in response to some stimulus (Panserat & 
Kaushik, 2010). In nutrition, this is usually with the use of a nutri-
tional regime involving diets with different nutrients and/or in-
gredients and the assessment of the expression of specific genes 
relevant to various metabolic pathways (Panserat et al., 2009; Qian, 
Ba, Zhuang, & Zhong, 2014). It has become quite routine practice 
to include some level of transcriptomic analysis in modern nutri-
tional research. However, it can be argued that in many cases, the 

practical value of using transcriptomics is questionable at best 
(Tacchi, Bickerdike, Douglas, Secombes, & Martin, 2011). Responses 
of the transcriptome (all those genes being expressed at any given 
time-point) to diet change dramatically postprandially, with tissue 
samples collected 24h after the animal has been fed arguably hav-
ing little relevance to the total level of transcriptomic activity for 
any particular gene (Wade, Skiba-Cassy, Dias, & Glencross,  2014). 
Perhaps a more pertinent approach would be to identify the post-
prandial period more responsive to diet and compare treatments 
from samples collected at that point. However, this requires an as-
sessment of the variability postprandially and then often substantial 
changes to sampling regimes to allow the comparative sampling of 
experiments in time frames such as 2h after feeding (Poppi, Moore, 
Wade, & Glencross, 2019; Wade, Skiba-Cassy, et al., 2014).

2.6 | Proteomic analysis

Proteomic analysis is an assessment of the change protein expres-
sion that occurs with the use of a particular nutritional regime 
(Rodrigues, Silva, Dias, & Jessen, 2012). This “omics” analysis is argu-
ably the next progression from transcriptomics in that it assesses the 
translation of the RNA produced from the differential gene expres-
sion in transcriptomics and allows variables of translational and post-
translational effects to be examined and therefore allows a closer 
look at the functional impact of a gene expression cascade (Seiliez 
et al., 2008; Wade, Skiba-Cassy, et al., 2014). Additionally, a range of 
tools can be applied at this level to examine post-translational modi-
fications, like phosphorylation or methylation of proteins to identify 
whether their functional activity is also being affected (Zhou, Ding, 
& Wang, 2012).

2.7 | Metabolomic analysis

Metabolomic analysis is an assessment of the changes that occur in 
the abundance of metabolites within either a whole animal, tissues 
or cells. In this regard, metabolomics aims to use metabolite profiles 
to identify biomarkers indicative of physiological responses of or-
ganisms to nutritional or other conditions (Bankefors et al., 2011). 
One of the benefits of the metabolomics approach is that it uses 
a broad scan of biological conditions to identify often unexpected 
problem or risk areas upon which to focus attention (Alfaro & Young, 
2018). However, to date there has been little application of metabo-
lomics in aquaculture nutrition and even less in studies devoted to 
ingredient assessment (Viegas et al., 2019).

2.8 | Endnote

Since the review by Glencross et  al.,  (2007), not only has there 
been considerable progress in the science of ingredient evaluation 
for aquaculture feeds, but expectations from the users of those 
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ingredients have also evolved. The original five steps proposed by 
the original authors still remain highly relevant, though emphasis 
on other parameters has now come to the fore as we increasingly 
adopt new ingredients into feeds for aquaculture species. Despite 
this, it still remains critically important that scientists evaluating 
ingredients do not skip the foundation steps in the rush to give 
quick answers.
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