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ABSTRACT
Decomposition is integral to most image processing algo-
rithms and often required in texture analysis. We present a
new approach using a recent 2-dimensional exponential anal-
ysis technique. Exponential analysis offers the advantage of
sparsity in the model and continuity in the parameters. This
results in a much more compact representation of textures
when compared to traditional Fourier or wavelet transform
techniques. Our experiments include synthetic as well as
real texture images from standard benchmark datasets. The
results outperform FFT in representing texture patterns with
significantly fewer terms while retaining RMSE values after
reconstruction. The underlying periodic complex exponential
model works best for texture patterns that are homogeneous.
We demonstrate the usefulness of the method in two com-
mon vision processing application examples, namely texture
classification and defect detection.

Index Terms— Exponential analysis, multivariate, image
decomposition, texture analysis.

1. INTRODUCTION

Frequency decomposition is a fundamental but challeng-
ing inverse problem to most image and signal processing
applications. Major approaches can be categorised into 1)
template based convolution methods, e.g., Fourier [1], co-
sine [2] or wavelet transforms [3] and 2) data driven adaptive
approaches, e.g., empirical mode decomposition (EMD) [4]
or empirical wavelet transform (EWT) [5]. Template based
transforms are considered to be rigid and rely on predeter-
mined basis functions or frames that are agnostic of the input
image. On the contrary, adaptive techniques are flexible
and often provide a better representation of the data. One
common challenge across all these methods is the model
cardinality of the frequency domain representation, which
is often dictated by the available data granularity. Also, the
mentioned techniques do not exploit in any way the structure
present in the available data, such as in texture data. This pa-
per proposes a new image decomposition technique using the

recent multivariate exponential analysis in [6], with the aim
to decompose texture images using a minimal representation.

In the past few years, multidimensional exponential anal-
ysis has attracted considerable attention in computational
mathematics as well as in signal processing. In the 1-
dimensional case, the Prony-like exponential analysis meth-
ods, such as matrix pencil [7], ESPRIT [8], TLS-Prony [9]
have all been successfully applied in solving many practi-
cal problems. At the same time, several multi-dimensional
versions of these Prony-like methods have been developed,
e.g., [10–15]. However, due to complexity issues, until re-
cently these methods were not very suitable to serve as a
general tool for higher-dimensional decomposition.

In [6], a d-dimensional exponential model of n terms
can be recovered from O((d + 1)n) regularly collected sam-
ples, which is substantially less than other multi-dimensional
Prony-like methods, where the sample usage and computa-
tional complexity explode exponentially. This opens a wealth
of possibilities, including certain image processing applica-
tions. Texture is a fundamental component of any image and
is encountered in most image analysis problems. Therefore, it
is no surprise that it is a very intensively researched area [16].

This paper explores the use of the multivariate exponen-
tial analysis presented in [6] as a new image decomposition
technique that can express regular texture patterns with sub-
stantially fewer parameters. The key focus of this work con-
stitutes the mathematical formulation of a new decomposition
technique validated on both synthetic and real images avail-
able from benchmark data sets. We also show usage scenarios
by applying our technique in texture classification and defect
detection. The main contributions of our work are:

• Formulation of multivariate exponential analysis as a
new image decomposition tool,

• Sparse image representation and reconstruction with a
limited number of terms, and

• Use of exponential analysis in texture classification and
defect detection.
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2. EXPONENTIAL IMAGE ANALYSIS

We approach image decomposition as a two-dimensional ex-
ponential analysis problem. That is, we seek to determine n
and retrieve αj , φjx, φjy ∈ C from as few evaluations of

f(x, y) =

n∑
j=1

αj exp(φjxx+ φjyy), (1)

as possible, where (x, y) is the location of a pixel and f(x, y)
the value at the corresponding pixel. When f(x, y) is periodic
such as in some textures, and can be decomposed as a linear
combination of sine and cosine functions, then φjx and φjy
are purely imaginary.

The method we present is based on the new sparse algo-
rithms [6, 17] requiring only O(3n) samples to analyze (1).
We now summarize the 2-d idea explained in [6]. How to
combine this with the 1-d technique of [17] is further detailed
in [18].

Let ∆ = (∆x,∆y) 6= (0, 0) and δ = (δx, δy) 6= (0, 0) be
linearly independent, with

|=(φjx∆x + φjy∆y)| < π, j = 1, . . . , n,

|=(φjxδx + φjyδy)| < π, j = 1, . . . , n, (2)

where =(·) denotes the imaginary part, and let the values
exp(φjx∆x + φjy∆y), j = 1, . . . , n be mutually distinct.
How to deal with non-distinct values is discussed in [6]. We
sample f(x, y) at the equidistant points s∆ and some shifted
locations s∆ + δ:

fs := f(s∆x, s∆y), s = 0, . . . , 2n− 1,

Fs := f(s∆x + δx, s∆y + δy), s = 0, . . . , n− 1.

Then first, the expressions exp(φjx∆x + φjy∆y), j =
1, . . . , n are retrieved as the generalized eigenvalues λj of

f1 f2 · · · fn
f2 · · · fn+1

...
...

fn fn+1 · · · f2n−1

 vj =

λj


f0 f1 · · · fn−1

f1 · · · fn
...

...
fn−1 fn · · · f2n−2

 vj , (3)

where the vj denote the right eigenvectors. Several numerical
methods exist for the solution of this problem, among which
[7, 8, 17] used in Section 3. Because of (2) we can uniquely
retrieve the inner products

Φj := 〈φj ,∆〉, φj = (φjx, φjy), j = 1, . . . , n

from the computed λj = exp(Φj). We’re not yet able to
recover the individual φjx and φjy though.

Second, we rewrite the values Fs as

Fs =

n∑
j=1

αj exp(φjxδx + φjyδy) exp(sΦj)

=

n∑
j=1

Aj exps(Φj), Aj := αj exp(φjxδx + φjyδy)

and we introduce the notations α := (α1, . . . , αn)T , A :=
(A1, . . . , An). We solve the linear systems of interpolation
conditions

1 · · · 1
exp(Φ1) · · · exp(Φn)

...
...

exp2n−1(Φ1) · · · exp2n−1(Φn)

α =

 f0
...

f2n−1

 ,

(4)

and
1 · · · 1

exp(Φ1) · · · exp(Φn)
...

...
expn−1(Φ1) · · · expn−1(Φn)

A =

 F0

...
Fn−1


(5)

and define exp(Ψj) := Aj/αj = exp (〈φj , δ〉) , j = 1, . . . , n.
Note that we have no problem to pair the Ψj to the Φj , j =
1, . . . , n since the Aj are paired to the αj , j = 1, . . . , n
through the Vandermonde systems (4) and (5).

The fact that the vectors ∆ and δ are linearly independent
leads for each j = 1, . . . , n to the regular linear system(

∆x ∆y

δx δy

)(
φjx
φjy

)
=

(
Φj

Ψj

)
from which the individual φjx and φjy can be obtained.

So all unknown parameters in (1) can be retrieved at the
expense of 2n evaluations fs and n evaluations Fs, or a mere
total of 3n samples. In practice, when dealing with noisy real-
life data, the value of n is overestimated by η > n. Moreover,
the minimal number of 3η = 2η + η required samples for an
η-term model of the form (1) is often again overestimated by
N +n withN ≥ 2η and n ≥ η. The square n×n generalized
eigenvalue problem (3), the 2n× n Vandermonde system (4)
and the n×n Vandermonde system (5) then respectively take
the sizes (N − η)× η,N × η and n× η and are all solved in
the least squares sense.

As mentioned, we use a combination of the matrix pen-
cil method studied in [7] with the rank reduction step de-
scribed in [8]. We call this method the TLS-Prony method
(as in [9]), since the first numerical method to perform ex-
ponential analysis was published by the French nobleman de
Prony in 1795 [19].



We deal with 512 × 512 texture images and choose
the following values for the parameters: ∆ = (1, 0), δ ∈
{(0, 1), (0, 2), . . . , (0, 511)}, n = 33, η = 170, N = 512, n =
512. This choice is merely inspired by the size of the image
and the consideration that η ≈ N/3 works well for (3).
Also, the fact that 511 vertical shifts of the first image row
are available, is exploited by letting the vector δ be any
of the 511 vectors listed. Note that Ψjk computed from
δk = (0, k) relates to Ψj computed from δ = (0, 1) by
exp(Ψjk) = exp(〈φj , δk〉) = expk(Ψj), k = 1, . . . , 511.

The 512 different values expk(Ψj), k = 0, . . . , 511 ob-
tained in this way constitute a Prony problem in their own
right. We analyze them using the decimated Prony-type al-
gorithm presented in [17], with a decimation factor equal to
4. The use of decimation allows to build in some validation
of the result, which is useful as the expk(Ψj), j = 1, . . . , n
are in general less accurate than the exp(Φj), j = 1, . . . , n.
The reason for this is that the various expk(Ψj) are obtained
from solutions of the rather sensitive Vandermonde systems
(4) and (5). The chosen decimation factor also reduces the
system size of (3) from (N − η)× η to 75× 53.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

To validate the proposed exponential analysis we perform ex-
periments on both synthetic and real texture images and com-
pare against fast Fourier transformation (FFT) results, thus
demonstrating the use of sparsity in the frequency domain.
We also apply our method in common vision applications that
require texture analysis, e.g., texture classification and defect
detection. Within the scope of this work, our model consid-
ers only homogeneous patterns across the image and therefore
does not work effectively on textures with multiple patterns.

3.1. Synthetic images

Following model (1), we generate five synthetic textures each
containing 11 terms. We compare the exponential analysis
results against FFT (in each image FFT coefficients in magni-
tude below 10−2.5 of the largest FFT coefficient are discarded
to reduce the model complexity). For both, these results are
used to reconstruct the images and compute RMSE values. A
selection is shown in Fig. 1 (columns 1-2) and Table 1. The
proposed exponential analysis can decompose images with a
significantly reduced model complexity (more than 90% co-
efficient reduction against FFT) and still achieve a near per-
fect reconstruction (low RMSE). Details of all images, includ-
ing parameters, and experimental results are available from
cma.uantwerpen.be/publications

3.2. Real texture images from benchmark dataset

Encouraged by the nice results for the synthetic images, we
also conduct experiments with samples from the standard

Fig. 1: Exponential analysis and comparison with FFT for
synthetic images (columns 1-2) and real images (columns 3-
4). Rows 1-5: original, thresholded FFT, reconstruction from
thresholded FFT, exponential terms (• overlaid on FFT) and
reconstruction from (1). Cardinality of representations given
below rows (2) and (4).

Oxford Describable Textures Dataset (DTD, category: wo-
ven) [20]. Similar to Section 3.1, we compare the proposed
methodology against the thresholded FFT in terms of number
of coefficients and RMSE of the reconstructed image. The
results are shown in Fig. 1 (columns 3-4) and Table 1. The
proposed method outperforms the FFT representation with
fewer terms while retaining the RMSE values. However, our
method does not work well in woven 0064 or other images
where the texture information is not sparse or consists of
multiple patterns. This is due to the basic assumption of our
model on sparsity and homogeneity, meaning periodicity as
in (1).

3.3. Use cases

Finally, we present two vision applications that demonstrate
the capability of our method: 1) texture classification and
2) texture defect detection. It is worth noting that within the
scope of this work, the use cases do not consider a wider range
of images and are limited to regular texture patterns.

https://www.uantwerpen.be/en/research-groups/cma/publications/papers/


FFT Ours Gain

# Terms RMSE # Terms RMSE (%)

Synthetic images

IM#1 111 0.0169 11 0.0012 90%
IM#2 231 0.0258 11 0.0015 95%
IM#3 279 0.0285 11 0.0011 96%
IM#4 163 0.0215 11 0.0011 93%
IM#5 279 0.0235 11 0.0011 96%

Real images from Oxford DTD dataset, category: woven

001 743 0.0254 246 0.0655 67%
003 793 0.0756 157 0.0924 80%
028 851 0.0513 141 0.0982 83%
038 1047 0.0685 239 0.1102 77%
064 4557 0.1100 256 0.2412 94%

Table 1: Comparison of image decomposition using FFT and
proposed exponential analysis on synthetic and real images
with respect to the number of terms to represent the texture,
RMSE when reconstructed and % gain in model reduction.

3.3.1. Texture classification

Texture analysis is fundamental to most vision applications.
Texture representation and classification are essential parts of
the processing pipeline and are researched widely [16]. Our
argument is that using the proposed decomposition, texture
can be represented compactly. In support, we experiment with
a texture classification task and compare with typical speeded
up robust features (SURF) [21]. In both cases the features are
extracted to a vector which is passed to train a SVM classi-
fier. Three example classes are prepared using samples from
the DTD dataset, category: woven [20]. One unseen image
from each category is used to predict the class. The results
are shown in Table 2. For both methods (SURF and ours),
the first two classes are correctly identified while Class-III
is incorrectly predicted as Class-I. However, the number of
features in our method is approximately 10 times less com-
pared to SURF. This indicates the effectiveness of our work
for many potential applications.

3.3.2. Texture defect detection

Defect detection in natural images is an important but chal-
lenging task in computer vision applications [22], including
industrial material inspection and fabric production [23].
State-of-the-art algorithms often rely on machine learning,
e.g., deep learning based approaches that require large train-
ing data sets. As an alternative approach, we propose expo-
nential analysis to represent the texture with limited model
complexity, reconstruct and compare with the input image.
The image difference followed by a couple of morphological
operations, such as erosion and dilation, identifies defects in
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Class-I Class-II Class-III

SURF 3 9600
Our 3 870

SURF 3 9600
Our 3 870

SURF 3 7 9600
Our 3 7 870

Table 2: Texture classification using exponential analysis and
comparison with SURF. Classes I & II are correctly identified.
Col. 3-5: samples from the classes. Rows 2-4: test images.

Fig. 2: Defect detection using exponential analysis: columns
(1) original image, (2) ground truth and (3) detection.

test images (avaiable from [22], category: grid and carpet), as
shown in Fig. 2. Our approach does not require any training
data and hence will be of use to many applications of similar
sort.

4. CONCLUSION

This paper proposes a new image decomposition method us-
ing 2-d exponential analysis. We exploit key properties of ex-
ponential analysis, such as sparsity in the data fitting problem
and continuity in the frequency space. Such analysis results in
a compact image representation in the frequency domain with
significantly fewer coefficients. Experimental results outper-
form FFT for both synthetic and real texture images and indi-
cate new opportunities in the image processing domain.

The usefulness of our method is illustrated with two com-
mon vision applications, texture classification and defect de-
tection, which are central components of many image pro-
cessing algorithms. Representing images with fewer terms
will be beneficial for feature engineering in vision and can
lead to better accuracy and a more efficient computation.
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