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Abstract
This paper investigates how continuous-time trading renders complete a financial market in
which the underlying risk process is aBrownianmotion.A sufficient condition, that the instan-
taneous dispersion matrix of the relative dividends is non-degenerate, has been established
in the literature for single-commodity, pure-exchange economies with many heterogenous
agents where the securities’ dividends as well as the agents’ utilities and endowments include
flows during the trading horizon which are analytic functions. In sharp contrast, the present
analysis is based upon a different mathematical argument that assumes neither analyticity nor
a particular underlying economic environment. The novelty of our approach lies in deriving
closed-form expressions for the dispersion coefficients of the securities’ prices. To this end,
we assumeonly that the pricing kernels and dividends satisfy standard growth and smoothness
restrictions (mild enough to allow even for options). In this sense, our sufficiency conditions
apply irrespectively of preferences, endowments or other structural elements (for instance,
whether or not the budget constraints include only pure exchange).

Keywords Dynamically complete markets · Endogenously complete markets · Brownian
motion · Dispersion coefficients

JEL codes D53 · G10 · G12

1 Introduction

Whether or not a given asset market is dynamically complete is of fundamental importance
in financial economics. If the pricing process of the underlying securities is dynamically
complete, then options and other derivatives can be uniquely priced by arbitrage arguments
and replicated by trading the underlying securities over time. In the absence of dynamic
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completeness, however, this is no longer the case: no-arbitrage restrictions do not suffice to
guarantee unique option prices while replication may not be possible. It is crucial therefore to
be able to associate dynamic completeness with the economic primitives of a given financial
environment—in a manner that remains unambiguously verifiable and holds at least generi-
cally across the space of these primitives. The present paper provides sufficient conditions for
continuous-time trading to render an asset market dynamically complete when the underlying
risk process is a Brownian motion.

The typical generic result for dynamic completeness in the continuous-time literature
establishes the validity of the corresponding sufficient condition except for a small subset
of the domain space of the primitive parameters. Yet it remains difficult, if not impossible
in some cases, to establish whether the condition is valid for particular values of these
parameters. Notable exceptions are the sufficiency results in Anderson and Raimondo [2],
Hugonnier et al. [17], Riedel andHerzberg [28] (see also Riedel andHerzberg [27]) as well as
Kramkov [19]. These studies refer to financial markets in single-commodity, pure-exchange
economies with many heterogenous agents, and where all intermediate flows of utilities and
endowments are analytic functions. In sharp contrast, the current exposition is based upon a
different mathematical argument that assumes neither analyticity nor a particular underlying
economic environment.

The novelty of our approach lies in deriving closed-form expressions for the dispersion
coefficients of the relative asset prices. The respective formulae allow us in turn to estab-
lish sufficient conditions for the asset market to be dynamically complete that apply under
general specifications for the pricing kernel and the securities’ dividends, as long as both
are continuous and satisfy standard in the literature smoothness and growth conditions. As
to be expected, our sufficient conditions are non-degeneracy ones on the instantaneous dis-
persion matrix of primitive parameters. They do coincide with those in the aforementioned
papers under analyticity. In general, however, they are stronger. This renders our analysis
applicable on more general settings regarding the underlying structure for economic activity
or the agents’ preferences and endowments. It also sheds light on how the relation between
dynamic completeness and the non-degeneracy conditions in question extends in directions
that are important for applications.

The relevance of our study becomes evident when viewed in the context of general equi-
librium analysis. The typical method in the literature for obtaining financial equilibria in
continuous time has been to compute an Arrow–Debreu equilibrium and use the associated
consumption process as pricing kernel in order to construct equilibrium prices for the traded
securities.1 To ensure, however, that the starting Arrow–Debreu allocation is implementable
by trading the given set of securities, their market needs to be dynamically complete—and,
thus, to permit the construction of the equilibrium pricing process via a representative agent.
Yet, the equilibrium pricing process is determined endogenously (via fixed-point arguments)
from the model’s primitives (the utility functions of the agents, their endowments and the
dividend processes of the securities) and are expressed as expectations of properly discounted
future payoffs. As a result, especially in economies with many heterogenous agents and apart
from the extremely special cases where one can obtain sufficiently straightforward closed-
form solutions, verifying from the primitives that the equilibrium pricing process is indeed
dynamically complete is a highly non-trivial problem, known as “endogenous completeness.”

Essential progress in this problem was achieved by the aforementioned papers. The fun-
damental insight is that, for the asset market to be dynamically complete, it suffices that

1 See the introductory section in Anderson and Raimondo [2] for an extensive review and discussion of the
relevant literature. The existence of the Arrow–Debreu equilibrium itself is due to some assumptions whose
form varies in the literature.
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the instantaneous dispersion matrix of the relative dividends is non-degenerate (i.e., non-
singular) at some point in the space. The crucial underlying assumption is that the securities’
dividends as well as the agents’ utilities and endowments include flows during the trading
horizon which are analytic functions (at least in time). By relaxing this restriction, the present
study complements these papers shedding light on the intuition behind their fundamental
underpinnings.

For example, when the securities’ dividends comprise only lump sums at the terminal
date of the trading horizon, our sufficiency condition is exactly the same as above—even
though we do not assume analyticity. This remains the case when the dividends include flows
during the trading horizon, as long as a collection of simple options is available for trading.
More tellingly perhaps, when the securities’ dividends comprise only flows during the trading
horizon (a common setup especially in applied finance models), our sufficiency condition
requires that the instantaneous dispersion matrix of the relative nominal dividends is non-
degenerate everywhere in the space. This highlights the implications of assuming analyticity.
Without it we end up with a sufficiency condition that is, on the one hand, more burdensome
to verify. On the other hand, it does ensure that the instantaneous dispersion matrix of the
relative securities’ prices is non-degenerate everywhere, not almost everywhere, in the space.

The balance of the paper is organized as follows. The next section introduces the theoretical
structure under investigation. Section 3 presents our results and Sect. 4 interprets them in
the context of the pertinent literature. Section 5 concludes while the “Appendix” presents the
supporting technical material and results.

2 Theoretical framework

Consider a financial market where the trading horizon is T = [0, T ] for some T ∈ R++
or T = R+ while the informational structure is given by a K -dimensional (K ∈ N\ {0})
standard Brownian process, defined on a complete probability space (�,F, π) and denoted
by β : � × T → R

K (or βk : � × T → R with k ∈ K := {1, . . . , K } for the typical
dimension). As usual, the process is meant to fully describe the exogenous financial risk
in the sense that the collection of the sample paths {β (ω, t) : t ∈ T }ω∈� specifies all the
distinguishable events.

The underlying risk process being a Brownian motion, a necessary condition for any
securities market to be dynamically complete is that the number of securities exceeds that of
independent Brownian motions by at least one (i.e., that the market is potentially complete).
In what follows the trading structure will consist of K+1 dividend-paying securities, indexed
by j ∈ K ∪ {0} and traded continuously over T . These are real assets in the sense that their
dividends are in units of an underlying physical commodity. The dividends will take one
or both of two forms, a flow and a lump sum. Specifically, letting I : � × T → T × R

K

denote the process {t, β (ω, t)}(ω,t)∈�×T , we consider the functionsG j , g j : T ×R
K → R+

and that the typical security pays the dividend flow g j (I (ω, ·)) along the Brownian path
{β (ω, t) : t ∈ T } and/or the lump sumG j (I (ω, T )) on the terminal date (if the time horizon
is finite: T = [0, T ] for some T ∈ R++). The supports SG j := {β ∈ R

K : G j (T , β) > 0
}

and Sg j := {(t, β) ∈ T × R
K : g j (t, β) > 0

}
will be taken as open and connected. Letting

moreover Dk := ∂/∂βk denote the instantaneous dispersion operator, we will also assume
that, for any k ∈ K, the functions DkG j (T , ·) and Dkg j (·) are well defined and continuous
on SG j and Sg j , respectively.
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Given that trading occurs over a time interval while the informational structure is driven
by a Brownian motion, well-known no-arbitrage conditions ensure that the securities’ prices
are the current expectations of their future dividends valued at some pricing kernel, a strictly
positive one-dimensional Itô process. Inwhat follows,we take the pricingkernel to begivenby
the functionsM,m : T ×R

K → R++ which are continuously differentiable on int (T )×R
K .

In addition, we assume that the functions Mj (·) := (
MG j

)
(·) and m j (·) := (

mgj
)
(·)

satisfy appropriate growth conditions (see assumptions A1–A2 below) for the price of the
typical security to be written as follows

Pj (t, β) = Eπ

[
1T �=R+ × Mj (T , βT )

m (t, β)
+
∫

T \(0,t)
m j (s, βs)

m (t, β)
ds|βt = β

]
(t, β) ∈ T × R

K (1)

All prices above being strictly positive, any one can be used as deflator. Without loss
of generality, therefore, we may deflate all prices by that of the zeroth security and restrict
attention to the relative pricing process p j (·) := Pj (·) /P0 (·), j ∈ K. This normalization
renders the zeroth security instantaneously risk free (for its price remains constant at 1) so that
the strategy of buying and holding it becomes a (trivial) money-market account. As a result,
the financial market under consideration is dynamically complete if and only if the (Jacobian)
matrix of the instantaneous dispersions of the relative prices, Jp (·) := [Dk pn (·)](n,k)∈K×K,
is non-singular almost everywhere on int (T ) × R

K .2

In what follows, we seek to establish sufficient conditions for the Jacobian matrix to have
the desired property. To this end we observe that, since pn (·) = (mPn) (·) / (mP0) (·) using
the nominal prices

(
mPj

)
(·) := m (·) Pj (·) for j ∈ K ∪ {0}, an equivalent statement of our

aim is to ensure that [(mP0) (·) Dk (mPn) (·) − (mPn) (·) Dk (mP0) (·)](n,k)∈K×K remains
non-singular almost everywhere on int (T ) × R

K . As it turns out, the latter matrix is well
defined on int (T ) × R

K under the following conditions.3

A 1 Let T = [0, T ] for some T ∈ R++. There exist constants (C0, r0) ∈ R++ × (0, 1
2T

)

such that
(i) Mj (T , x) + |DkMj (T , x) | ≤ C0er0|x|

2 ∀x ∈ SG j

(i i). m j (s, x) + ∣∣Dkm j (s, x)
∣∣ ≤ C0er0|x|

2 ∀ (s, x) ∈ Sg j

for all ( j, k) ∈ K ∪ {0} × K.

A 2 Let T = R+. For every constant r > 0 there exists a constant C > 0 such that

m j (s, x) + ∣∣Dkm j (s, x)
∣∣ ≤ Cer |x|2 ∀ (s, x) ∈ Sg j

for all ( j, k) ∈ K ∪ {0} × K.

2 The claims in this paragraph are based on well-known concepts and results. See, for example, Chapters
5A-C, 6I, and 6K in Duffie [11] as well as Sections 4.1–4.4 and Theorem 5.6 in Nielsen [24]. Observe also
that, as usual, βt denotes a (random) value of the mapping t �→ {β (ω, t)}ω∈�.
3 As usual, | · | denotes the Euclidean norm of a vector or the determinant of a (square) matrix. Notice also

that the conditions A1–A2 are trivially satisfied on {T } × int
(
R
K \SG j

)
and int

(
T × R

K \Sg j
)
when these

are non-empty (for instance, when the security is a European option—see Claim 3.2 below). Indeed, we have
G j (T , ·) = 0 = DkG j (T , ·) on the former and g j (·) = 0 = Dkg j (·) on the latter.
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3 Analysis

Starting with the first term in (1), and letting T := [0, T ] for some T ∈ R++, recall that the
increment β (·, T ) − β (·, t) is independent of Ft and distributed N

(
0K , (T − t) IK

)
over

�. Hence, the term in question can be written as

P1 j (t, β) :=
∫

RK

M j
(
β + √

T − tx
)

m (t, β)
φ (x) dx, (t, β) ∈ [0, T ) × R

K , j ∈ K ∪ {0} (2)

where φ (·) denotes the K -dimensional standard-normal pdf.
Under Assumption A1(i), the pricing function in (2) above is well defined. And so is the

dispersionwith respect to the typical Brownian dimension of its nominal version. Specifically,
we have

Dk
(
mP1 j

)
(t, β) = Ex

[
DkMj

(
T , β + √

T − tx
)]

, (t, β) ∈ [0, T ) × R
K , j ∈ K ∪ {0} (3)

where x ∼ N
(
0K , IK

)
. For t → T , moreover, the continuity in t commutes inside the

expectation operator above. As a result, letting p1n (·) := P1n (·) /P10 (·) and Gn/0 (·) :=
1SG0

× Gn (·) /G0 (·) denote, respectively, the relative prices and terminal dividends, the
(Jacobian) dispersion matrix of the relative prices, Jp1 (I (ω, t)), approaches that of the
relative terminal dividends

JG (I (ω, T )) := [DkGn/0 (I (ω, T ))
]
(n,k)∈K×K

almost everywhere in
{
ω ∈ � : β (ω, T ) ∈ SG0

}
.4

The latter observation leads to a sufficient condition for the financial market to be dynam-
ically complete in the case where the time horizon is finite and the securities pay only
lump-sum dividends on the terminal date.

Theorem 3.1 Let T = [0, T ] for some T ∈ R++ and suppose that the price process is given
by (2) with A1(i) satisfied. Then Jp1 (·) has full rank almost everywhere on (0, T ) × R

K if
JG (·) is non-singular at some βT ∈ SG0 .

Proof Our argumentwill be based upon the fact that, even thoughwe have not required analyt-
icity anywhere above, the entries of the dispersion matrix Jp (·) are analytic on (0, T ) ×R

K

under Assumption A1(i). This is because, for any ( j, k) ∈ K ∪ {0} × K, the functions(
mPj

)
(·) and Dk

(
mPj

)
(·) are analytic on (0, T ) × R

K . For the former function, its ana-
lyticity follows immediately from Lemma A.7 in the “Appendix”. For the latter function,
since |xk | ≤ |x| < e|x| < 1 + e|x| everywhere on R

K , by Lemma A.1 in the “Appendix”,
there exist constants (C, r) ∈ R++ × (0, 1

2T − r j
)
such that |xk | ≤ Cer |x|2 for any x ∈ R

K .

Under Assumption A1(i), therefore, we have
∣∣xkM j (T , x)

∣∣ ≤ C0Ce(r0+r)|x|2 anywhere on
R

K , with r0 + r ∈ (0, 1
2T

)
. By Lemma A.7 in the “Appendix” then

(
mPj

)
(t, β) βk + (T − t) Dk

(
mPj

)
(t, β) = Ex

[(
βk + √

T − t xk
)
Mj

(
T , β + √

T − tx
)]

= E
[
βkT M j (T , βT ) |βt = β

]

4 The claims in the main text above are based on supporting results in the “Appendix”. Specifically, that(
mP1 j

)
(·) and Dk

(
mP1 j

)
(·) are both well defined with the latter given by (3) follow from Lemma A.5.

Moreover, that continuity with respect to time commutes inside the expectations in (2) and (3) follows from
Lemmas A.6–A.3. Finally, that Jp1 (I (ω, t)) approaches JG (I (ω, T )) is due to Proposition A.1.
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is an analytic function of (t, β) on (0, T ) × R
K . That Dk

(
mPj

)
(·) itself is analytic on

(0, T ) × R
K follows now from the fact that the sum, product and ratio of two real analytic

functions are also analytic (see Propositions 1.1.7 and 1.1.12 in Krantz and Parks [20]).
Suppose now that

∣∣JG
(
T , β0

)∣∣ �= 0 for some β0 ∈ SG0 , and take ω0 ∈ � such that
β0 = β (ω0, T ). By continuity, there exists δ0 > 0 such that |JG (T , β)| �= 0 for any
β ∈ Bβ0 (δ0). Take also ω1 ∈ � such that limt→T Jp (t, β (ω1, t)) = JG

(
T , β1

)
where

β1 := β (ω1, T ) ∈ Bβ0 (δ0). By Proposition A.1 in the “Appendix”, and as the determinant
of a matrix is a continuous operator, we have

lim
t→T

|Jp (t, β (ω1, t)) | = ∣∣JG
(
T , β1)∣∣ �= 0

There exist therefore (δ1, t1) ∈ R++ × (0, T ) such that
∣∣Jp (s, β)

∣∣ �= 0 ∀ (s, β) ∈ (t1, T ) × Bβ1 (δ1) (4)

As established above, though, the entries of Jp (·) are analytic on (0, T ) × R
K . The deter-

minant of a matrix involving nothing but the operations of product and sum on its entries,∣∣Jp (·)∣∣ is also analytic on (0, T ) × R
K . But then (4) necessitates that

∣∣Jp (·)∣∣ �= 0 almost
everywhere on (0, T ) × R

K .5 ��
Our argument for establishingTheorem3.1 hinges crucially upon the fact that the functions(

mPj
)
(·) and Dk

(
mPj

)
(·) are both analytic on (0, T )×R

K , even though Mj (·) itself is not
assumed to be analytic. Unfortunately, this fact does not obtain for the respective functions
when it comes to the second term in (1). The analysis of the pricing process for the flow
divedends requires its own approach.

Under Assumption A1(ii), the pricing function

P2 j (t, β) := Eπ

[∫

T \(0,t)
m j (s, βs)

m (t, β)
ds |βt = β

]
(t, β) ∈ T × R

K j ∈ K ∪ {0} (5)

but also the dispersion with respect to the typical Brownian dimension of its nominal version
are both well defined. Specifically, we have6

(
mP2 j

)
(t, β) =

∫ T

t
Ex
[
m j
(
s, β + √

s − tx
)]
ds (6)

Dk
(
mP2 j

)
(t, β) =

∫ T

t
Ex
[
Dkm j

(
s, β + √

s − tx
)]
ds (7)

=
∫ T

t
Eπ

[
Dkm j (s, βs) |βt = β

]
ds (8)

And for the case T = R+, note that the respective right-hand sides of (6)–(7) above remain
well defined at all T ∈ R++ under condition A2. Hence, their limiting versions are given by

(
mP2 j

)
(t, β) =

∫ ∞

t
Eπ

[
m j (s, βs) |βt = β

]
ds

Dk
(
mP2 j

)
(t, β) =

∫ ∞

t
Eπ

[
Dkm j (s, βs) |βt = β

]
ds

5 A real analytic function defined on an open and convex subset of Rn (n ∈ N\ {0}) is either zero everywhere
on its domain or non-zero almost everywhere (see Theorem B.3 in Anderson and Raimondo [2]).
6 The claims made above with respect to the expressions in (6)–(8) are supported by the results and discussion
in Sect. B in the “Appendix”. It is also noteworthy that (8) can be shown to follow directly from (6) by
deploying though Malliavin calculus—see for instance Appendix A in Detemple and Zapatero [10].
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Letting then p2n (·) := P2n (·) /P20 (·), the above findings can be summarized as follows.

Claim 3.1 Let the price process be given by (5) with T = [0, T ] for some T ∈ R++ or
T = R++ and A1(ii) or A2, respectively, satisfied. Then

Dk
(
mP2 j

)
(t, β) =

∫

T \(0,t)
Eπ

[
Dkm j (s, βs) |βt = β

]
ds

and thus

(mP20) (t, β)2 Dk p2n (t, β)

=
∫

T \(0,t)

∫

T \(0,t)
Eπ [m0 (τ, βτ ) Dkmn (s, βs) − mn (s, βs) Dkm0 (τ, βτ ) |βt = β] dsdτ

at any (t, β) ∈ int (T ) × R
K and for any ( j, n, k) ∈ K ∪ {0} × K × K.

The preceding relations shed light as to why our proof for Theorem 3.1 does not extend
to the case of flow dividends. For it would establish here that the intergrands in (6)–(7)
are analytic in (t, β) for each given s. However, unless one assumes in addition that these
integrands are also analytic in s, it does not follow that

(
mP2 j

)
(·) and Dk

(
mP2 j

)
(·) are

necessarily analytic on int (T ) × R
K .

This notwithstanding, the explicit expressions for the diffusion coefficients in Claim 3.1

allow a more direct approach. To this end, we define the collection
{
m∗

n/0

}

n∈K of the vector-

valued functions m∗
n/0 : Sgn × Sg0 → R

K given by

m∗
n/0 ((s, x) , (τ, y)) :=

(
D1

(
mn (s, x)
m0 (τ, y)

)
, . . . , DK

(
mn (s, x)
m0 (τ, y)

))ᵀ

and a stronger than the standard notion of matrix non-singularity.

Definition 1 Taking L ∈ N\ {0}, let { fk}k∈K be a collection of functions fk : RL ⊇ Xk →
R

K . We will say that { fk}k∈K satisfies strong non-singularity on X := ∏
k∈K Xk if there

exists no
(
x1, . . . , xK

) ∈ X rendering the matrix

[
f1
(
x1
) · · · fK

(
xK
)]

singular.

This notion ofmatrix non-singularity leads to a sufficient condition for the financialmarket
to be dynamically complete in the case where the securities’ dividends comprise only flows
during the time horizon. Specifically, letting Jp2 (·) := [Dk p2n (·)](n,k)∈K×K, we have the
following.

Theorem 3.2 Let the price process be given by (5) with T = [0, T ] for some T ∈ R++ or
T = R++ and A1(ii) or A2, respectively, satisfied. Then Jp2 (·) has full rank everywhere on
int (T )×R

K if the collection
{
m∗

n/0

}

n∈K satisfies strong non-singularity on
∏

n∈K Sgn ×Sg0 .
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Proof Take arbitrary (t, β) ∈ int (T ) × R
K and v ∈ R

K \ {0K }. By Claim 3.1, the typical
entry in the matrix (mP0) (t, β)2 Jp (t, β) is given as

(mP0) (t, β)2 Dk pn (t, β)

=
∫

T \(0,t)

∫

T \(0,t)
Eπ [m0 (τ, βτ ) Dkmn (s, βs) − mn (s, βs) Dkm0 (τ, βτ ) |βt = β] dsdτ

=
∫

Sgn

∫

Sg0

Eπ [m0 (τ, βτ ) Dkmn (s, βs) − mn (s, βs) Dkm0 (τ, βτ ) |βt = β] dsdτ

=
∫

Sgn

∫

Sg0

Eπ

[
m0 (τ, βτ )

2 Dk

(
mn (s, βs)

m0 (τ, βτ )

)
|βt = β

]
dsdτ

Suppose now that the collection
{
m∗

n/0

}

n∈K satisfies strong non-singularity on
∏

n∈K Sgn ×
Sg0 . There exists then no

((
s1, βs1

)
, . . . ,

(
sK , βsK

)) ∈ ∏n∈K Sgn and no
((

τ1, βτ1

)
, . . . ,(

τK , βτK

)) ∈ SKg0 rendering the matrix
[
m∗

1/0

((
s1, βs1

)
,
(
τ1, βτ1

)) · · ·m∗
K/0

((
sK , βsK

)
,
(
τK , βτK

))]

singular. It is trivial to check that this property requires in turn the existence of some n ∈ K
such that

m∗
n/0 ((s, βs) , (τ, βτ ))

ᵀ v �= 0 ∀ ((s, βs) , (τ, βτ )) ∈ Sgn × Sg0

As Sgn ×Sg0 though is connected, by continuity this can be only ifm
∗
n/0 (·)maintains the same

sign everywhere on Sgn × Sg0 . Without loss of generality, therefore, we may let m∗
n/0 (·) > 0

everywhere on Sgn × Sg0 . But this implies in turn that

(mP0) (t, β)2
∑

k∈K
vk Dk pn (t, β)

=
∫

Sgn

∫

Sg0

Eπ

[

m0 (τ, βτ )
2
∑

k∈K
vk Dk

(
mn (s, βs)

m0 (τ, βτ )

)
|βt = β

]

dsdτ

=
∫

Sgn

∫

Sg0

Eπ

[
m0 (τ, βτ )

2 m∗
n/0 ((s, βs) , (τ, βτ ))

ᵀ v
]
dsdτ > 0

That is, Jp (t, β) v �= 0K and the claim follows. ��
Turning finally to the case when both terms on the right-hand side of (1) apply, the

pricing process Pj (·) = P1 j (·) + P2 j (·) produces even more complex dynamics for the
relative prices. Nonetheless, the preceding analysis provides again a sufficient condition for
the financial market to be dynamically complete when the securities pay both dividend flows
and lump sums—as long as the market includes a zero-coupon bond maturing at T as well
as, for each j ∈ K, a European call option maturing at T along with its equivalent put.

Claim 3.2 Let T = [0, T ] for some T ∈ R++ and the price process be given by (1) with
A1(i) satisfied. Suppose also that the zeroth security is a zero-coupon bond maturing at T
(i.e., G0 (T , ·) = 1 and g0 (·) = 0) while, for each j ∈ K, a European call maturing at T
(with strike price some X j > 0) along with its equivalent put are available for trading. Then
Jp (·) has full rank almost everywhere on [0, T ) × R

K if JG (T , ·) is non-singular at some
β ∈ SG0 .
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Proof Observe first that, for any given β ∈ R
K , we have that limt→T

(
mP2 j

)
(t, β) = 0. As a

result, we have that limt→T
(
mPj

)
(I (ω, t)) = limt→T

(
mP1 j

)
(I (ω, t)) = Mj (I (ω, T ))

almost everywhere on �. Clearly, at any (t, β) ∈ [0, T ) × R
K , the nominal price of a

European call on the j th security with maturity date T and strike price X j and that of its
equivalent put are given, respectively, by
(
mPC

j

)
(t, β) =

∫

VX j (t,β)

M
(
T , β + √

T − tx
) (

G j

(
T , β + √

T − tx
)

− X j

)
φ (x) dx

(
mPP

j

)
(t, β) =

∫

RK \VX j (t,β)

M
(
T , β + √

T − tx
) (

X j − G j

(
T , β + √

T − tx
))

φ (x) dx

where
VX j (t, β) :=

{
x ∈ R

K : G j

(
T , β + √

T − tx
)

≥ X j

}

This implies of course the put-call parity

PC
j (t, β) − PP

j (t, β) = P1 j (t, β) − X j B0 (t, β) j ∈ K ∪ {0}
where

B0 (t, β) := Ex

[
M
(
T , β + √

T − tx
)]

/m (t, β) = P10 (t, β) = P0 (t, β)

is the current price of the zero-coupon bond.
For each j ∈ K consider the portfolio that consists of being long one unit on the corresponding
call, short one unit on the equivalent put, and long K j units on the zero-coupon bond. The
value of this portfolio being P1 j (·), the Jacobian of the relative prices for the overall K such
portfolios is given by JG (·). The claim now follows from Theorem 3.1. ��

3.1 Dynamics withmoney-market accounts

The preceding analysis applies also when the zeroth security is a money-market account.
To see this, let {rt : t ∈ T } be an instantaneously riskless rate process and P0t :=
P0 exp

(∫ t
0 rsds

)
for some initial value P0 > 0.7 As Dk P0t = 0 for any k ∈ K, we now

have Jp (·) = P−1
0t [Dk Pn (·)](n,k)∈K×K. Hence, the dispersion matrix of the relative prices

is non-singular if and only if so is the dispersion matrix of the absolute prices.
With respect to the case where the securities’ dividends comprise only flows during the

time horizon, the latter equivalence means that the argument establishing Theorem 3.2 above
remains valid. For the equivalence ensures that, as far as dynamic completeness is concerned,
there is no loss of generality if we consider the (counterfactual)market inwhich the securities’
prices are normalized using an annuity (i.e., a security with dividend G0 (·) = 0 and g0 (·) =
1) instead of the money-market account as the numeraire.8

7 The construction of the riskless-rate process derives from the Radon-Nikodym derivative of an equivalent-
to-π martingale measure (see, for instance, Chapter 6 and Appendix C in Duffie [11]). That the latter is well
defined here follows from the fact that m (T , ·) satisfies assumption A1(ii).
8 Notice that, in the presence of a money-market account, the riskless-rate process and the pricing kernel are
related according to the dynamics rtdt = −Eπ [dmt |Ft ] /mt . As a result, the instantaneous change in the

annuity price, PAt = E

[∫
T \[0,t) m (s) ds|Ft

]
/mt , matches exactly the instantaneous rate of return on the

money-market account.
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Corollary 3.1 Let the price process be given by (5) with T = [0, T ] for some T ∈ R++ or
T = R++ and A1(ii) or A2, respectively, satisfied. Then [Dk P2n (·)](n,k)∈K×K has full rank
everywhere on int (T )×R

K if the collection
{
m∗

n

}
n∈K of the functions m∗

n : Sgn ×R
K → R

K

given by

m∗
n ((s, x) , (τ, y)) :=

(
D1

(
mn (s, x)
m (τ, y)

)
, . . . , DK

(
mn (s, x)
m (τ, y)

))ᵀ
, n ∈ K

satisfies strong non-singularity on
∏

n∈K Sgn × R
K .

Proof Take arbitrary (t, β) ∈ int (T ) ×R
K and (n, k) ∈ K×K. By rearranging terms in the

first expression in Claim 3.1, we get that

m (t, β) Dk P2n (t, β) = − (mP2n) (t, β) Dk lnm (t, β) +
∫

T \[0,t)
E [Dkmn (s, βs) |βt = β] ds

=
∫

T \(0,t)
Eπ [Dkmn (s, βs) − mn (s, βs) Dk lnm (t, β) |βt = β] ds

= m (t, β)

∫

T \(0,t)
Eπ

[
m∗

n ((s, βs) , (t, β)) |βt = β
]
ds

The remainder of the argument is the same as in the latter part of the proof for Theorem 3.2.
��

Regarding the cases investigated inTheorem3.1 andClaim3.2 above, our analysis remains
valid when the price process {Pn}n∈K derives from the risk-neutral valuation method. More
precisely, when Pn (·) = 1T �=R+ × P1n (·) + P2n (·) is given by

P1n
(
t, β̃
) := Eπ̃

[
exp

(
−
∫ T

t
rτdτ

)
Gn
(
T , β̃T

) |β̃t = β̃

]
(9)

P2n
(
t, β̃
) := Eπ̃

[∫

T \(0,t)
exp

(
−
∫ s

t
rτdτ

)
gn
(
s, β̃s

)
ds|β̃t = β̃

]
(10)

with β̃ : � × T → R
K being another K -dimensional Brownian motion on (�,F, π̃), and

π̃ a martingale measure equivalent to π .9 Comparing these expressions with those in (2) and
(5), it follows immediately that the dynamics with respect to the typical Brownian dimension
are given here by (3) and the first expression in Claim 3.1 for G0 (T , ·) = 1 = g0 (·) and
M (t, ·) = exp

(
− ∫ t0 rsds

)
= m (t, ·). Theorem 3.1, Claim 3.2, and Corollary 3.1 can be

stated, respectively, as follows.

Corollary 3.2 Let T = [0, T ] for some T ∈ R++ and suppose that the price process is given

by (9) with A1(i) satisfied for M (T , ·) := exp
(
− ∫ T0 rsds

)
. Then [Dk P1n (·)](n,k)∈K×K has

full rank almost everywhere on (0, T ) × R
K if [DkGn (T , ·)](n,k)∈K×K is non-singular at

some βT ∈ R
K .

Corollary 3.3 LetT = [0, T ] for some T ∈ R++. Suppose also that the price process Pn (·) =
P1n (·) + P2n (·) is given by (9)–(10) with A1(i) satisfied for M (T , ·) := exp

(
− ∫ T0 rsds

)
.

9 The risk-neutral valuation method derives from strengthening the no-arbitrage condition—see, for instance,
Proposition 6.K and Section 6.L in Duffie [11] but also Theorem 5.7.1 and the subsequent discussion in
Bingham and Kiesel [6].

123



Mathematics and Financial Economics (2021) 15:719–745 729

Suppose also that, for each j ∈ K, a European call maturing at T (with strike price some
X j > 0) along with its equivalent put are available for trading. Then [Dk Pn (·)](n,k)∈K×K
has full rank almost everywhere on [0, T ) × R

K if [DkGn (T , ·)](n,k)∈K×K is non-singular
at some β ∈ R

K .

Corollary 3.4 Let the price process be given by (10)with A1(ii) and A2 satisfied form (t, ·) :=
exp
(
− ∫ t0 rsds

)
, respectively, when T = [0, T ] for some T ∈ R++ and T = R++. Then

[Dk P2n (·)](n,k)∈K×K has full rank everywhere on int (T ) ×R
K if the collection {gn (·)}n∈K

satisfies strong non-singularity on
∏

n∈K Sgn .

4 Discussion and related literature

As pointed out already, the issue under investigation here has been analyzed also in Anderson
and Raimondo [2], Riedel and Herzberg [28] (see also Riedel and Herzberg [27]) as well
as Kramkov [19]. Anderson and Raimondo [2] considers the pricing process in (1) when
the time-horizon is finite and the securities’ dividends comprise both intermediate flows and
terminal lump sums. The terminal lump-sum dividends and individual lump-sum endow-
ments are taken to be continuous almost everywhere in {T }×R

K while their counterparts in
intermediate flows are assumed to be analytic on (0, T ) ×R

K . The agents’ utilities are ana-
lytic, strictly increasing and strictly concave functions of the form u (c (t, βt ) , t, βt ), which
satisfy in addition the Inada conditions uniformly. In Riedel and Herzberg [28], this setting is
extended by allowing the underlying risk process to be a time-homogenous diffusion. Atten-
tion is restricted though to the case in which the dividends and the individual endowments
are time homogenous, one of the securities is a zero-coupon bond maturing at the terminal
date, the aggregate endowment is bounded, while the agents’ utilities are state independent
and depend on time only via an “impatience” rate. In Kramkov [19], on the other hand, the
setting in Anderson and Raimondo [2] is extended to allow for general diffusions . Yet this is
done at the expense of restricting the agents’ relative risk aversion coefficients over terminal
lump sums to be bounded while their utilities over flows and their endowment flows are time
homogenous.

With respect to growth conditions, Anderson and Raimondo [2] imposes one that is
stronger than that in our Assumption A1 on the dividends, the agents’ marginal utilities
and endowments (both in terms of flows and lump sums) as well as on the instantaneous dis-
persion of the dividend and endowment flows. In Riedel and Herzberg [28] these quantities
are all bounded while in Kramkov [19] the same condition as in Anderson and Raimondo [2]
applies on the agents’ utilities, marginal utilities and endowments (both in terms of flows and
lump sums) as well as on the instantaneous dispersion of the terminal lump-sum dividends.

The above features not withstanding, in all of the aforementioned studies, the sufficient
condition for the respective financial market to be dynamically complete is the same as that in
ourTheorem3.1.And despite the presence of intermediate dividendflows, the intuition for the
sufficiency of the non-degeneracy condition in question is also the same as that in our proof for
Theorem 3.1. Specifically, even though Pj (·) = P1 j (·)+ P2 j (·), as there is no value left to a
security on the terminal date other than its lump-sumdividend, we do have limt→T Pj (t, ·) =
limt→T P1 j (t, ·) and, thus, limt→T Jp (I (ω, t)) = [

DkGn/0 (I (ω, T ))
]
(n,k)∈K×K almost

everywhere on �. Moreover, since all intermediate dividend and marginal utility flows are
analytic on [0, T ) × R

K , so is the integral P2 j (·). As a result, Pj (·) and, thus, also
∣∣Jp (·)∣∣

are analytic on [0, T ) × R
K . Clearly, the latter part of our argument in the proof for Theo-
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rem 3.1 remains valid when P1 j (·) [resp. p1 j (·)] is replaced by Pj (·) [resp. p j (·)] under
analyticity.10

This line of reasoning depicts also the intuition behind the non-degeneracy condition in
Hugonnier et al. [17]. Compared to the aforementioned papers, this study extends the setting
in Riedel and Herzberg [27] by allowing the underlying risk process to follow a general
diffusion and the time horizon to be infinite (albeit, in the latter case, under the restriction that
the agents’ relative risk aversion coefficients are bounded). The main analysis in Hugonnier
et al. [17] is conducted under a finite time horizon in the presence of a money-market account
and only dividend flows. The sufficient condition for the financial market to be dynamically
complete applies on the dispersionmatrix of the flow-dividends: [Dkgn (·)](n,k)∈K×K is taken
to be non-degenerate at some (t, β) ∈ (0, T ) × R

K with t being arbitrarily close to T . The
underlying intuition emerges now in light of our expessions in Claim 3.1.

Recall in particular the first expression in Claim 3.1. Letting t be arbitrarily close to T ,
the dispersion of the typical security price can be approximated by the relation

m (t, βt ) Dk P2n (t, βt ) = −P2n (t, βt ) Dkm (t, βt ) − Dkmn (t, βt ) (T − t)

= − (Pn (t, βt ) + gn (t, βt ) (T − t)) Dkm (t, βt ) − m (t, βt ) Dkgn (t, βt )

= −m (t, βt ) Dkgn (t, βt ) (T − t)

where the first and last equalities above follow by the fact that the time integrals vanish as we
approach the terminal date: we have (mP2n) (t, β) = −Eπ [mn (t, βt ) |βt = β] (T − t) +
o (T − t) = −mn (t, β) (T − t)+o (T − t), and thus also P2n (t, β) = −gn (t, β) (T − t)+
o (T − t). Clearly, if [Dkgn (t, β)](n,k)∈K×K is non-singular then so will be JP2 (t, β) - the
remainder of the argument being the same as above but for replacing Pn (·) with P2n (·).11

It is noteworthy of course that, even though our Corollary 3.1 refers to a financial set-
ting that is consistent with that underpinning the main analysis in Hugonnier et al. [17],
the respective non-degeneracy conditions coincide only locally. To see this, observe that
[Dkgn (t, β)](n,k)∈K×K is non-singular only if the matrix

[
m∗

1 ((t, β) , (t, β)) · · ·m∗
K ((t, β) , (t, β))

]

is also non-singular. Yet the latter property necessitates in turn the existence of some neigh-
bourhood V of (t, β) in (0, T ) × R

K such that
[
m∗

1

((
s1, βs1

)
,
(
τ1, βτ1

)) · · ·m∗
K

((
sK , βsK

)
,
(
τK , βτK

))]

remains non-singular for any collection
{(
sk, βsk

)
,
(
τk, βτk

)}
k∈K from V (see Claim C.1

in the “Appendix”). Hence, the requirement that [Dkgn (t, β)](n,k)∈K×K is non-singular
guarantees in fact that

{
m∗

n

}
k∈K satisfies strong non-singularity on V ; equivalently, that

[Dk P2n (·)](n,k)∈K×K has full rank everywhere on V (recall our Corollary 3.1). Similarly,
even though Claim 3.2 refers to a financial setting that is consistent with those in Anderson
and Raimondo [2], Riedel and Herzberg [28] or Kramkov [19], we had to assume the avail-
ability of options in order to establish the same sufficiency result. Either of these observations
attests to the mileage one gets out of analyticity. Equally importantly perhaps, the obvious

10 For a more detailed description of the argument outlined above, see Appendices B and D in Anderson and
Raimondo [2].
11 The same argument applies also in the absence of amoney-market account. The second expression in Claim
3.1 leads to the approximation: m (t, β)2 Dk pn (t, β) = −m (t, β)2 Dkgn/0 (t, β) (T − τ)2. In this case, it
suffices that

[
Dkgn/0 (t, β)

]
(n,k)∈K×K is non-singular.
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reason why our argument in the proof of Theorem 3.1 cannot apply also in the settings of
Theorem 3.2 or Claim 3.2 offers an intuitive understanding of the claim that one may do
away with assuming analyticity in the space variables, yet analyticity in time remains sine
qua non.12

Yet another insight born out of the relation our analysis bears to the aforementioned papers
is the indication that the sufficiency of the respective non-degeneracy conditions extends
beyond pure-exchange economies. In the context of general equilibrium analysis, the pricing
kernel cannot be but a weighted average of the agents’ equilibrium marginal utilities. This
notwithstanding, the asset-pricing equation in (1) allows also for non-financial wealth (and,
thus, production). In this sense, the essential premise is that the time- and state-dependency
of the primitive variables (utilities, dividends, endowments, and other non-financial wealth)
obtains as a function of (t, βt ). As an approach towards equilibrium asset-pricing theory this
has been the building block for much of the seminal literature.

The starting point was to assume that the agents have identical preferences. This has
been the launching pad of two related strands of the literature. The first restricts attention to
what is essentially the continuous-time analogue of the static (one-period) model: the time
horizon is finite and securities pay only lump-sum dividends on the terminal date.13 The
second approach has been to allow for securities that pay also dividend flows during the time
interval while the time horizon may be infinite.14 The next step in the literature was to study
agents with heterogenous preferences. Even in this case, however, the pricing kernel remains
a linear function of the equilibriummarginal utilities (the Negishi weights are constant) if the
equilibrium allocation is Pareto-optimal.15 As a result, even in this case the pricing formula
retains the same basic form as that under the present investigation.16

Clearly, in the context of general equilibrium, as long as we maintain Pareto optimality
as a desideratum, the scope of our analysis is large. By considering general formulations
for the pricing kernel and the securities’ dividends, our analysis applies irrespectively of
preferences, endowments, and other structural elements (such as whether the agents’ budget
constraints include only pure exchange). And this is important in its own right; it has become
by now clear in the literature that the choice of pricing kernel can play a crucial role for the
model’s results.17

Equally importantly, our analysis remains valid even in the presence ofmultiple underlying
consumption commodities. With more than one consumption commodities, the dividend
specifications in (1) would be given as G̃ j (·) = (

Q jG j
)
(·) and g̃ j (·) = (

q j g j
)
(·) with

12 For enlightening discussions on this point, see Section A in the Supplementary Appendix to Hugonnier
et al. [17] or Remark 3.4 in Kramkov [19].
13 Our pricing Eq. (2) can be found, for instance, in Bick [4,5], He and Leland [16], Raimondo [25] or
Anderson and Raimondo [1].
14 Perhaps the most well-known paper in this strand is Cox et al. [8], the continuous-time analogue of the
famous model in Lucas [21] enhanced to include production. Our pricing Eq. (5) is consistent with the analysis
in Cox et al. [8]; it can be found also in Cochrane et al. [7], Martin [22], Farhi and Panageas [15], Merton [23]
(see Chapters 4–5) or Wang [30].
15 When the equilibrium allocation is not Pareto-optimal, the representative agent’s utility function will be
state-dependent even if all individuals have state-independent preferences and homogenous beliefs (see, for
example, Cuoco and He [9]). In fact, the Negishi weights in the construction of the representative agent may
even play the role of endogenous state variables which cannot be recovered as functions of the exogenous
ones.
16 Our pricing formula (1) can be found in Basak and Cuoco [3], Duffie and Zaime [12] (see Theorem 1 and
the subsequent discussion in Sect. 5), Dumas [13], Karatzas et al. [18] (see Corollary 10.4) or Riedel [26]
(Theorem 2.1).
17 See footnote 2 in Riedel and Herzberg [28] for relevant references.
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Q j (·) and q j (·) being, respectively, the terminal and intermediate values for the relative
price (with respect to that of the numeraire commodity) of the commodity in whose units
the dividend of the j th security is paid.18 Obviously, our results remain valid under these
dividend specifications. Yet the latter entail also endogenously determined quantities; the
commodity prices Q j (·) and q j (·) are determined endogenously by the equilibrium itself.
As a result, apart from very special cases, the specifications of the securities’ dividends
become conditional on the choice of numeraire. Needless to say, the latter qualification
applies also for the sufficiency of our non-degeneracy conditions; they guarantee that the
financial market will be dynamically complete as long as the normalization remains with
respect to the given numeraire.

5 Concluding remarks

In an Arrow–Debreu economy, the agents may shift consumption or income across states
and time by trading a complete set of contingent claims, once and for all at the beginning of
time.When they are instead constrained to trade a given set of securities, the market is said to
be dynamically complete if repeated trading of the securities can still deliver any allocation
that would be feasible under a complete set of contingent claims. Under continuous-time
trading, this may be possible by trading a finite set of securities rapidly enough, even though
the information about the state of the world is revealed through a stochastic process. In
particular, when the underlying uncertainty is driven by Brownian motions, this can happen
if the securities’ market is potentially dynamically complete (i.e., the number of securities
exceeds that of independent Brownian motions by at least one).19

However, potential dynamic completeness does not suffice by itself: some formof indepen-
dence amongst the securities’ payoffs must obtain in addition. In general, once the securities’
prices are appropriately deflated, this refers to the non-degeneracy of their instantaneous
dispersion with respect to the underlying stochastic process. The present paper establishes
sufficient conditions for such non-degeneracy when the pricing process is given by (1)—as
long as some standard in the literature growth conditions obtain.20

Of course, our attention was restricted to the exogenous risk process being a Brownian
motion while the time- and state-dependency of the primitive variables obtain as functions of
(t, βt ). And even though this combination has been used extensively in the literature, it does
mean that our results do not extend to a larger class of stochastic models (such as Ornstein-
Uhlenbeck or more generally affine processes) that is becoming increasingly the forefront of
the research in financial economics. Nevertheless, the setting of the present study has always
been an important theoretical benchmark in the quest for fundamental equilibrium insight.
The significance of being able to determine explicitly if and when dynamic completeness
obtains in this setting is obvious.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the

18 See, for instance, the formulations in Ehling and Heyerdahl-Larsen [14].
19 When the underlying stochastic process is not Brownian, the required number of securities may be larger.
20 The growth condition in Assumptions A1–A2 is used for the study of the heat equation—see, for example,
Appendix C in Nielsen [24].
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Appendices

A Supporting results

Taking (δ, x) ∈ R++ × R
K , Bx (δ) denotes in what follows the open ball in R

K of radius δ

that is centered at x.

Lemma A.1 Let the functions λ : RK → (0, 1] and f : RK → R be continuous. Suppose
also that

∃δ0, r0 ∈ R++ : | f (x)| ≤ r0 + er0|x| ∀x ∈ R
K \B0 (δ0)

Then
∀r ∈ R++, ∃C ∈ R++ : | f (λ (x) x)| < Cer |x|2 ∀x ∈ R

K

Proof Take an arbitrary r ∈ R++. By hypothesis, there exist r0, δ0 > 0 such that

| f (λ (x) x) | ≤ r0 + er0|λ(x)x| ≤ r0 + er0|x|

for any x ∈ R
K : |x| ≥ δ0. For all x ∈ R

K : |x| ≥ r0/r , however, we have in addition that

r0 + er0|x| ≤ r0 + er |x|2 ≤ (1 + r0) e
r |x|2

Letting, therefore, δ = max {δ0, r0/r} we have that
| f (λ (x) x)| < (1 + r0) e

r |x|2 ∀x ∈ R
K \B0 (δ)

Yet, λ (·) and f (·) being both continuous, there existsC0 > 0 such that | f (λ (x) x)| ≤ C0 ≤
C0er |x|

2
for any x ∈ B0 (δ). The claim follows by setting C = max {C0, 1 + r0}. ��

Lemma A.2 Let (τ, β) ∈ R++ ×R
K be a parameter vector. Suppose also that f : RK → R

satisfies

| f (x)| ≤ C0e
r0|x|2 ∀x ∈ R

K

for some constants (r0,C0) ∈ (0, τ/2) × R++. Then there exist constants r , δ ∈ R++ such
that ∣∣ f (x) φ

(√
τ (x − β)

)∣∣ ≤ C0φ
(√

2rx
)

∀x ∈ R
K \B0 (δ)

Proof Observe first that, given any α > 0, we have
∣∣xᵀβ

∣∣ ≤ |x| × |β| ≤ α |x|2 ∀x ∈ R
K : |x| ≥ |β|/α

This implies in turn that

r0 |x|2 − τ

2
|x − β|2 =

(
r0 − τ

2

)
|x|2 − τ

2
|β|2 + τxᵀβ

≤
(
r0 − τ

2

)
|x|2 + τxᵀβ

≤
(
r0 + τ

(
α − 1

2

))
|x|2 ∀x ∈ R

K : |x| ≥ |β|/α
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Choosing, therefore, α ∈
(
0, τ−2r0

2τ

)
establishes that

∣∣ f (x) φ
(√

τ (x − β)
)∣∣ = 1

√
(2π)K

| f (x)| e− τ
2 |x−β|2 ≤ C0√

(2π)K
e−r |x|2 ∀x ∈ R

K \B0 (|β|/α)

where r := ( 12 − α
)
τ − r0 > 0. To complete the argument let δ := |β|/α. ��

Lemma A.3 Given a measure space (X ,A, μ) and a non-empty, non-degenerate open inter-
val (a, b) ⊆ R, let f : (a, b) × X → R be a function satisfying21

(i) x → f (t, x) is μ-integrable on X for every fixed t ∈ (a, b),
(ii) t → f (t, x) is continuous for every fixed x ∈ X, and
(iii) there exists a function h : X → R+ such that

∫
X h (x) dμ (x) < +∞ and | f (t, x) | <

h (x) for all (t, x) ∈ (a, b) × X.

Then the function v : (a, b) → R given by

t → v (t) :=
∫

X
f (t, x) dμ (x)

is continuous.

Lemma A.4 Let (τ, β) ∈ R++ ×R
K be a parameter vector. Suppose also that the continuous

function f : RK → R satisfies

| f (x)| ≤ Cer |x|2 ∀x ∈ R
K

for some constants (r ,C) ∈ (0, τ/2) × R++. Letting then m = (m1, . . . ,mK ) ∈ N
K , the

R
K → R function

F (m) (β) =
∫

RK
f (x)

∂
∑

k∈K mkφ
(√

τ (x − β)
)

∏
k∈K ∂β

mk
k

dx

is well defined and C1, with its partial derivatives given by

∂F (m) (β)

∂βk
=
∫

RK
f (x)

∂1+
∑

k∈K mkφ
(√

τ (x − β)
)

∂β
mk+1
k

∏
l∈K\{k} ∂β

ml
l

dx k ∈ K

Proof Fix an arbitrary β ∈ R
K and an arbitrary dimension k ∈ K. Our argument—which

will focus upon the interval (βk − εk, βk + εk) for some εk ∈ (0, 1)—will be presented in
steps.
Step 1(i). If m = 0K , that F (m) (·) is well defined follows immediately from Lemma A.2
above.22 For the case m �= 0K , notice first that a well-known property of the pdf of a scalar
standard normal variable is that its nth derivative is given by

dnφ (xk) /dxnk = Hn (xk) φ (xk) , xk ∈ R, n ∈ N

21 This result is well-known in the literature as the continuity lemma for parameter-dependent integrals. The
present statement appears, for instance, as Theorem 11.4 in Schilling [29].
22 Recall that the zeroth derivative of a function denotes the function itself.
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with Hn (·) being the Hermite polynomial of order n. It follows therefore that, writing
Hn (xk) =∑n

i=0 ci x
i
k for some constants c0, . . . , cn ∈ R, we have

∣∣dnφ (xk) /dxnk
∣∣ = |Hn (xk)| φ (xk) ≤ φ (xk)

n∑

i=0

|ci ||x |ik
≤ Cn |xk |nφ (xk)

≤ Cnφ (xk) e
n|xk | ≤ Cnφ (xk) e

αx2k /2 = Cnφ ((1 − α) xk)

for anyα > 0, all xk ∈ R\ (−1, 1) : |xk | ≥ 2n/α andwhereCn = max {|ci | : i ∈ {0, . . . , n}}.
It is trivial to check moreover that, letting gn

(√
τ xk
) := √

τ n (Hnφ)
(√

τ xk
)
for (n, xk) ∈

N × R, we have

dnφ
(√

τ (xk − βk)
)
/dxnk = √

τ nHn
(√

τ (xk − βk)
)
φ
(√

τ (xk − βk)
)

= gn
(√

τ (xk − βk)
)
, (n, xk) ∈ N × R

And regarding the domain-restrictions above, we have that
√

τ |xk − βk − z̃k | ≥ √
τ (|xk | − |βk | − |̃zk |) >

√
τ (|xk | − |βk | − εk)

≥ √
τ (|xk | − |βk | − 1) ≥ 2n/α (11)

for any z̃k ∈ (−εk, εk) and any xk ∈ R : |xk | ≥ 1 + 2n
α
√

τ
+ |βk |.

Step 1(ii). It follows from the preceding step that

∂
∑K

k=1 mkφ
(√

τ (x − β)
)

∏K
k=1 ∂β

mk
k

=
K∏

k=1

gmk

(√
τ (xk − βk)

)
(12)

for all x ∈ R
K and all m ∈ N

K , while

∣∣gmk

(√
τ (xk − βk − z̃k)

)∣∣ ≤ Cmkφ
(√

τ (1 − α) (xk − βk − z̃k)
)

(13)

for any α > 0, any z̃k ∈ (−εk, εk), and any xk ∈ R\ (−δk, δk) where δk = 1 + 2mk
α
√

τ
+ |βk |.

Set now z̃k = 0 for all k ∈ K, and let m0 = max {mk : k ∈ K} and β0 = max {|βk | : k ∈ K}.
Then

∣∣∣∣∣
∂
∑K

k=1 mkφ
(√

τ (x − β)
)

∏K
k=1 ∂β

mk
k

∣∣∣∣∣
≤

K∏

k=1

√
τmkCmkφ

(√
τ (1 − α) (xk − βk)

)

= C ′
0φ
(√

τ (1 − α) (x − β)
)

∀x ∈ R
K \B0 (δ0) (14)

where δ0 = 1 + 2m0
α
√

τ
+ β0 and C ′

0 =∏K
k=1

√
τmkCmk .

Step 1(iii). We are now in position to show that F (m) (·) is well defined. Taking α ∈ (0, 1),
(14) above implies that
∣∣∣∣∣
f (x)

∂
∑K

k=1 mkφ
(√

τ (x − β)
)

∏K
k=1 ∂β

mk
k

∣∣∣∣∣
≤ C ′

0 | f (x)| φ
(√

τ (1 − α) (x − β)
)

∀x ∈ R
K \B0 (δ0)

By hypothesis, moreover, there are r ∈ (0, τ/2) and C > 0 such that | f (x)| ≤ Cer |x|2 on
R

K . Choosing, therefore, α ∈ (0, τ−2r
τ

)
so that r <

τ(1−α)
2 , Lemma A.2 above ensures the
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existence of r ′, δ′
0 > 0 such that

∣∣∣∣∣
f (x)

∂
∑K

k=1 mkφ
(√

τ (x − β)
)

∏K
k=1 ∂β

mk
k

∣∣∣∣∣
≤ CC ′

0φ
(√

r ′x
)

∀x ∈ R
K \B0

(
max

{
δ0, δ

′
0

})

And as the functions f , φ, and Hmk are all continuous with respect to x, the claim follows.
Step 2(i).We will show next that the partial derivatives exist and are given by the expression
in the statement. Observe that, by (12) above, we have

∣∣∣∣∣
F (m) (βk + zk, β−k) − F (m) (β)

zk
−
∫

RK
f (x)

∂
mk+1+∑l∈K\{k} mlφ

(√
τ (x − β)

)

∂β
mk+1
k

∏
l∈K\{k} ∂β

ml
l

dx

∣∣∣∣∣

=
∣∣∣∣∣

∫

RK
f (x)

[∏
l∈K\{k} gml

(√
τ (xl − βl)

)

×
(
gmk (

√
τ(xk−βk−zk ))−gmk (

√
τ(xk−βk ))

zk
− ∂gmk (

√
τ(xk−βk ))
∂βk

)
]

dx

∣∣∣∣∣

≤
∫

RK

∣∣∣∣∣

f (x)
∏

l∈K\{k} gml

(√
τ (xl − βl)

)

×
(
gmk (

√
τ(xk−βk−zk ))−gmk (

√
τ(xk−βk ))

zk
− ∂gmk (

√
τ(xk−βk ))
∂βk

)
∣∣∣∣∣
dx

By the mean value theorem, however, there exist γ, ρ ∈ (0, 1) such that

∫

RK

∣∣∣∣∣

f (x)
∏

l∈K\{k} gml

(√
τ (xl − βl )

)

×
(
gmk (

√
τ(xk−βk−zk ))−gmk (

√
τ(xk−βk ))

zk
− ∂gmk (

√
τ(xk−βk ))
∂βk

)
∣∣∣∣∣
dx

=
∫

RK

∣∣∣∣∣∣
f (x)

∏

l∈K\{k}
gml

(√
τ (xl − βl )

)
∣∣∣∣∣∣

∣∣∣∣∣
∂gmk

(√
τ (xk − βk − γ zk)

)

∂βk
− ∂gmk

(√
τ (xk − βk)

)

∂βk

∣∣∣∣∣
dx

= |γ zk |
∫

RK

∣∣∣∣∣∣
f (x)

∏

l∈K\{k}
gml

(√
τ (xl − βl )

) ∂2gmk

(√
τ (xk − βk − γρzk)

)

∂β2
k

∣∣∣∣∣∣
dx

< |zk |
∫

RK

∣∣∣∣∣∣
f (x)

∏

l∈K\{k}
gml

(√
τ (xl − βl )

) ∂2gmk

(√
τ (xk − βk − γρzk)

)

∂β2
k

∣∣∣∣∣∣
dx

= |zk |
∫

RK

∣∣∣∣∣∣
f (x)

∏

l∈K\{k}
gml

(√
τ (xl − βl )

)
gmk+2

(√
τ (xk − βk − γρzk)

)
∣∣∣∣∣∣
dx

Taking thus zk ∈ (−εk, εk) \ {0}, we have
∣∣∣∣∣
F (m) (βk + zk, β−k) − F (m) (β)

z
−
∫

RK
f (x)

∂
mk+1+∑l∈K\{k} mlφ

(√
τ (x − β)

)

∂β
mk+1
k

∏
l∈K\{k} ∂β

ml
l

dx

∣∣∣∣∣

< εk

∫

RK

∣∣∣∣∣∣
f (x) gmk+2

(√
τ (xk − βk − γρzk)

) ∏

l∈K\{k}
gml

(√
τ (xl − βl)

)
∣∣∣∣∣∣
dx (15)

Step 2(ii). Recall now (13) above. For any xk ∈ R\ (−δk, δk) we have

|xk − βk − γρzk | ≥ |xk − βk | − γρ |zk | > |xk − βk | − 1 ≥ |xk | − |βk | − 1 ≥ 0
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so that

φ
(√

τ (1 − α) (xk − βk − γρzk)
)

< φ
(√

τ (1 − α) (|xk − βk | − 1)
)

= e
τ(1−α)

(
|xk−βk |− 1

2

)

φ
(√

τ (1 − α) (xk − βk)
)

= e
τ(1−α)

(
xkβk+|xk−βk |− 1+β2k

2

)

φ
(√

τ (1 − α)xk
)

< eτ(1−α)(xkβk+|xk−βk |)φ
(√

τ (1 − α)xk
)

≤ eτ(1−α)(|xkβk |+|xk |+|βk |)φ
(√

τ (1 − α)xk
)

≤ eτ(1−α)(|xk |+2|βk |)φ
(√

τ (1 − α)xk
)

Clearly, the first two terms of the integrand in (15) give
∣∣ f (x) gmk+2

(√
τ (xk − βk − γρzk)

)∣∣

< C ′
k | f (x)| eτ(1−α)|xk |φ

(√
τ (1 − α)xk

)
∀xk ∈ R\B0 (δk)

whereC ′
k = √

τmk+2Cmk+2e2τ(1−α)|βk |. By hypothesis, however, there exist r ∈ (0, τ/2) and

C > 0 such that | f (x)| ≤ Cer |x|2 on R
K . Moreover, by Lemma A.1 above, for any rk > 0,

we can find C ′′
k > 0 such that eτ(1−α)|xk | < C ′′

k e
rk x2k . Choosing, thus, rk ∈ (0, τ/2 − r) and

α ∈
(
0, τ−2(r+rk )

τ

)
Lemma A.2 ensures the existence of r ′′, δ′′

0 > 0 such that

∣∣ f (x) gmk+2
(√

τ (xk − βk − γρzk)
)∣∣ < CC ′

kC
′′
k e

r |x−k |2φ
(√

r ′′xk
)

∀xk ∈ R\B0
(
max

{
δk , δ

′′
0

})

We have just established that, viewed as a function of zk , the integrand in (15) is bounded
above on R

K \B0
(
max

{
δk, δ

′′
0

})
by a function that is independent of zk and integrable on

R
K \B0

(
max

{
δk, δ

′′
0

})
.

Regarding the interior of the left-out neighbourhood, observe that

|xk − βk − γρzk | ≤ |xk − βk | + |γρzk | < |xk − βk | + 1

and, thus,

∣∣gmk+2
(√

τ (xk − βk − γρzk)
)∣∣ = φ

(√
τ (xk − βk − γρzk)

) ∣∣Hmk+2
(√

τ (xk − βk − γρzk)
)∣∣

<
∣∣Hmk+2

(√
τ (xk − βk − γρzk)

)∣∣

≤
mk+2∑

i=0

|ci |τ i/2 |xk − βk − γρzk |i

<

mk+2∑

i=0

|ci |τ i/2 (|xk − βk | + 1)i

<

mk+2∑

i=0

|ci |τ i/2ei(|xk |+|βk |+1) = C ′′
0 e

(mk+2)|xk | (16)

whereC ′′
0 = e(mk+2)(|βk |+1)∑mk+2

i=0 |ci |τ i/2. Clearly, also onB0
(
max

{
δk, δ

′′
0

})
, as a function

of zk , the integrand in (15) is bounded above by an integrable function that is independent of
zk .
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Given these obsevations, and as gmk+2
(√

τ (xk − βk − γρzk)
)
is continuous in zk for any

xk ∈ R, Lemma A.3 above ensures that the continuity in zk on (−εk, εk) is preserved under
the integral sign in (15). That is,

lim|zk |→0

∫

RK

∣∣∣∣∣∣
f (x) gmk+2

(√
τ (xk − βk − γρzk)

) ∏

l∈K\{k}
gml

(√
τ (xl − βl)

)
∣∣∣∣∣∣
dx

=
∫

RK

∣∣∣∣∣∣
f (x) gmk+2

(√
τ (xk − βk)

) ∏

l∈K\{k}
gml

(√
τ (xl − βl)

)
∣∣∣∣∣∣
dx (17)

Step 2(iii). To establish now the required differentiability, it suffices to show that the integral
on the right-hand side of (17) above is well defined. To this end, recall oncemore (13). Letting
z̃k = 0, we have

∣∣∣∣∣∣

∏

l∈K\{k}
gml

(√
τ (xl − βl)

)
gmk+2

(√
τ (xk − βk)

)
∣∣∣∣∣∣
≤ C ′

3φ
(√

τ (1 − α) (x − β)
)

for any x ∈ R
K \B0 (δ0) and where C ′′′

0 = Cmk+2
∏

l∈K\{k} Cml . Choosing though α as in
Step 1(iii) we have that

∣∣∣ f (x) φ
(√

τ (1 − α) (x − β)
)∣∣∣ ≤ Cφ

(√
r ′x
)

∀x ∈ R
K \B0

(
δ′
0

)

Clearly, the integrandon the right-hand sideof (17) is bounded aboveonRK \B0
(
max

{
δ0, δ

′
0

})

by the functionCC ′′′
0 φ
(√

r ′x
)
; hence, its integral is well defined. To complete the argument,

let εk → 0 in (15).
Step 3. To establish finally continuous differentiability, it suffices to show that the partial
derivatives are continuous. And as m above was taken arbitrarily, it suffices in turn to show
that Fm (·) itself is continuous. Taking ε ∈ (0, 1), consider then the neighborouhood Bβ (ε).
For any z ∈ Bβ (ε), using again (13) above and the mean-value theorem, we have

∣∣∣F (m) (β + h) − F (m) (β)

∣∣∣

≤
∫

RK
| f (x)|

K∏

k=1

∣∣gmk

(√
τ (xk − βk − hk)

)− gmk

(√
τ (xk − βk)

)∣∣ dx

=
(

K∏

k=1

|hk |
)∫

RK
| f (x)|

K∏

k=1

∣∣gmk+1

(√
τ (xk − βk − γkhk)

)∣∣ dx

< εK
∫

RK
| f (x)|

K∏

k=1

∣∣gmk+1

(√
τ (xk − βk − γkhk)

)∣∣ dx

where γk ∈ (0, 1) for k ∈ K. The remainder of the argument is trivially similar to that in
steps 2(ii)–(iii) above. ��
Lemma A.5 Let (τ, β) ∈ R++ × R

K be a parameter vector. Suppose also that the
continuously-differentiable function f : RK → R satisfies

| f (x)| ≤ Cer |x|2 ∀x ∈ R
K
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for some constants (r ,C) ∈ (0, τ/2) × R++. The RK → R function

F (β) :=
∫

RK
f
(
β + x/

√
τ
)
φ (x) dx

is well defined and C1, with its partial derivatives given by

Dk F (β) =
∫

RK
Dk f

(
β + x/

√
τ
)
φ (x) dx, k ∈ K

Proof By changing the variables of integration, we have

F (β) = √
τ

∫

RK
f (z) φ

(√
τ (z − β)

)
dz

That F (·) is well defined and C1 follows from Lemma A.4. Moreover, its partial derivatives
are given by

Dk F (β) = √
τ

∫

RK
f (z)

∂

∂βk
φ
(√

τ (z − β)
)
dz = −√

τ

∫

RK
f (z)

∂

∂zk
φ
(√

τ (z − β)
)
dz, k ∈ K

To establish the expession in the claim, fix first an arbitrary z−k ∈ R
K−1. By Lemma A.2

above, we can find r0, δ0 > 0 such that

f (x) φ
(√

τ (z − β)
) ≤ Cer |z|2−

τ
2 |z−β|2 = Cer |z−k |2−τ |z−k−β−k |2erz2k−

τ
2 (zk−βk )

2

≤ Cer |z−k |2− τ
2 |z−k−β−k |2φ

(√
2r0zk

)
∀zk ∈ R\B0 (δ0)

This implies that

lim
xk→±∞

∣∣ f (z) φ
(√

τ (z − β)
)∣∣ ≤ lim

zk→±∞Cer |z−k |2− τ
2 |z−k−β−k |2φ

(√
2r0z

)
= 0

and, thus, integration by parts establishes that

−
∫

R

f (z)
∂

∂zk
φ
(√

τ (z − β)
)
dzk =

∫

R

φ
(√

τ (z − β)
) ∂

∂zk
f (z) dzk

Integrating now over the remaining K − 1 dimensions, we get that

DkF (β) = −√
τ

∫

RK
f (z)

∂

∂zk
φ
(√

τ (z − β)
)
dz = √

τ

∫

RK
φ
(√

τ (z − β)
) ∂

∂zk
f (z) dz

= √
τ

∫

RK
φ (x)

∂

∂xk
f
(
β + x/

√
τ
)
dx

=
∫

RK
φ (x)

∂

∂βk
f
(
β + x/

√
τ
)
dx

with the third equality above due changing once again the variables of integration. ��
Lemma A.6 Given (T , β) ∈ R++×R

K , let the function f : [0, T ]×R
K → R be continuous.

Suppose also that the latter satisfies

| f (s, x)| ≤ C0e
r0|x|2 ∀ (s, x) ∈ (0, T ] × R

K

f or some constants (C0, r0) ∈ R++ × (0, 1
2T

)
. There exist then constants C, r ∈ R++ such

that
∣∣ f
(
s, β + √

s − tx
)∣∣φ (x) < Cφ

(√
rx
) ∀ (t, s, x) ∈ [0, T ) × (t, T ] × R

K
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Proof Under the given growth condition, for any (t, s, x) ∈ [0, T ) × (t, T ] × R
K , we have

∣∣ f
(
s, β + √

s − tx
)∣∣φ (x) ≤ C0φ (x) er0|β+√

s−tx|2

= C0φ (x) er0
(|β|2+(s−t)|x|2+2

√
s−tβᵀx

)

≤ C0φ (x) er0
(|β|2+(T−t)|x|2+2

√
T−t |β||x|)

< C0φ (x) e
r0
(
|β|2+T |x|2+2

√
T |β||x|

)

= C0√
2π

e
r0
(
|β|2+2

√
T |β||x|

)
−
(
1
2−r0T

)
|x|2

Recall now Lemma A.1 above. We can find constantsC1 ∈ R++ and r1 ∈ (0, 1
2 − r0T

)
such

that
e2r0

√
T |β||x| < C1e

r1|x|2 ∀x ∈ R
K

The claim follows by setting r = 1 − 2 (r0T − r1) and C = C0C1er0|β|2/
√
2π . ��

Proposition A.1 Let T = [0, T ] for some T ∈ R++ and suppose that the price process
is given by (2) in the main text with condition A.1(i) satisfied. Then, for any ( j, n, k) ∈
K ∪ {0} × K × K, the following hold

(i) limt→T
(
mPj

)
(I (ω, t)) = Mj (I (ω, T )) almost everywhere (a.e.) on �.

(ii) limt→T Dk
(
mPj

)
(I (ω, t)) = DkMj (I (ω, T )) a.e. on �.

(iii) limt→T Dk pn (I (ω, t)) = DkGn/0 (I (ω, T )) a.e. on
{
ω ∈ � : β (ω, T ) ∈ SG0

}
.

Proof (i). By Lemma A.4,
(
mP1 j

)
(t, β) := ∫

RK M j
(
T , β + √

T − tx
)
φ (x) dx is well

defined at any (t, β) ∈ [0, T ) × R
K . Moreover, Mj (T , ·) being continuous so is the func-

tion t → Mj
(
T , β + √

T − tx
)
everywhere on (0, T ) for any given (β, x) ∈ R

K × R
K .

Furthermore, by Lemma A.6, there exist constants r ,C > 0 such that
∣∣∣Mj

(
T , β + √

T − tx
)∣∣∣φ (x) < Cφ

(√
rx
) ∀ (t, x) ∈ (0, T ) × R

K (18)

By Lemma A.3 then the preceding observations mean that, for any given β ∈ R
K ,(

mP1 j
)
(t, β) is continuous in t everywhere on (0, T ).

Taking now any ε ∈ (0, 1
2r − T

)
, the argument above remains valid if T is replaced by T +ε.

That is, the function t → (
mP1 j

)
(t, β) is continuous also on (0, T + ε). It is therefore left-

continuous at T in the original problem and thus

lim
t→T

(
mP1 j

)
(t, β) = lim

t→T

∫

RK
M j

(
T , β + √

T − tx
)

φ (x) dx

=
∫

RK
M j (T , β) φ (x) dx = Mj (T , β)

(ii) Replacing the function Mj (T , ·) with DkMj (T , ·) in the preceding argument, we obtain
also that limt→T Dk

(
mPj

)
(t, β) = DkMj (T , β).

(iii) Since pn (·) = (mPn) (·) / (mP0) (·), by (i)–(ii) above we get that

M0 (T , β)2 lim
t→T

Dk pn (t, β) = lim
t→T

(mP0) (t, β)2 Dk pn (t, β)

= lim
t→T

(mP0) (t, β) Dk (mPn) (t, β) − lim
t→T

(mPn) (t, β) Dk (mP0) (t, β)

= M0 (T , β) DkMn (T , β) − Mn (T , β) DkM0 (T , β)
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As long as β ∈ SG0 , therefore, we have

lim
t→T

Dk pn (t, β) = Dk (Mn/M0) (T , β) = DkGn/0 (T , β)

To complete the argument, recall that the Brownian paths {β (ω, s) : s ∈ (0, T )} are contin-
uous almost surely (with respect to π ) on�. For almost all ω ∈ � that is β (ω, t) approaches
β (ω, T ) as t → T . ��
Lemma A.7 Suppose f : RK → R is measurable on RK and satisfies23

∃C > 0, r ∈
(
0,

1

2T

)
: | f (x) | ≤ Cer |x|2 ∀x ∈ R

K

Let also β be a standard K-dimensional Brownian motion and

F (t, β) = E [ f (βT ) |βt = β]

Then F (·) is an analytic function of (t, β) on (0, T ) × R
K .

Proof The proof proceeds in exactly the sameway as in that of TheoremB.4 in Anderson and
Raimondo [2], but for a trivial adaptation of the argument that supports equations (23)–(27)
in that paper. Specifically, fixing t < T , Eq. (21) in Anderson and Raimondo [2] gives

F (t, β) = (2π (T − t))−K/2
∫

RK
f (β + x) e− |x|2

2(T−t) dx

= e− |β|2
2(T−t)

(2π (T − t))K/2

∫

RK

+∞∑

k=0

1

(T − t)k
∑

k1+···+kK =k

(β1y1)k1 · · · (βK yK )kK

k1! · · · kK ! f (y) e− |y|2
2(T−t) dy

Under the present growth condition, however, Eqs. (22)–(27) in Anderson and Raimondo [2]
can be replaced now by the following steps

∣∣∣∣∣
1

(2π (T − t))K/2

∫

RK

yk11 · · · ykKK
k1! · · · kK ! f (y) e− |y|2

2(T−t) dy

∣∣∣∣∣

≤ 1

(2π (T − t))K/2

∫

RK

|y1|k1 · · · |yK |kK
k1! · · · kK ! | f (y) |e− |y|2

2(T−t) dy

≤ C

(2π (T − t))K/2

∫

RK

|y1|k1 · · · |yK |kK
k1! · · · kK ! e− (1−2r(T−t))|y|2

2(T−t) dy

≤ C√
k1! · · · kK !

(
T − t

1 − 2r (T − t)

)K/2

≤ C
k1! · · · kK !
√

1
T−t − 2r

K

where the second inequality above follows from the growth condition itself and the third
from the formula for the ki th moment of the absolute value of a normal random variable.
Clearly, the last inequality above provides an upper bound for the absolute value of the
coefficient of β

k1
1 · · · βkK

K in the power series of equation (27) in Anderson and Raimondo
[2]. Hence, the power series in question converges also here absolutely within a positive
radius of convergence (see Proposition 2.2.10 in Krantz and Parks [20]). The remainder of
the proof is identical to that in Anderson and Raimondo [2]. ��
23 This result is an adaptation of Theorem B.4 in Anderson and Raimondo [2]. The latter assumes the growth
condition in Lemma A.1 above, which is stronger than the one in the present statement.
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B Price dynamics for dividend flows

Restricting first attention to the time-horizon being finite (T = [0, T ] for some T ∈ R++),
recall that the Brownian paths {β (ω, s) : s ∈ (0, T )} are continuous almost surely with
respect toπ . Hence, for any function f : [0, T ]×R

K → R that is continuous on (0, T )×R
K

the paths { f (I (ω, s))}s∈(0,T ) will be continuous almost everywhere on �. For almost all
such paths and for any t ∈ [0, T ), therefore, the time-integral can be approximated as a
Riemann-Stieltjes sum:
∫ T

t
f (I (ω, s)) ds = lim

�τ →0

τ∑

i=1

f (I (ω, si−1)) �i

= lim
�τ →0

τ∑

i=1

f (si−1, β (ω, si−1)) �i

= lim
�τ →0

τ∑

i=1

f

⎛

⎝si−1, β (ω, t) +
i−1∑

j=0

β
(
ω, s j+1

)− β
(
ω, s j

)
⎞

⎠�i

where �τ = maxi=1,...,τ {�i = si − si−1} denotes the mesh of the typical partition t =
s0 < s1 < · · · < sτ−1 = T for some τ ∈ N\ {0} in the approximating sequence. For any
s j , s j+1 ∈ [t, T ] though the increments β

(
ω, s j+1

) − β
(
ω, s j

)
are independent of Ft and

i.i.d N
(
0K ,

(
s j+1 − s j

)
IK
)
. Letting therefore x j ∼ N

(
0K ,� j+1IK

)
and thus

∑i−1
j=0 x j ∼

N
(
0K , (si−1 − t) IK

)
, it follows that f

(
si−1, βsi−1

) ∼|βt=β f
(
si−1, β + √

si−1 − tx
)
; that

is,

Eπ [ f (I (ω, s)) |Ft ] = Eπ [ f (s, βs) |βt = β] = Ex
[
f
(
s, β + √

s − tx
)]

(s, β) ∈ (t, T )×R
K

where ∼|βt=β denotes distribution conditional on βt = β ∈ R
K while x ∼ N

(
0K , IK

)
.

By Fubini’s theorem then (see, for instance, Corollary 13.9 in Schilling [29]), as long as the
quantity

∫ T
t Eπ [ f (I (ω, s)) |Ft ] ds is well defined, it cannot but be

Eπ

[∫ T

t
f (I (ω, s)) ds|Ft

]
=
∫ T

t
Eπ [ f (I (ω, s)) |Ft ] ds

=
∫ T

t
Eπ [ f (s, βs) |βt = β] ds (19)

=
∫ T

t
Ex
[
f
(
s, β + √

s − tx
)]
ds (t, β) ∈ [0, T ) × R

K

(20)

Recall now Assumption A1(ii). As r < 1
2T < 1

2(T−t) < 1
2(s−t) ∀s ∈ (t, T ), it follows

by Lemma A.4 above that the quantity Ex
[
m j
(
s, β + √

s − tx
)]

is well defined at any
(s, β) ∈ [t, T ] × R

K . By the following result, moreover, it is also integrable on (t, T ).

Lemma B.1 Given T ∈ R++ and (t, β) ∈ [0, T )×R
K , let the function f : (0, T )×R

K → R

be continuous and satisfy

| f (s, x)| ≤ C0e
r0|x|2 ∀ (s, x) ∈ (0, T ) × R

K

for someconstants (C0, r0) ∈ R++×(0, 1
2T

)
. Ifx ∼ N

(
0K , IK

)
thenEx

[
f
(
s, β + √

s − tx
)]

is integrable on (t, T ).
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Proof Since r0 < 1
2T < 1

2(T−t) < 1
2(s−t) ∀s ∈ (t, T ), it follows from Lemma A.4 (for

m = 0K ) that

Ex
[
f
(
s, β + √

s − tx
)] = 1√

s − t

∫

RK
f (s, x) φ

(
x − β√
s − t

)
dx

is well defined on (t, T ). By Lemma A.6, moreover, there exist a constant r > 0 and a
continuous function C : RK → R++ such that
∫ T

t
Ex
[∣∣ f
(
s, β + √

s − tx
)∣∣] ds < C (β)

∫ T

t

∫

RK
e− r |x|2

2 dxds = (T − t)C (β)
√
2π/r

The claim follows. ��
The preceding discussion establishes that the expressions in (5)–(6) in themain text follow

from (19)–(20), and are indeed well defined.
With respect now to (7) in the main text, by Lemma A.5, at any s ∈ (t, T ] the
integrand in (6) has a well-defined partial derivative: DkEx

[
m j
(
s, β + √

s − tx
)] =

Ex
[
Dkm j

(
s, β + √

s − tx
)]
. Given then Assumption A1(ii), Lemma A.4 ensures that the

partial derivative is continuous in β for any given (t, s) ∈ (0.T ) × (t .T ). Moreover, we can
apply again here the argument in the proof of PropositionA.1(i) to establish that, for any given
(t, β) ∈ [0.T )×R

K , the partial derivative is also continuous in s everywhere on (t, T ). And
as these observations about continuity apply also for the quantity Ex

[
m j
(
s, β + √

s − tx
)]

itself, that the dispersion operator Dk commutes under the time-integral in (6) follows by
Leibniz’s rule.

C Strong non-singularity

Recall the definition of strong non-singularity in the main text.

Claim C.1 Let { fk}k∈K be a collection of continuous functions fk : RL ⊇ S → R
K (S open).

For any x0 ∈ S the following are equivalent.

(i) The matrix
[
f1
(
x0
) · · · fK

(
x0
)]

is non-singular.
(ii) There exists ε > 0 such that { fk}k∈K satisfies strong non-singularity on B (ε)Kx0 .

Proof Weonlyneed to showof course that (ii) implies (i). For anymatrix A := [ank](n,k)∈K×K
and vector v := (v1, . . . , vK )ᵀ, denote the maximal absolute value of their respective ele-
ments by max (A) := max(n,k)∈K×K |ank | and max (v) := maxk∈K |vk |. For any n ∈ K then
we have

∣∣eᵀ
n Av

∣∣ =
∣∣∣∣∣

∑

k∈K
ankvk

∣∣∣∣∣
≤
∑

k∈K
|ankvk | ≤ K max (A)max (v) (21)

where en denotes the K−dimensional column vector with one as its nth entry and zeroes
everywhere else.

Supposenow that
[
f1
(
x0
) · · · fK

(
x0
)]
is non-singular. Set δ0 = 1/max

([
f1
(
x0
) · · · fK

(
x0
)]−1

)

and take ε0 > 0 such that | f1 (x) − f1
(
x0
) | < δ0/K for all x ∈ Bx0 (ε0) ⊂ S. By the pre-

ceding observation, for any x1 ∈ Bx0 (ε0), the matrix
[
f1
(
x1
)

f2
(
x0
) · · · fK

(
x0
)] = [ f1

(
x0
) · · · fK

(
x0
)]+ ( f1

(
x1
)− f1

(
x0
))
eᵀ
1
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is such that ∣∣∣eᵀ
1

[
f1
(
x0
) · · · fK

(
x0
)]−1 (

f1
(
x1
)− f1

(
x0
))∣∣∣ < 1

That
[
f1
(
x1
)

f2
(
x0
) · · · fK

(
x0
)]

is non-singular at any x1 ∈ Bx0 (ε0) follows from the
matrix determinant lemma.24

Take now ε1 ∈ (0, ε0) and let cl
(
Bx0 (ε1)

)
be the closure of Bx0 (ε1). By the continuity of

the matrix inverse, the quantity

δ1 = max
x1∈cl(Bx0 (ε1)

)max
([

f1
(
x1
) · · · fK

(
x0
)]−1

)

is well defined. Let now ε2 > 0 be such that | f2 (x) − f2
(
x0
) | < 1/ (K δ1) for all x ∈

Bx0 (ε2) ⊂ S. By the previous argument, the matrix
[
f1
(
x1
)

f2
(
x2
)

f3
(
x0
) · · · fK

(
x0
)]

is non-singular at any
(
x1, x2

) ∈ Bx0 (min {ε1, ε2}). Successive iterations of this argument
establish the existence of ε3, . . . , εK ∈ R++ so that the matrix

[
f1
(
x1
) · · · fK

(
xK
)]

is
non-singular for any

(
x1, . . . , xK

) ∈ Bx0 (min {ε1, . . . , εK })K . The claim follows by letting
ε := min {ε1, . . . , εK }. ��
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