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A B S T R A C T   

Common aquatic remote sensing algorithms estimate the trophic state (TS) of inland and nearshore waters 
through the inversion of remote sensing reflectance (Rrs (λ)) into chlorophyll-a (chla) concentration. In this study 
we present a novel method that directly inverts Rrs (λ) into TS without prior chla retrieval. To successfully cope 
with the optical diversity of inland and nearshore waters the proposed method stacks supervised classification 
algorithms and combines them through meta-learning. We demonstrate the developed methodology using the 
waveband configuration of the Sentinel-3 Ocean and Land Colour Instrument on 49 globally distributed inland 
and nearshore waters (567 observations). To assess the performance of the developed approach, we compare the 
results with TS derived through optical water type (OWT) switching of chla retrieval algorithms. Meta- 
classification of TS was on average 6.75% more accurate than TS derived via OWT switching of chla algo
rithms. The presented method achieved > 90% classification accuracies for eutrophic and hypereutrophic waters 
and was > 12% more accurate for oligotrophic waters than derived through OWT chla retrieval. However, 
mesotrophic waters were estimated with lower accuracy from both our developed method and through OWT chla 
retrieval (52.17% and 46.34%, respectively), highlighting the need for improved base algorithms for low - 
moderate biomass waters. Misclassified observations were characterised by highly absorbing and/or scattering 
optical properties for which we propose adaptations to our classification strategy.   

1. Introduction 

Eutrophication is the process whereby nutrient enrichment leads to 
excessive primary production of phytoplankton (cyanobacteria and 
algae) in water bodies (Conley et al., 2009; Smith et al., 2006). The main 
causes of eutrophication are non-point pollution from agricultural 
practices, urban development and energy production and consumption 
(Glibert et al., 2005; Mainstone and Parr, 2002). Increasing frequency 
and extent of phytoplankton blooms can have implications for 
ecosystem services and health (Heisler et al., 2008; Lewis et al., 2011; 
Nixon, 1995). In affected waters, cyanobacteria may produce cyano
toxins which adversely affect human and animal health (Codd, 2000; 
Merel et al., 2013). 

Naturally, lentic waters such as lakes are significant emitters of the 

greenhouse gases carbon dioxide (CO2), nitrous oxide (N2O) and 
methane (CH4) (Cole et al., 2007; DelSontro et al., 2018). Enhanced 
eutrophication due to anthropogenic climate change is expected to in
crease aquatic CH4 emissions from lentic waters by 30 – 90% over the 
next century (Beaulieu et al., 2019; Tranvik et al., 2009). 

Over the last decades, several frameworks have been developed to 
assess and manage eutrophication. Carlson (1977) proposed a Trophic 
State Index (TSI) linking transparency (Secchi disk depth (zSD [m])), 
surface phosphorus (P [mg/l]) and phytoplankton chlorophyll-a (chla 
[mg/m3]) concentrations to the trophic state (TS) of lakes. The index 
partitioned TS into three classes: oligo-, meso- and eutrophic. In later 
work Carlson and Simpson (1996) introduced an additional TS class 
(hypereutrophic) to include extreme biomass scenarios. More recently, 
other parameters linked to water optical properties, such as turbidity 
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(NTU) and colour scales, were employed for the retrieval of TS (Binding 
et al., 2007; Lehmann et al., 2018; Wang et al., 2018). 

Of the aforementioned TSI parameters, in situ measurements of chla 
are most frequently used to estimate TS. Chla is a reliable proxy directly 
for phytoplankton biomass and indirectly for primary production 
(Carlson, 1977; Huot et al., 2007; Kasprzak et al., 2008). In situ derived 
chla is a core indicator in monitoring programs such as the European 
Water Framework Directive or the U.S. Clean Water Act (Carvalho et al., 
2008; Keller and Cavallaro, 2008; Søndergaard et al., 2005). While the 
extraction of chla from in situ collected water samples has few, and likely 
low, associated uncertainties, this monitoring approach cannot be scaled 
up to include remote sites and short-lived phytoplankton bloom phe
nomena (Schaeffer et al., 2013; Tyler et al., 2016). Aquatic remote 
sensing complements in situ measurements for the estimation of surface 
water concentrations by providing a spatial and temporal observation 
advantage (Mouw et al., 2015). 

In aquatic remote sensing the inherent optical properties (IOPs, i.e. 
absorption, backscatter and fluorescence) of water and the optically 
active constituents (OACs), namely phytoplankton pigments (ϕ(λ)), non- 
pigmented particles (nap(λ)) and the absorption by the chromophoric 
fraction of dissolved organic matter (acdom(λ)[1/m]), impact the remote 
sensing reflectance (Rrs (λ, sr− 1)) vector (Gordon et al., 1988; Morel and 
Prieur, 1977). Rrs (λ, sr− 1) is defined as the ratio of water-leaving 
radiance Lw

(
μW cm− 2 sr− 1 nm− 1) to total downwelling irradiance 

Ed
(
μW cm− 2 nm− 1): 

Rrs
(
λ, sr− 1) = Lw

/
Ed. (1)  

Rrs (λ) is thus the critical optical property to derive information from a 
water body about OACs dispersed in the water column (O’Reilly et al., 
1998). The retrieval of phytoplankton chla concentration, or the 
phytoplankton absorption component, aϕ(λ)[1/m], can be expressed as 
a function estimation problem that requires inversion of Rrs (λ): 

x = f − 1[Rrs
(
λ
)]
, (2)  

whereby x is the quantity to invert Rrs (λ) for Garver and Siegel (1997, 
1995). The inversion of Rrs (λ) is known to be mathematically ill-posed, 
as multiple combinations of IOPs can result in the same Rrs (λ) vector 
and may thus cause ambiguity in the inversion (Defoin-Platel and 
Chami, 2007; Sydor et al., 2004). 

OAC compositions and concentrations strongly vary across inland 
and nearshore waters, thus accurate modelling of Eq. 2 has led to the 
development of numerous chla retrieval algorithms over the past de
cades (see reviews by Blondeau-Patissier et al., 2014, Matthews, 2011, 
Odermatt et al., 2012, Tyler et al., 2016). Chla retrieval algorithms may 
be divided into two categories: empirical and semi-analytical. As the 
name implies, algorithms of the former category are based on empiri
cism, in which a functional relationship between an OAC and the optical 
Rrs (λ) vector is established from field observations and domain 
knowledge. Popular examples are the Fluorescence Line Height (FLH) 
(Gower et al., 1999), the Maximum Peak-Height (MPH) (Matthews et al., 
2012) and Maximum Chlorophyll Index (MCI) (Gower et al., 2005) al
gorithms, which use band arithmetic to relate spectral phenomena 
associated with phytoplankton to the concentration of chla. 

Machine learning (ML) algorithms also belong to the empirical 
category. Typically, ML algorithms are based on non-linear regression 
models developed with large datasets consisting of field and/or simu
lated observations (Hieronymi et al., 2017; Pahlevan et al., 2021). 
Regression approaches can also be used to retrieve IOPs such as aϕ(λ)
(Craig et al., 2012). Retrieved aϕ(λ) is then scaled to chla concentration. 

Algorithms of the second category, semi-analytical solution algo
rithms (SAA), invert Rrs (λ) for IOPs (Werdell et al., 2018). SAA base the 
retrieval on physical reasoning, but partly employ statistical methods 
(hence the term ’semi’). In the inversion for aϕ(λ), SAA show many 
variants and differ in their definition of the aϕ(λ) spectral shape, the 

method to calculate the magnitude of aϕ(λ) and the defined relationship 
between Rrs (λ) and aϕ(λ). 

The scaling of aϕ(λ) to chla derived from SAA or regression ap
proaches can be significantly confounded in optically complex inland 
and nearshore waters due to pigment packaging and the contribution of 
accessory pigments to absorption (Bricaud et al., 1995; Simis et al., 
2007). Unless this variability is accounted for, non-linear effects in the 
relationship between aϕ(λ) and chla will also affect TS estimation. 

To reduce retrieval errors Rrs (λ) can be assigned into previously 
defined and distinct optical water types (OWTs) (Moore et al., 2014; 
Spyrakos et al., 2018). OWTs are then utilised to guide the retrieval, 
since a single chla algorithm in practice often shows limited accuracy 
across a range of OWTs. OWT switching and blending of several algo
rithms following prior classification into known OWTs has become 
established practice (Eleveld et al., 2017; Neil et al., 2019). 

Whether empirical or SAA algorithms are included in an OWT 
scheme or stand-alone, they estimate the TS of a water body indirectly 
by inverting Rrs (λ) for chla or by scaling aϕ(λ) to chla. The retrieved 
concentration then indicates a TS class. In a recent study, Shi et al. 
(2019) outlined that significant uncertainties may propagate into TS 
estimation due to the limited precision associated with inversion for 
chla. To overcome intermediate chla retrieval when TS information is 
ultimately required, Shi et al. (2019) developed an approach that 
directly relates the light absorption coefficient of OACs to TS using the 
quasi-analytical algorithm (QAA) by Lee et al. (2002). 

In this study, we develop a methodology to overcome issues associ
ated with indirect TS derivation through inversion of Rrs (λ) into chla (or 
aϕ(λ)). To accomplish this, our method inverts for TS classes directly 
through modelling of the TSI system as a classification task. To retrieve 
TS classes instead of a chla concentration value a classification algo
rithm is required. For the classification of TS we establish a relationship 
between the Rrs (λ) vector and a TS class through an in situ dataset (n =
2184) of co-located chla and Rrs (λ) measurements. 

We recognise the limited validity of a single algorithm for the in
formation retrieval across many OWTs. However, instead of common 
switching or blending of algorithms through OWT schemes, we stack 
multiple classification models and combine their TS class predictions 
through a higher-level classifier. 

To illustrate classification of TS, we define our dataset in this study as 
D = {(yi, xi), i = 1, …, N}, where yi is the TS class and xi is a vector 
representing the Rrs (λ) values of the i-th instance. Examples of vector 
classification algorithms (classifiers) are decision trees, support vector 
machines, neural networks and k-nearest neighbours (Ham et al., 2005; 
Mou et al., 2017). The aim of vector classifiers is to learn statistically 
meaningful patterns of observations through the minimisation of a 
defined loss criterion (Vapnik, 1999). In practice, different statistical 
approaches overlap because they learn the same properties for a given 
Rrs (λ) vector. Each classifier model is the result of a statistical learning 
process generating unique class decision boundaries. Therefore, while 
one algorithm may fail to correctly predict the true TS class, another 
may succeed (Polley and van der Laan, 2011; Ting and Witten, 1999). 
The combination of individual learners is the baseline for ensemble 
learning. The idea explored here is to construct a strong single learner 
from several weak learners. 

Two of the most popular ensemble methods are bagging (Breiman, 
1996) and boosting (Freund and Schapire, 1996). Bagging combines the 
predictions of weak learners using different bootstrap samples of the 
training set. Boosting sequentially trains a series of weak learners with 
weighted versions of the training set based on the performance of pre
viously constructed learners. Wolpert (1992) proposed a linear combi
nation of individual models to form an ensemble and named it “stacked 
generalisation” also known as “stacking”. van der Laan et al. (2007) 
have extended the original stacking approach with a cross-validation 
framework and coined it “Super Learner”. The classification frame
work presented here is based on the concept by van der Laan et al. 
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(2007). In the context of this research, we call this higher-level classi
fication algorithm the ”meta-classifier”. The meta-classifier acts as a 
meta instance, learning from the decisions of each individual model to 
predict TS classes for Rrs (λ). 

In this study we develop an algorithm for the direct classification of 
Rrs (λ) into TS. To successfully cope with the optical diversity of inland 
and nearshore waters, we explore the concept of stacking classifiers in a 
meta-learning scheme. We evaluate the method on the multispectral 
resolution of the Sentinel-3A Ocean and Land Colour Instrument (OLCI) 
for 49 inland and nearshore sites. An established practice is to estimate 
TS through inversion of Rrs into chla, whereby multiple chla algorithms 
may be combined in an OWT scheme to address in-water optical 
complexity. The developed meta-classifier involves multiple classifica
tion algorithms, thus we assess the utility of our approach through 
comparison with TS derivation via OWT switching of several chla 
retrieval algorithms. 

2. Methods 

In situ bio-optical data were sourced from LIMNADES (Lake Bio- 
optical Measurements and Matchup Data for Remote Sensing: https:// 
limnades.stir.ac.uk/). We assembled a subset of LIMNADES with 2751 
samples of co-located in situ chla and hyperspectral Rrs (λ) measure
ments. The datasets and measurement protocols of OACs and the deri
vation of Rrs (λ) are described in Spyrakos et al. (2018) (see Table 1 
herein). Rrs (λ) in all datasets were measured just above the water sur
face (0+). We did not apply an additional correction to Rrs (λ), assuming 
the measurements were made under optimal viewing angles and quality 
controlled during the original study. For brevity, we omit the 
wavelength-dependency for the remainder of the paper. 

For the development of the classification method two independent 
datasets were created: one for training the classification algorithms and 
one for evaluating their performance. A priority in the development 
process was to avoid the allocation of observations from the same water 
body to both training and test datasets. Mixing or randomising the in situ 
measurements across both datasets would introduce knowledge about 
the water bodies included in the test set to the classification algorithms 
in the training stage and prevent an independent evaluation of the 
proposed method. We therefore split the entire dataset using the first 
letter of the water bodies names: A-D (n  = 567, 20%) for testing and E-Y 
(n  = 2184, 80%) for training. 

2.1. Radiometric data pre-processing 

The in situ hyperspectral Rrs measurements from the training and test 
datasets were spectrally resampled to the multispectral band configu
ration of Sentinel-3A OLCI, normalised and subsequently assigned a TS 
class (Fig. 1). These steps are detailed below. 

Resampling of the hyperspectral data was necessary to combine Rrs 
from multiple sources and sensors. The spectral data were convolved to 
the spectral response function (SRF) of OLCI because the observation 
frequency, spectral sensitivity and resolution of this sensor are relevant 
to observe the TS of inland and nearshore waters (Kravitz et al., 2020). 
To convolve Rrs for each OLCI band i, we calculated the values of the 
spectral albedo for the bands: 

R

(

λi

)

=

∫ λ2
λ1

R
(

λ
)

ϕi

(
λ
)

d
(

λ
)

∫ λ2
λ1

ϕi

(
λ
)

d
(

λ
) , (3)  

where (λ) is the wavelength, (λi) is the center wavelength in the i-th 
spectral band, ϕi(λ) is the SRF of the i-th spectral band, (λ1, λ2) are the 
boundary wavelengths of the considered spectral range, R is the spectral 
albedo and R(λi) is the mean spectral albedo in the i-th spectral band. 
The mean albedo values within the bands represent the spectral albedo 
seen by the sensor and are often also called the spectral signature of the 

viewed surface. We note that the convolution was performed on Rrs 
rather than the mathematically correct Lw and Ed measurements. Any 
effects are considered negligible at the 10-nm bandwidth of OLCI 
(Burggraaff, 2020). 

Several previous optical classification studies classified untreated 
Rrs, which is sensitive to both amplitude and spectral shape (Lee et al., 
2010; Moore et al., 2001; Moore et al., 2009). More recently, and 

Table 1 
Inland and nearshore waters included in the training and test datasets.  

Dataset name 
(according to  
Spyrakos et al. 

(2018)) 

Number of 
observations 

(n) 

Systems References 

Training set (n  ¼ 2184) 

CEDEX 107 26 Spanish 
reservoirs 

(Ruiz-Verdú et al., 
2008; Simis et al., 

2007; Ruiz-Verdú et al., 
2005) 

CU, EC, IU, UNL- 
A, UNH 

1121 90 U.S. waters (Binding et al., 2008; 
Binding et al., 2010; 
Binding et al., 2013; 

Bradt, 2012; Dall’Olmo 
et al., 2003; Dall’Olmo 
et al., 2005; Dall’Olmo 

and Gitelson, 2006; 
Gitelson et al., 2007;  
Gitelson et al., 2008; 
Gurlin et al., 2011; Li 
et al., 2013; Li et al., 
2015; Schalles, 2006; 
Schalles and Hladik, 

2012) 
UNL-B 52 Lake Kinneret 

(Israel) 
(Yacobi et al., 2011) 

SYKE 10 Three Finnish 
lakes 

(Kallio et al., 2015) 

CNR 215 Five Italian 
lakes 

(Bresciani et al., 2011; 
Giardino et al., 2005; 
Giardino et al., 2013; 
Giardino et al., 2014; 
Giardino et al., 2015;  
Guanter et al., 2010; 
Manzo et al., 2015) 

UCT 56 Three South 
African 

reservoirs 

(Matthews and 
Bernard, 2013; 

Matthews, 2014) 
CAS 243 Lake Taihu 

(China) 
(Zhang et al., 2007; 
Zhang et al., 2010) 

UT 38 Lake Peipsi 
(Estonia) 

(Kutser et al., 2012; 
Kutser et al., 2013) 

NIOO-KNAW 198 Two Dutch 
lakes 

(Guanter et al., 2010; 
Ruiz-Verdú et al., 2008; 

Simis et al., 2005, 
2007) 

UTSU 144 Six Japanese 
and Chinese 

lakes 

(Matsushita et al., 
2015; Jaelani et al., 
2013; Yang et al., 

2013) 

Test set (n ¼ 567) 

CEDEX 76 17 Spanish 
reservoirs and 

two lakes 

(Ruiz-Verdú et al., 
2008; Simis et al., 
2007; Ruiz-Verdú et al., 
2005) 

UNH, UNL-A, IU, 
CU 

448 28 U.S. waters (Bradt, 2012; 
Dall’Olmo et al., 2003; 
Dall’Olmo et al., 2005; 
Gitelson et al., 2008; Li 
et al., 2013; Li et al., 
2015; Moore et al., 

2014; Schalles, 2006) 
USTIR 29 Lake Balaton 

(Hungary) 
(Riddick et al., 2015) 

UL 14 Lake Bogoria 
(Kenya) 

(Tebbs et al., 2013)  
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particularly relevant to optically complex water bodies, the reflectance 
vector has been normalised prior to the classification (Hieronymi et al., 
2017; Mlin et al., 2011; Spyrakos et al., 2018; Xi et al., 2015; Xi et al., 
2017). The amplitude of Rrs is strongly influenced by particulate (back-) 
scattering, while the shape is primarily affected by aϕ(λ), acdom(λ) and 
the absorption by non-pigmented particles (anap(λ)[1/m])(Roesler et al., 
1989). In this study we followed the prior normalisation approach of Rrs 
to emphasise the shape: 

rn(λ) =
Rrs

∫ λ2
λ1

Rrs(λ)d(λ)
, (4)  

where rn (in units of nm− 1) indicates the normalised spectrum obtained 
through trapezoidal integration between λ1 (412 nm) and λ2 (753 nm) 
(Mlin and Vantrepotte, 2015). 

The resampled and normalised reflectance datasets are displayed in 
Fig. 2. To enable the inversion for TS we established a relationship be
tween Rrs and the TS classes. We used the TSI definition by Carlson 
(1977) and the extension made for hypereutrophic waters by Carlson 
and Simpson (1996). The TSI definition provides a logarithmic model to 
interpret chla concentrations as indicators for TS classes. We separated 
our Rrs dataset into four reflectance TS classes (oligo-, meso-, eutro- and 
hypereutrophic) based on the chla concentrations measured from co- 

located in situ water samples (Table 2). The compiled dataset covers a 
wide range of bio-optical conditions and trophic states found across 
inland and nearshore waters. Fig. 3 displays the logarithmic distribution 
of chla [mg/m3], total suspended matter (TSM [g/m3]), and acdom(443) 
[1/m] for the training and test sets. The minimum and maximum values 
of the OACs are given in Table 3. The training set was used multiple 
times throughout the classification scheme, whereas the resultant clas
sification algorithms were applied once to the test set for evaluation. 

2.2. Meta-classification of remote sensing reflectance 

In our dataset D = {(yi, xi), i = 1,…,N}, yi represents the trophic 
class values and xi the reflectance vector values of the i-th instance. To 
classify an instance, a library L with k = 4 base classification algorithms 
(base-classifiers), i.e. L = {k1, k2, …, k4}, was created. The library is a 
collection of vector classifiers. We invoked the k-th base-classifier in L to 
predict the class for each instance xi, along with its true TS classification 
yi. Combining these predictions along with the true trophic class vector 
led to a new dataset, the level-zero data. The level-zero dataset was 
treated as the training ground for a new learning problem subsequently 
solved by an additional classification algorithm, the meta-classifier. 

2.2.1. Base-classifiers 
We trained the meta-classifier with the predictions of four base- 

classifiers characterised by different statistical assumptions: eXtreme 
Gradient Boosting (XGBoost), LightGBM (LGBM), Naïve Bayes (NB) and 
a neural network (NN). The classifier assumptions and the training 
procedure, involving the stacking of base-classifiers to fit the meta- 
classifier, are as follows. 

The first two classifiers are XGBoost and LGBM (Chen and Guestrin, 
2016; Ke et al., 2017). Both classifiers have their statistical origin in 
gradient boosting machines (GBM) combined with decision trees as 
base-learners (GBDT) (Freund and Schapire, 1997; Friedman et al., 
1998; Friedman, 2000). GBDTs create new models sequentially to pro
vide more accurate estimates of the target variable. The principle is to 
construct new learners that focus on weak areas already learnt, or in 
statistical terms, construct learners correlated with the negative gradient 
of the used loss function (Natekin and Knoll, 2013). For reviews on 
boosting algorithms see Bühlmann and Hothorn (2007), Schapire 
(2003). The prediction of the XGBoost algorithm at each iteration t is 
based on the defined objective function Ĵ: 

Ĵ
(t)

= L(θ)+Ω(θ), (5)  

where 

L(θ) =
∑n

i = 1
ℓ
[
yi, ŷ(t)

i

]
, (6)  

and 

Ω(θ) = γT +
1
2

λ
∑T

j = 1
w2

j . (7)  

The objective function Ĵ
(t)

consists of two parts: L(θ) and Ω(θ). θ de
scribes the parameters in the equation. L(θ) is a differentiable convex 
loss function that measures the difference (residual) between a class 
prediction ŷi and yi at the t-th iteration. The goal of the optimisation 
process is to construct a tree structure that minimises a loss function in 
each iteration. The updated tree structure in each iteration learns from 
the previous tree’s model decision and uses the residuals to fit a new 
residual tree. To construct models that generalise and avoid overfitting, 
Eq. 5 denotes a regularisation term Ω(θ). T in Eq. 7 is the number of 
terminal nodes in a tree and γ the learning rate (between 0 – 1). γ is 
multiplied by T to enable tree pruning. Terminal nodes and the learning 
rate are hyper-parameters that we optimised in separate steps (see 

Fig. 1. Pre-processing scheme of the entire dataset (n  = 2751) resulting in 
independent training (n  = 2184) and test (n  = 567) sets. 
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Section 2.2.3). Compared to classic GBM algorithms, XGBoost in
troduces the term 1

2 λ
∑T

j = 1w2
j , where λ is an additional regularisation 

parameter, and wj enables to control the weights of the tree leaves 
(Goodfellow et al., 2016). Ω(θ) prevents overfitting and allows a better 
generalisation of the constructed model. 

In this study we used the multi-class logarithmic loss function 
(mlogloss) for both XGBoost and LGBM. Mlogloss measures the perfor
mance of the models with an output probability value between 0 and 1 
and increases when the predicted probability diverges from the actual 
class label: 

mlogloss = −
1
N
∑N

i

∑M

j
yijln

(
pij
)
, (8)  

where N is the number of observations, M the number of TS class labels, 
yij a variable with the predicted class label and pij is the classification 

probability output by the classifier for the i-th instance and the j-th label 
(Bishop, 1995; Hsieh, 2009). Solving Eq. 8 becomes challenging and 
computationally demanding. Therefore, Eq. 8 is transformed using a 
second-order Taylor expansion (Bishop, 2006). The transformation al
lows the objective function to depend only on the first and second order 
derivatives of a point in the loss function, also speeding up the process. 
The main difference between XGBoost and LGBM is the tree construction 
process. Both classifiers can capture highly non-linear feature-target 
class relationships. The models can be precisely controlled by tuning a 
set of hyper-parameters. In addition, each classifier can be trained on 
both small and large datasets making them suitable for any given clas
sification task. 

The third classifier in our ensemble is a Naïve Bayes (NB) probabi
listic model based on the Bayes’ Theorem: 

P(C = yi|X = x) =
P(x|yi)P(yi)

P(x)
, (9)  

where P(yi
⃒
⃒x) is the conditional probability that a reflectance spectrum x 

belongs to a trophic class yi. The Bayes’ rule specifies how this condi
tional probability can be calculated from the features (wavelengths) of 
the reflectance vectors of each trophic class, and likewise the uncondi
tional probability (Lewis, 1998). The NB classifier calculated the prob
ability of each trophic class for a given reflectance and output the 
trophic class with the highest one. We specifically wanted to include the 
assumption that for some reflectance spectra independent, single 
wavelengths are dominant, and hence strongly influence the class 
assignment. Since the wavelengths of multispectral reflectance vectors 
are at least partly correlated, the NB assumption is naive. In our 
ensemble of classifiers, NB is one of several base-classifiers generating a 
TS prediction. Following the theory of stacked generalisation, the meta- 
classifier should recognise when the NB assumptions apply through 
evaluation of the predictions for each test reflectance. In case the NB 
assumptions hold, high prediction accuracies are expected and thus the 
meta-classifier could prioritise the NB predictions in the decision- 
making to generate a final TS estimate. In case the NB assumptions do 
not apply, the accuracies will be low and lead to higher influence on the 
meta-classifier of other, more accurate base-classifiers. 

As the fourth base-classifier we used a NN. NNs have shown success 

Fig. 2. Hyperspectral in situ data (top row) and the resulting Sentinel-3A OLCI resampled and normalised multispectral reflectance spectra (bottom row) for both 
training (green) and test measurements (blue). 

Table 2 
TSI classification after Carlson and Simpson (1996) and assigned reflectance 
spectra per class in our training and test sets. n is the number of observations.  

Class TSI Chla 
range   
[mg/ 
m3] 

Water quality 
characteristics 

Training 
(n ¼
2184) 

Test 
(n ¼
567) 

1 Oligotrophic 0 – 2.6 Low primary 
productivity and 
high oxygen in 
hypolimnion. 

356 36 

2 Mesotrophic > 2.6 
– 7.3 

Intermediate levels 
of productivity. 

328 92 

3 Eutrophic > 7.3 
– 56 

High biological 
productivity, 

occasional algal 
blooms. 

1164 332 

4 Hypereutrophic > 56 Excessive biological 
productivity, algal 

blooms, low 
transparency and 

oxygen levels. 

336 107  
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across a diverse set of waters due to their aptitude to approximate non- 
linear input–output functions (Brockmann et al., 2016; Doerffer and 
Schiller, 2007; Hieronymi et al., 2017; Ioannou et al., 2013; Krasno
polsky et al., 2002; Krasnopolsky et al., 2018). In this study, a NN with 
one layer and multiple hidden neurons hj was trained. The output of the 
NN for the test dataset was given by: 

y = â +
∑n

j= 1
w̃j⋅hj, (10)  

with 

hj = ϕ
(
aj + wj⋅xi

)
, (11)  

where xi and y are input and output vectors, respectively; wj and w̃j are 
weights, aj and â are fitting parameters and ϕ is the non-linear hyper
bolic tangent activation function (Hsieh, 2009). In Eq. 10, n is the 
number of the non-linear activation function, ϕ in Eq. 11. The defined 

objective function Ĵ
(t)

(Eq. 5) for the NN minimised the mlogloss func

tion (Eq. 8) and the regularisation term Ω
(
θ
)
= 1

2 ‖ w ‖ 2
2, also known as 

weight decay. The NN was trained using backpropagation (Goodfellow 

Fig. 3. Logarithmic distribution of available Chla [mg/m3] (n  = 2751), TSM [g/m3] (n  = 1758) and acdom(443)[1/m] (n  = 1754) samples in our dataset per TS 
class (green training, blue test). 

Table 3 
Minimum and maximum values of the training and test set constituents.   

Chla 
train 
[mg/ 
m3] 

Chla 
test 

[mg/ 
m3] 

TSM 
train 

[g/m3] 

TSM 
test 
[g/ 
m3] 

acdom 

train 
(443) 

[1/m] 

acdom 

test 
(443) 

[1/m] 

Minimum 0.031 0.53 0.15 1.3 0.001 0.004 
Maximum 13296.7 782 2533.3 423 15.38 42.46  
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et al., 2016). For the multi-class output layer, we used the standard 
softmax function (Bishop, 2006). 

It is worth noting that the NN with one layer can be considered 
shallow, whereas it is becoming more common to use ”deeper” NNs 
characterised by more layers. We could have added additional layers or 
used a more advanced architecture such as a mixture density network 
(MDN), as recently demonstrated for inland and coastal waters in Pah
levan et al. (2020). However, the intent of this paper is to present meta- 
classification, and not to showcase various NN architectures. Further, a 
deeper NN increases training time and requires more in situ measure
ments which are naturally limited. For this application, we therefore 
opted to keep the NN architecture as basic as possible. 

Our library L consists of a diverse set of base-classifiers and under
lying statistical models that forwarded the unique information learnt 
about the reflectance spectra, constituting each trophic class, to the 
meta-classifier. 

2.2.2. Meta-classifier 
The meta-classification training and prediction procedures were 

multi-step processes, as we illustrate schematically in Fig. 4. All classi
fiers were trained using a v-fold cross-validation scheme with v = 5. 
Cross-validation enables performance assessment of the classification 
algorithms during the training process (Schaffer, 1993). The process of 
training the meta-classifier on the predictions of the base-classifiers in 
our library L = {k1, k2,…, k4} was as following:  

1. We split the reflectance training set into 5 exclusive folds of n/v =

2184/5 ∼ 437.  
2. For each fold v = {(vi) = 1,…,5}:  

(a) Reflectance spectra in fold vi were validation data (hold-out set), 
while the remaining observations (80% of the reflectance 
spectra) constituted the training set. Each base-classifier was fit 
on the training set.  

(b) With each base-classifier we predicted the outcome ŷi for each 
reflectance instance xi in a validation set vi. The resulting loss of 
each base-classifier was estimated between the true outcome yi 

and its prediction ŷi for all reflectance spectra. 

(c) For each classifier, the v-estimated loss rates over the v-valida
tion sets were averaged resulting in the cross-validated loss. For 
each reflectance the model of the respective base-classifier with 
the smallest cross-validated loss was selected for subsequent use 
by the meta-classifier. 

Combined with the true trophic class yi, we stacked the cross- 
validated predictions made on the training set of each base learner to 
generate a vector of level-zero predictions: pzerotrain = {(pi, xi) = 1,…,

N}. This important step constituted the training set of the meta- 
classifier, where each feature in pzerotrain was a single prediction of the 
base-classifiers. For each prediction, we knew the true outcome yi and 
hence provided the meta-classifier the necessary training data. The 
meta-classifier learnt which of the base-classifiers predicted the true 
trophic class yi for each training reflectance. We used a separate NN as 
the meta-classifier. We selected a NN because of its high approximation 
capability to learn the non-linear decision boundaries necessary to 
distinguish between the base-classifier predictions. The task of the meta- 
classifier NN was to select the most accurate base-classifier for each 
reflectance and assign a final trophic class. The training procedure of the 
meta-classifier required the level-zero predictions pzerotrain. 

In the application, each base-classifier in L predicted a trophic class 
for each reflectance in our test set, resulting in a vector with level-zero 
test predictions: pzerotest = {(pi,xi) = 1,…,N}. These predictions were 
then stacked and provided to the meta-learner NN to estimate a final 
trophic class for each test reflectance. 

In this study we utilised the open-source ML-ensemble Python library 
that interfaces with Skicit-Learn (Flennerhag, 2017; Pedregosa et al., 
2011). 

2.2.3. Hyper-parameter optimisation 
We optimised the learning process of the considered classifiers 

through hyper-parameter optimisation (HPO). Given a learner A of any 
of the base-classifiers k in our library L, hyper-parameters were exposed 
λ x Λ. Tuning hyper-parameters changed the way model A learnt to 
correctly classify training reflectance spectra in the dataset D. For 
example, a hyper-parameter of the base-classifiers XGBoost and LGBM 
limits the maximum depth of the constructed tree. Further, the NNs 

Fig. 4. Schematic diagram of the training and application processes included in the meta-classification framework.  
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require a selection of neurons in a layer (as opposed to weights that are 
model parameters learnt during training). Mathematically, HPO can be 
represented as: 

x∗ = argmin
x

f (x), (12)  

where f(x) is the objective function to minimise (or maximise) - such as 
the mlogloss - and x* is the lowest (or highest) value of a function for a 
set of hyper-parameters we have drawn from a domain X . In practice, 
X was a previously defined grid of hyper-parameters. f is a black-box 
function and has a large set of hyper-parameter combinations that are 
computationally costly to evaluate. The search that optimises f is often 
either manually performed or accomplished by selecting randomly from 
a set of hyper-parameters. Another option is to search through a grid 
consisting of a substantial combination of all possible hyper-parameter 
configurations (Bergstra et al., 2011; Bergstra and Bengio, 2012; 
Thornton et al., 2012). Because our meta-classification approach 
involved the training of classifiers with several hyper-parameters, a 
manual, random or grid search approach was considered unpractical. 
These search approaches are time intensive and susceptible to missing 
an optimal hyper-parameter configuration. In this study, we instead 
followed the concept of Bayesian optimisation (Jones et al., 1998; 
Streltsov and Vakili, 1999). As in the Naïve Bayes classifier, Bayesian 
optimisation is based on the Bayes’ Theorem stating that the posterior 
probability (or hypothesis) M of a learner (or model) A given data points 
D is proportional to the likelihood of D given M multiplied by the prior 
probability of M: 

P(M|D) =
P(D|M)P(M)

P(D)
. (13)  

Bayesian optimisation methods can be understood as a sequence process 
that builds a probabilistic model by keeping track of past evaluation 
results (Brochu et al., 2010). A probabilistic model is build by mapping 
hyper-parameters to a probability of a score on the objective function f. 
One can represent this model as P(C|x), where C is the score for each 
hyper-parameter x. In literature, the model P(C|x) is called utility (or 
surrogate) function u. In this study, we built the model with a Gaussian 
Process (GP) as the prior probability model on f (Rasmussen and Wil
liams, 2005). GPs have become a standard in Bayesian optimisation 
(Martinez-Cantin, 2014; Snoek et al., 2012). The surrogate function u 
was then optimised for and based on the posterior distribution for sam
pling the next set of hyper-parameters (xt+1): 

xt+1 = argmin
x

u(x). (14)  

To find the next best point to sample f from, a point was chosen that 
maximised an acquisition (or selection) function, here the expected 
improvement (EI): 

EI(x) = E[max{0, f (x) − f (x̂}], (15)  

where x̂ is the current optimal set of hyper-parameters. Maximising x̂ 
was the objective to improve upon f most. f was continually evaluated 
against the true objective function until a defined maximum of iterations 
was reached. By continually updating the surrogate probability model, 
Bayesian reasoning led to reliable results. The next set of hyper- 
parameters was selected based on the previous performance history 
instead of a costly grid search through all possible hyper-parameter 
combinations. Several libraries exist that implement Bayesian optimi
sation. Here we used Scikit-Optimize, as it was built on top of Scikit- 
Learn (Head et al., 2018). 

2.3. Optical water type switching to derive trophic status 

To assess the performance of the developed meta-classifier, we 
compare it against derivation of TS through OWT switching of chla 

retrieval algorithms (see Fig. 5). 
Our OWT switching approach is based on three previous studies. 

First, the OWTs for all Rrs in our training and test datasets are available 
from Spyrakos et al. (2018) (Fig. 6). Second, our dataset is almost 
identical (98% common) to the one used in the study by Neil et al. 
(2019) (n  = 2807, compared to n  = 2751 herein). Neil et al. (2019) 
assessed the performance of 48 chla algorithms on their dataset, 
resulting in one best-performing algorithm per OWT (see Table 5 
therein). Since the datasets of the two studies are nearly identical, the 
performance results of Neil et al. (2019) are considered valid for the 
dataset of the present study. Third, Neil et al. (2019) recommended chla 
algorithms for groups of OWTs when applied to independent, unknown 
data (such as the test set herein). We slightly modified the selection of 
algorithms, based on recent performance evaluations from the European 
Copernicus Global Land Service (Simis et al., 2020). Four chla algo
rithms were thus assigned to groups of OWTs (Table 4). Restriction of 
the OWT scheme to four chla algorithms increases the quality of the 
exercised comparison, as the meta-classifier is equally based on four 
base-learners. 

For the retrieval of chla through OWTs two approaches exist. The 
first approach uses the most dominant/highest OWT membership score 
a Rrs received in the clustering process performed in Spyrakos et al. 
(2018). Chla is then retrieved with an assigned algorithm per OWT. In 
the present study we refer to this approach as OWT switching of chla 
algorithms. The second approach utilises the highest n OWT member
ship scores per Rrs to retrieve chla with n algorithms. The n retrieved 
chla values are then weighted to reflect the OWT membership scoring, 
resulting in a blended chla value (Moore et al., 2014). 

The blending procedure varies depending on the value of n and the 
definition of the weighting function. Since the largest impact on the chla 
retrieval originates from the algorithm chosen for each OWT, we 
simplified the process and utilised the highest OWT membership score 
per Rrs. 

The meta-classifier was trained with 80% observations of the overall 
dataset. The coefficients of the chla algorithms included in the switching 
scheme were thus re-calibrated solely with measurements included in 
the respective OWT group of the training data set. For example, in our 
OWT switching scheme, the OC2 algorithm was assigned for OWTs 3, 9, 
10, 13, which combined constitute 511 observations in the training set. 
Using these OWT group measurements of the training set, the co
efficients of the OC2 fourth-order polynomial were estimated using non- 
linear least squares fitting. As a result of the dataset split into indepen
dent training and test sets (which did not take into account OWT 
memberships), all measurements included in OWT 13 were assigned to 
the training set. Therefore the OC2 algorithm could only be applied to 
measurements of OWTs 3, 9 and 10 included in the test set. 

We did not re-calibrate the coefficients of the Gons and Gilerson 2- 
band algorithms, as the number of required chla-specific absorption 
(a*

ϕ(λ)[m
2 g− 1] and backscatter [1/m] measurements included in the 

respective OWT training groups was low and thus insufficient for this 
purpose. 

Chla from aϕ(665)[1/m] retrieved by QAA Mishra was estimated 
using the equation by Bricaud et al. (1998): 

Chla_QAA Mishra =

(
aϕ(665)

a

)
1
b, (16)  

where a and b were calibrated with training data included in OWT group 
7. 

Unlike the meta-classifier that operated on normalised Rrs (see 
Section 2.1), the chla retrieval algorithms were applied to non- 
normalised Rrs at corresponding OLCI wavelengths. 

Each algorithm retrieved chla for the test Rrs measurements con
tained in the assigned group of OWTs. TS was subsequently derived from 
the retrieved chla concentration according to the TS class ranges 
depicted in Table 2. 
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2.4. Performance evaluation 

To evaluate the base-classifiers independently of the meta-classifier 
and vice versa, we compared them to a separate support vector ma
chine (SVM) classifier (Cortes and Vapnik, 1995). Identical to the base- 
classifiers, we used the same training and test sets and procedures to 
train the SVM. 

For the evaluation of TS classifications either through meta- 
classification or derived via conventional chla retrieval, we calculated 
the following metrics:  

1. Overall Accuracy (OA). Accuracy of all reflectance instances x 
correctly classified into each of the four TS classes M, divided by the 
total number of test samples (n  = 567): 

OA =
∑M

i = 1
x
/

n. (17)    

2. Average Accuracy (AA). Average classification accuracy across all 
four trophic classes: 

AA =
∑M

i = 1
x
/

4. (18)    

3. Kappa Coefficient (Kappa). Percentage agreement corrected by the 
level of agreement that could be expected due to chance alone: 

κ = (p0 − pe)/(1 − pe), (19)  

where p0 was the accuracy and pe was the probability of agreement 
by chance (Cohen, 1960; Congalton, 1991). 

OA and AA are not equal because each trophic class holds a different 
number of samples. Because of the dataset split procedure, the dataset 
suffers from an imbalance between the classes (see Table 2). Using OA 
alone lacks precision because the smaller number of samples in the 
trophic classes 1 and 2 have less impact on the final accuracy score than 
class 3 (eutrophic). Hence, we calculated AA for all classification 
models. Because the eutrophic class has the highest amount of samples, 
large differences between OA and AA may indicate a biased classifica
tion model. We included the Kappa coefficient to estimate the proba
bility of a correct class assignment by chance alone. 

In the comparison of the meta-classifier against TS derived via OWT 
switching, we evaluated the results of the regression of chla retrieved 
from an algorithm (estimated (E)) versus the in situ chla values 
(observed (O)). 

We assessed the residuals of Ei − Oi with log-transformed metrics, as 
they enable a robust assessment of the algorithms over large concen
tration ranges of chla (O’Reilly and Werdell, 2019; Seegers et al., 2018): 

Fig. 5. OWT switching scheme of chla al
gorithms to derive TS. OWT clustering of the 
dataset was performed in Spyrakos et al. 
(2018). Chla algorithm selection was based 
on benchmark results from Neil et al. (2019) 
for this dataset and modifications under
taken in Simis et al. (2020). Each group of 
OWTs was assigned one chla algorithm. Al
gorithm coefficient calibration was per
formed on the respective OWT group 
training data and the re-calibrated algo
rithms were applied to the test observations 
of the respective OWT group. TS was derived 
from the retrieved chla value based on the TS 
class ranges defined in Tabl.e 2.   
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1. Bias, which quantifies the average difference between estimated chla 
and the observed in situ value and is robust to systematic errors 
produced by an algorithm: 

Bias = 10Y where Y =
⎡

⎢
⎢
⎣

∑n

i=1
log10(Ei ) − log10(Oi)

n

⎤

⎥
⎥
⎦.

(20)    

2. Mean Absolute Error (MAE), which captures the error magnitude 
accurately but can be sensitive to outliers: 

MAE = 10Z where Z =

⎡

⎢
⎢
⎣

∑n

i=1

⃒
⃒log10(Ei) − log10(Oi)

⃒
⃒

n

⎤

⎥
⎥
⎦.

(21)    

3. Median Absolute Percentage Error (MdAPE), which is outlier- 
resistant. For each sample (i): 

MdAPE = 100 × x̃,

where x̃ is the median of
[
|Ei − Oi|

Oi

]

.
(22)   

Additionally, we provide the slope of the linear regression fit to 
enable comparisons with previously published results. We omit the co
efficient of determination (r2) as it lacks a response to bias and is sen
sitive to outliers and thus subject to false interpretation (Seegers et al., 
2018). 

3. Results 

3.1. Meta-classification 

For the meta-classifier LGBM and XGBoost were base-learners. LGBM 
marginally outperformed XGBoost for all TS classes (Table 5). The 
overall accuracies (OA) were 80.56% and 79.15% for LGBM and 
XGBoost, respectively (Fig. 7). Both classified a high proportion of the 
eutro- and hypereutrophic systems (classes 3 and 4) correctly (86.14% 
and 91.59% for LGBM and 85.54% and 89.72% for XGBoost). Both 
classifiers achieved moderate classification accuracies for the oligo- and 
mesotrophic classes (classes 1 and 2). For the oligotrophic class, 33.33% 
and 36.11% misclassifications occurred (assigned mesotrophic) for 
LGBM and XGBoost, respectively. For mesotrophic systems, LGBM 
misclassified 28.26% and XGBoost 22.83% of observations as eutrophic. 
LGBM and XGBoost performed similarly with slightly higher prediction 
accuracies by LGBM across all classes. Differences were primarily due 
their distinct approaches to build the decision trees. Both models 
constituted balanced base-learners without major prediction failures for 
any of the TS classes. 

Out of all the base-classifiers, NB classifications had the highest 
variance. While 55.56% of observations were correctly assigned oligo
trophic (similar to the performances of XGBoost and LGBM), NB per
formed poorly (22.83%) for the mesotrophic class, predicting most 
water systems as eutrophic (68.48%). In contrast, NB classified 94.28% 
of the eutrophic observations accurately, outperforming all classifiers 
for this TS class. Although the other classes were not predicted with high 
precision, NB reached an OA score of 75.44%. This high OA score can be 

Fig. 6. OWTs of the test set coloured by their assigned chla retrieval algorithm 
(OC2: 3, 9, 10. Gilerson 2-band: 2, 8, 11, 12. Gons: 1, 4, 5, 6. QAA Mishra: 7). 
Hyperspectral resolution (top, n  = 567) and average Rrs spectra per OWT 
(bottom, n  = 12). 

Table 4 
Chlorophyll-a algorithms included in the OWT switching scheme. Calibration coefficients for each model highlighted in bold.  

OWTs Algorithm References Equation a b c d e 

3, 9, 10, 13 OC2 (O’Reilly et al., 1998;  
O’Reilly and Werdell, 

2019) 

Chla_OC = 10(a+bX+cX2+dX3+eX4)

X = log10

(
Rrs490
Rrs560

)

− 0.0087 − 1.9803 5.0867 1.0043 − 15.7660 

2, 8, 11, 12 Gilerson 2- 
band 

(Gilerson et al., 2010) 
Chla_Gil =

[

35.75 ×
Rrs708
Rrs665

− 19.30
]1.124       

1, 4, 5, 6 Gons (Gons et al., 2002;  
Gons et al., 2005;  
Gons et al., 2008) 

Chla_Gons =

[(
Rrs708
Rrs665

)

× (0.7 + bb) − 0.4 − ba
b

]/

b  

0.016     

7 QAA Mishra (Mishra and Mishra, 2014) aϕ(665) = a(665) − aw(665) − acdom(665)
acdom(665) = acdom(443)(− a(665− 443))

0.0138      
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explained by the higher number of test samples in the eutrophic class 3 
(n  = 332) and the disproportionate impact on the overall accuracy 
metric. Consequently, AA becomes a more relevant metric because it 
incorporates the imbalanced dataset distribution. The NB AA score was 
approximately 15% lower at 60.22%. NB assumptions only applied to 
eutrophic and partially hypereutrophic waters (68.22%). For oligotro
phic waters, the NB classifier performed comparable to the other 
classifiers. 

The base-classifier NN achieved the highest accuracies for oligotro
phic systems (61.11%). Compared to LGBM and XGBoost, the results 
were inferior for mesotrophic (45.65%) and hypereutrophic waters 
(82.24%). However, as for the other classifiers, the NN scored high ac
curacies for eutrophic waters (92.17%). Whereas for oligotrophic and 
eutrophic waters the prediction accuracies by the NN were competitive, 
the model’s predictions were not balanced across the entire set of TS 

classes. It is to observe that higher accuracies for the oligotrophic class 
were accompanied by lower precision for mesotrophic waters. Similarly, 
the eutrophic class was retrieved with high precision, whereas less ac
curate predictions for hypereutrophic waters were made. Because the 
NN in this study is considered shallow, adding depth to the architecture 
may stabilise the predictions made across the TS classes. Therefore, 
more thorough experiments with different NN architectures need to be 
undertaken than they were exercised in this study. For exemplification 
of the meta-classifier concept the NN sufficed to add meaningful infor
mation to the ensemble of base-learners. 

The non-base SVM classifier scored the highest accuracy for meso
trophic waters (63.04%, 6.52% more accurate than the highest base- 
learner prediction by LGBM (56.52%)) and hypereutrophic waters 
(0.94% compared to LGBM predictions). SVM predictions were 10.87% 
and 1.87% more accurate than from the meta-classifier for these two 

Table 5 
Classification accuracies of the different classifiers for the test set shown in percentages. The highest accuracy in each row is shown in bold.  

Class Class Name XGBoost LightGBM NN NB SVM Meta-classifier 

1 Oligotrophic 52.77 55.55 61.11 55.55 61.11 66.66 
2 Mesotrophic 53.26 56.52 45.65 22.82 63.04 52.17 
3 Eutrophic 85.54 86.14 92.16 94.27 73.79 92.16 
4 Hypereutrophic 89.71 91.58 82.24 68.22 92.52 90.65 

OA - 79.15 80.56 80.91 75.44 74.91 83.92 
AA - 70.32 72.45 70.29 60.22 72.61 75.41 

Kappa - 65.10 67.18 66.88 52.73 60.02 71.72  

Fig. 7. Classification matrices for predictions made by all classifiers on the independent test set (n  = 567). The percentage of reflectance spectra assigned per TS 
class is shown. Yellow colours indicate high, purple colours low percentages per classifier. TS classes are denoted as 1  = Oligotrophic, 2  = Mesotrophic, 3  =
Eutrophic, 4  = Hypereutrophic. 
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classes, which in sum represents a significant performance gain. How
ever, the SVM misclassified a large proportion of the eutrophic class 
(73.79% compared to 92.16% by the meta-classifier), reducing all per
formance metrics significantly. 

In the present study, the SVM functioned as a standalone comparison 
model which therefore could not be incorporated into the ensemble of 
base-learners. However, given the performance gains of the SVM over 
other base-learners for mesotrophic and hypereutrophic waters, the 
addition of the SVM to the ensemble should be investigated. Before 
adding the SVM, it needs to be clarified whether the eutrophic mis
classifications are a primary consequence of the model’s more accurate 
mesotrophic and hypereutrophic classifications. If included, it is 
furthermore important to validate if the lower accuracies for eutrophic 
waters can be accurately handled by the meta-classifier without an 
overall performance loss for this class. Only if the meta-classifier can 
discard misclassifications accurately, performance gains of the SVM for 
mesotrophic and hypereutrophic waters would improve overall meta- 
classifier accuracies. Inclusion of the SVM into the ensemble of base- 
learners would also require to re-train the meta-classifier NN. 

The meta-classifier achieved the highest classification accuracies 
across all performance metrics (OA: 83.92%, AA: 75.41%, Kappa: 
71.72%) and the oligotrophic class 1 (66.67%). In comparison, the base- 
classifiers’ average accuracy for oligotrophic waters was 56.25%. The 
meta-classifier improved on this score by 10.42%. Compared to the 
oligotrophic class, the meta-classifier did not improve over the most 
accurate base-classifiers for mesotrophic waters. The decision-making 
process of the meta-classifier to prioritise a reliable base-classifier 
became increasingly complex in the case of strongly differing base- 
classifier predictions. For mesotrophic waters, the meta-classifier had 
to discard the poor performing base-classifiers NB (22.83%) and NN 
(45.65%) in favour of the more accurate XGBoost (53.26%) and LGBM 
(56.52%). The meta-classifier was not able to entirely dismiss the NB 
and NN classifiers compared to the most reliable performance achieved 
by the base-learner LGBM. Despite the poor performances by NB and the 
NN, the meta-classifier scored 52.17% prediction accuracy for meso
trophic waters. Since the selection of a base-classifier for a reflectance 
was learnt using the training data, choosing incorrect classifiers for a 
reflectance of the test set was an expected outcome in heterogeneous 

classification scenarios. 
In contrast, the meta-classifier generated highly accurate results for 

eutrophic and hypereutrophic waters (92.16% and 90.65%, respec
tively), which were significantly higher than for the oligo- and meso
trophic classes. Confusion by the meta-classifier between these two 
classes was below 10%. 

3.2. Optical water type switching of chla algorithms 

Fig. 8 illustrates the performances of the chla retrieval algorithms 
included in the OWT switching scheme for the assigned group of OWTs 
on the test dataset. 

The observations contained in the OWT groups of the Gons and 
Gilerson 2-band algorithms represent 78% of the test set (442/567). The 
Gons algorithm retrieved chla with low MAE < 0.33 [mg/m3], MdAPE <
20% and a small negative bias (-0.04). Higher residual errors (MAE of 
0.61 [mg/m3] and MdAPE of 37.21%) were produced by the Gilerson 2- 
band algorithm for the respective observations included in the OWT 
group test set. 

QAA Mishra overestimated the values of extremely high chla, turbid 
waters (positive bias (0.52)). Nonetheless, the overestimation had no 
negative impact on the TS class assignment, as all retrieved chla values 
were > 100 [mg/m3] and thus the TS class assignment was 100% ac
curate (chla values > 56 [mg/m3] are hypereutrophic). The impact of 
QAA Mishra on the overall hypereutrophic class accuracy was low as it 
was only applied to OWT class 7 containing 24 out of 107 hyper
eutrophic test set observations. 

Out of the four chla algorithms, the OC2 algorithm performed 
accurately for low chla concentrations, but struggled toestimate higher 
chla waters accurately (MAE of 0.79 [mg/m3], negative bias (-0.19)). 
The OC2 stagnated at approximately 14 mg/m3 of chla, which can be 
explained by the saturation of the polynomial to calculate higher chla 
concentrations. The same stagnation can be observed in the algorithm’s 
application to the training data it was calibrated with (grey hexagons in 
Fig. 8, metrics not shown). 

The failure of the OC2 algorithm to retrieve chla accurately for 
higher concentrations is an expected outcome, since the OC2 algorithm 
was designed for clear waters, where phytoplankton dominates the 

Fig. 8. Performance evaluation of chla retrieval algorithms included in the OWT switching scheme: OC2, Gilerson 2-band, Gons and QAA Mishra. Coloured circles 
represent algorithm retrievals for measurements included in the respective OWT test groups (n  = 567). For illustrative purposes, grey hexagons represent algorithm 
retrievals for the respective OWT training groups the algorithms were calibrated with. Metrics are shown for test data. 
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optical properties. The retrieval result of OC2 indicates that the blue and 
green areas of the test Rrs were not only changing as a function of 
phytoplankton. Thus the blue/green ratio of the OC2 algorithm led to 
inaccurate retrievals. 

TS derivation following the chla retrieval through OWT switching is 
shown in Fig. 9. The accuracy of the OWT chla algorithm switching 
approach to derive TS for the test dataset was 79.54% (OA), 68.66% 
(AA) and 63.38 % (Kappa). As for the meta-classifier, the largest errors 
occurred for oligo- and mesotrophic waters, whereas the retrieval was 
highly accurate for eutro- and hypereutrophic waters (> 85% accuracy). 
For oligotrophic waters, the meta-classifier was 12.38% more accurate 
(66.67% versus 54.29%, respectively) and 5.83% more precise in the 
classification of mesotrophic waters than derived through OWT 
switching of chla algorithms (52.17% and 46.34%, respectively). The 
developed meta-classifier was slightly more accurate for eutrophic 
(4.12%) and hypereutrophic waters (4.67%). Using the AA metric that 
incorporates the imbalance of samples per TS class, the meta-classifier 
was on average 6.75% more accurate than the OWT switching of chla 
algorithms (75.41% and 68.66%, respectively). 

3.3. Misclassifications of oligo- and mesotrophic classes 

Both the meta-classifier and OWT switching scheme misclassified a 
high percentage of oligo- and mesotrophic reflectance spectra. Here we 
investigate the misclassifications of the meta-classifier that are higher 
for both classes when derived through OWT switching of chla 
algorithms. 

The meta-classifier misclassified 19.44% reflectance spectra of the 
oligotrophic class as mesotrophic and 38.04% reflectance spectra of the 
mesotrophic class were falsely classified as eutrophic (see Fig. 7). None 
of the oligotrophic and mesotrophic test waters were misclassified as 
hypereutrophic. To investigate the misclassifications, we plotted the 
distributions of the OACs per TS class of the training and test sets 
(Fig. 10). Based on the TS definition and the split of measurements into 
training and test sets after each Rrs was assigned a TS class, the two 
datasets showed almost identical chla concentrations within each class. 
Greater variation occurred only in the hypereutrophic class for which a 
maximum chla [mg/m3] concentration was not defined. In contrast, 
TSM [g/m3] concentrations and acdom(443)[1/m] strongly varied 

between the oligo- and mesotrophic classes. Since chla concentrations 
were low for both the oligo- and mesotrophic classes, TSM was domi
nated by inorganic particle loads, leading to highly turbid and strongly 
scattering water properties. 

Based on the constituent medians of the OACs, the optical properties 
of the oligotrophic class in the training set were mostly dominated by 
phytoplankton chla, as acdom(443)[1/m] (0.30) and TSM [g/m3] (1.97) 
induced scattering concentrations were low. In contrast, the oligotro
phic test set was characterised by high acdom(443)[1/m] (5.77) and 
turbid waters with high TSM [g/m3] concentrations (7.04). 

For the mesotrophic class, the meta-classifier assigned 35 out of 92 
test reflectance spectra to the eutrophic class (38.04%). The medians of 
chla [mg/m3] and acdom(443)[1/m] for all reflectance spectra in this 
class were comparable between the training and test datasets, however 
the test TSM concentration was twice as high as the training dataset 
counterpart (13.6 [g/m3] in the test set compared to 6.71 [g/m3] in the 
training set). For the 35 misclassified reflectance spectra this difference 
in TSM persisted with a median of 12.78 [g/m3]. 

The misclassified reflectance spectra of both the oligotrophic and 
mesotrophic waters reflect the influence of high sediment loads 
(Fig. 11). The Rrs vectors of misclassified oligotrophic instances 
(19.44% as mesotrophic and 13.89% as eutrophic) do not reflect a sig
nificant reduction in Rrs values at 560 nm to 620 nm that characterises 
correctly assigned oligotrophic class observations. Moreover, mis
classifications show high reflectance values in the red to near-infrared 
part of the spectrum. The reflectance spectra are similar in shape and 
magnitude compared to the training data of the mesotrophic and 
eutrophic waters. A comparable pattern can be observed for the 35 
misclassifications of the mesotrophic class (classified as eutrophic), 
wherein both shape and magnitude are similar to the training vectors of 
the eutrophic class. 

The reflectance spectra contained in the test sets of the two lowest TS 
classes were influenced by higher concentrations of absorbing acdom(λ)
and/or concentrations of scattering particles than represented in the 
provided training data. Consequently, the corresponding Rrs vectors 
were substantially less present in the training sets, which influenced the 
learning of the classifiers. Without appropriate representation of these 
waters, the classifies were unable to adjust their class decision bound
aries accordingly. For the classifiers in the training stage, the corre
sponding Rrs vectors were more similar to those abundant in higher 
trophic classes, which consequently led to incorrect TS predictions on 
the test set. 

4. Discussion 

4.1. Meta-learning 

A single retrieval algorithm often has limited suitability for use over 
a range of optically complex waters. Meta-learning represents a novel 
approach to handle the limits of individual algorithms. In this study, the 
prediction accuracies of the base-classifiers and the SVM strongly varied 
across the four TS classes. Overall, the meta-classifier was able to 
identify with high precision the correct and incorrect TS class pre
dictions made by the individual base-classifiers. The high classification 
accuracy achieved by the meta-classifier over the separate SVM and the 
base-classifiers validate the stacking theory. Training a meta-learner on 
the predictions of base-learners can result in significant prediction im
provements and reduces the dependency on individual algorithms. 
Meta-learning also decreases the requirement for knowledge about the 
performance of a single retrieval algorithm prior to its application to 
unseen observations. Inherently, the meta-learner has access to the 
prediction performance of each base-learner during the application 
through the provided level-zero predictions. Independent of the 
encountered water type the meta-learner can thus decide on a specific 
base-learner for each observation. 

Fig. 9. Classification matrix for TS predictions on the independent test set (n 
= 567) derived from OWT switching of chla algorithms. The percentage of 
reflectance spectra assigned per TS class is shown. Yellow colours indicate high, 
purple colours low percentages. TS classes are denoted as 1  = Oligotrophic, 2 
= Mesotrophic, 3  = Eutrophic, 4  = Hypereutrophic. 
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4.2. Direct trophic status classification 

By directly classifying Rrs into TS, the presented method avoided 
some of the issues inherent to TS derivation via chla. For example, the 

meta-classifier was not confronted with the task of scaling aϕ(λ) to chla. 
Naturally, phytoplankton is part of TSM and produces dissolved organic 
matter. Indirectly, specific phytoplankton groups favour certain water 
conditions, and also cluster by turbidity or dissolved organic matter 

Fig. 10. Histograms of Chla [mg/m3], TSM [g/m3] and acdom(443)[1/m] measurements included in the training (green) and test (blue) sets of the oligotrophic, 
mesotrophic and eutrophic classes. Dashed lines indicate the class median (x̃) of the parameter, μ and σ the mean and standard deviation, respectively. 

Fig. 11. Confusion matrix of remote sensing reflectance spectra. Shown are the classification results of the meta-classifier. Colours of the Rrs vectors correspond to 
training observations (grey), correctly classified (blue) and misclassified test observations (orange). The percentages are identical to those in Fig. 7. 
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loads (e.g. due to riverine influence). When higher or lower phyto
plankton absorption efficiency is correlated to changes in acdom(λ) or 
anap(λ), the classifiers can incorporate the resulting influence on the 
absorption budget in their decision-making through the varying 
contribution of these IOPs to the Rrs vector. 

The base-classifiers were trained using Rrs with previously assigned 
TS classes. Notably, the chla values used to define the TS class ranges 
were unknown to the classifiers during the training process. Since the TS 
class ranges were a function of chla, the base-classifiers learnt this 
functional relationship indirectly. Corresponding Rrs vectors were 
treated by the classifiers without knowledge of the OAC concentrations. 
Consequently, the classifiers learnt to define a TS class decision 
boundary in their feature space through the provided Rrs vectors, 
whereby the input features corresponded to the values at the band po
sitions of OLCI. Additional bands may be added to the Rrs vectors in the 
training stage to improve the optical distinction of TS classes. 

4.3. Adaptation of the classification framework 

In misclassified turbid oligotrophic and mesotrophic waters the op
tical properties were dominated by high inorganic particle loads. These 
properties weakened the established relationship between chla and the 
Rrs vectors that defined the TS class assignment. However, scenarios 
where biological productivity is light-limited due to high suspended 
sediment loads are common in natural waterbodies (e.g. rivers) and 
must thus be better incorporated into the presented classification 
scheme. To adapt the classification method to turbid waters, other op
tical parameters can be employed for the TS class assignment. For 
example, the TSI definition by Carlson (1977) enables to relate trans
parency (in the form of zSD measurements), which is inversely related to 
turbidity, to TS. The TS class assignment would then be based on the 
relationship of transparency to Rrs. While this TS class assignment could 
be useful for turbid waters, it likely has its own limitations. Therefore, 
the TS class assignment should ideally be based on the encountered 
water conditions, warranting the definition of an optical criterion to 
switch between chla and zSD in the assignment. The use of other optical 
or water colour indicator parameters to classify Rrs directly into TS 
might require a different TSI definition than used in the present study. 

5. Conclusion 

This is the first study that demonstrates direct classification of Rrs 
into TS to overcome issues that are inherent to TS derivation via chla. 
For the classification of TS, we stacked unique base-classifiers in a meta- 
learning scheme. The classifiers of this study were trained with a large in 
situ dataset of co-located Rrs and chla measurements (n  = 2184). When 
applied to test observations (n  = 567), the developed approach 
demonstrated that direct meta-classification of TS can significantly 
outperform indirect TS derivation via OWT switching of chla algorithms. 
The meta-classifier estimated eutrophic and hypereutrophic waters with 
> 90% prediction accuracy, making the proposed method a reliable tool 
to assess and monitor eutrophication of inland and nearshore waters. 
Our method was able to improve retrieval accuracies for oligo- and 
mesotrophic waters over OWT switching of chla algorithms by 5–12%. 
Nevertheless, accurate classification of TS from low - moderate biomass 
waters influenced by high TSM concentrations and/or acdom(λ) remains a 
primary challenge to solve. 

The classifiers of the presented study were trained with 80% of the 
dataset. Improvements to the developed approach can be based on the 
inclusion of additional base-learners such as the SVM and the re-training 
of the classifiers with the entire dataset. In addition, the TS class 
assignment may be based on other optical TS indicators. Performance 
improvements for the oligo- and mesotrophic waters are therefore likely. 
In this study we exemplified the algorithm on the multispectral resolu
tion of Sentinel-3A OLCI. After resampling of the training dataset, the 
algorithm can, however, be applied to other sensors such as the 

Multispectral Instrument (MSI) of the Sentinel-2 satellite to enable cross- 
mission retrievals of TS with the same method. 
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Solheim, A., Poikane, S., Mischke, U., 2008. Chlorophyll reference conditions for 
european lake types used for intercalibration of ecological status. Aquatic Ecology 
42, 203–211. https://doi.org/10.1007/s10452-008-9189-4. 

Chen, T., Guestrin, C., 2016. Xgboost, ACM. doi:10.1145/2939672.2939785. 
Codd, G.A., 2000. Cyanobacterial toxins, the perception of water quality, and the 

prioritisation of eutrophication control. Ecological Engineering 16, 51–60. https:// 
doi.org/10.1016/S0925-8574(00)00089-6. 

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and 
Psychological Measurement 20, 37–46. https://doi.org/10.1177/ 
001316446002000104. 

Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., 
Duarte, C.M., Kortelainen, P., Downing, J.A., Middelburg, J.J., Melack, J., 2007. 
Plumbing the global carbon cycle: Integrating inland waters into the terrestrial 
carbon budget. Ecosystems 10, 172–185. https://doi.org/10.1007/s10021-006- 
9013-8. 

Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely 
sensed data. Remote Sensing of Environment 37, 35–46. https://doi.org/10.1016/ 
0034-4257(91)90048-B. 

Conley, D., Paerl, H., Howarth, R., Boesch, D., Seitzinger, S., Havens, K., Lancelot, C., 
Likens, G., 2009. Controlling eutrophication: Nitrogen and phosphorus. Science 323, 
1014–1015. 

Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning 20, 273–297. 
https://doi.org/10.1007/BF00994018. 

Craig, S.E., Jones, C.T., Li, W.K., Lazin, G., Horne, E., Caverhill, C., Cullen, J.J., 2012. 
Deriving optical metrics of coastal phytoplankton biomass from ocean colour. 
Remote Sensing of Environment 119, 72–83. https://doi.org/10.1016/j. 
rse.2011.12.007. 

Dall’Olmo, G., Gitelson, A.A., 2006. Absorption properties of dissolved and particulate 
matter in turbid productive inland lakes. Proceedings of Ocean Optics XVIII, Ocean 
Optics Conference. 1–15. 

Dall’Olmo, G., Gitelson, A.A., Rundquist, D.C., 2003. Towards a unified approach for 
remote estimation of chlorophyll-a in both terrestrial vegetation and turbid 
productive waters. Geophysical Research Letters 30. https://doi.org/10.1029/ 
2003GL018065. 

Dall’Olmo, G., Gitelson, A.A., Rundquist, D.C., Leavitt, B., Barrow, T., Holz, J.C., 2005. 
Assessing the potential of seawifs and modis for estimating chlorophyll 
concentration in turbid productive waters using red and near-infrared bands. Remote 
Sensing of Environment 96, 176–187. https://doi.org/10.1016/j.rse.2005.02.007. 

Defoin-Platel, M., Chami, M., 2007. How ambiguous is the inverse problem of ocean 
color in coastal waters? Journal of Geophysical Research: Oceans 112. https://doi. 
org/10.1029/2006JC003847. 

DelSontro, T., Beaulieu, J.J., Downing, J.A., 2018. Greenhouse gas emissions from lakes 
and impoundments: Upscaling in the face of global change. Limnology and 
Oceanography Letters 3, 64–75. https://doi.org/10.1002/lol2.10073. 

Doerffer, R., Schiller, H., 2007. The meris case 2 water algorithm. International Journal 
of Remote Sensing 28, 517–535. https://doi.org/10.1080/01431160600821127. 

Eleveld, M.A., Ruescas, A.B., Hommersom, A., Moore, T.S., Peters, S.W.M., 
Brockmann, C., 2017. An optical classification tool for global lake waters. Remote 
Sensing 9. https://doi.org/10.3390/rs9050420. 

Flennerhag, S., 2017. Ml-ensemble. https://github.com/flennerhag/mlens. Viewed at 
2020-07-22. 

Freund, Y., Schapire, R., 1996. Experiments with a new boosting algorithm, in. In: 
Machine Learning: Proceedings of the Thirteenth International Conference, 
pp. 148–156. 

Freund, Y., Schapire, R.E., 1997. A decision-theoretic generalization of on-line learning 
and an application to boosting. Journal of Computer and System Sciences 55, 
119–139. https://doi.org/10.1006/jcss.1997.1504. 

Friedman, J., Hastie, T., Tibshirani, R., 1998. Additive logistic regression: a statistical 
view of boosting. Annals of Statistics 28, 2000. 

Friedman, J.H., 2000. Greedy function approximation: A gradient boosting machine. 
Annals of Statistics 29, 1189–1232. 

Garver, S.A., Siegel, D.A., 1997. Inherent optical property inversion of ocean color 
spectra and its biogeochemical interpretation: 1. time series from the sargasso sea. 
Journal of Geophysical Research: Oceans 102, 18607–18625. https://doi.org/ 
10.1029/96JC03243. 

Giardino, C., Bresciani, M., Cazzaniga, I., Schenk, K., Rieger, P., Braga, F., Matta, E., 
Brando, V.E., 2014. Evaluation of multi-resolution satellite sensors for assessing 
water quality and bottom depth of lake garda. Sensors 14, 24116–24131. https:// 
doi.org/10.3390/s141224116. 

Giardino, C., Bresciani, M., Stroppiana, D., Oggioni, A., Morabito, G., 2013. Optical 
remote sensing of lakes: an overview on lake maggiore. Journal of Limnology 73. 
https://doi.org/10.4081/jlimnol.2014.817. 

Giardino, C., Bresciani, M., Valentini, E., Gasperini, L., Bolpagni, R., Brando, V.E., 2015. 
Airborne hyperspectral data to assess suspended particulate matter and aquatic 
vegetation in a shallow and turbid lake. Remote Sensing of Environment 157, 48–57. 
https://doi.org/10.1016/j.rse.2014.04.034. 

Giardino, C., Candiani, G., Zilioli, E., 2005. Detecting chlorophyll-a in lake garda using 
toa meris radiances. Photogrammetric Engineering & Remote Sensing 71, 
1045–1051. https://doi.org/10.14358/PERS.71.9.1045. 

Gilerson, A.A., Gitelson, A.A., Zhou, J., Gurlin, D., Moses, W., Ioannou, I., Ahmed, S.A., 
2010. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters 
using red and near infrared bands. Opt. Express 18, 24109–24125. https://doi.org/ 
10.1364/OE.18.024109. 

Gitelson, A.A., Dall’Olmo, G., Moses, W., Rundquist, D.C., Barrow, T., Fisher, T.R., 
Gurlin, D., Holz, J., 2008. A simple semi-analytical model for remote estimation of 
chlorophyll-a in turbid waters: Validation. Remote Sensing of Environment 112, 
3582–3593. https://doi.org/10.1016/j.rse.2008.04.015. 

Gitelson, A.A., Schalles, J.F., Hladik, C.M., 2007. Remote chlorophyll-a retrieval in 
turbid, productive estuaries: Chesapeake bay case study. Remote Sensing of 
Environment 109, 464–472. https://doi.org/10.1016/j.rse.2007.01.016. 

Glibert, P.M., Seitzinger, S., Heil, C.A., Burkholder, J.M., Parrow, M.W., Codispoti, L.A., 
Kelly, V., 2005. The role of eutrophication in the global proliferation of harmful algal 
blooms. Oceanography 18, 198–209. 

Gons, H., Auer, M., Effler, S., 2008. Meris satellite chlorophyll mapping of oligotrophic 
and eutrophic waters in the laurentian great lakes. Remote Sensing of Environment 
112, 4098–4106. https://doi.org/10.1016/j.rse.2007.06.029. 

Gons, H., Rijkeboer, M., Ruddick, K., 2002. A chlorophyll-retrieval algorithm for satellite 
imagery (medium resolution imaging spectrometer) of inland and coastal waters. 
Journal of Plankton Research 24. https://doi.org/10.1093/plankt/24.9.947. 

Gons, H., Rijkeboer, M., Ruddick, K., 2005. Effect of a waveband shift on chlorophyll 
retrieval from meris imagery of inland and coastal waters. Journal of Plankton 
Research 27. 

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press. 
Gordon, H.R., Brown, O.B., Evans, R.H., Brown, J.W., Smith, R.C., Baker, K.S., Clark, D. 

K., 1988. A semianalytic radiance model of ocean color. Journal of Geophysical 
Research: Atmospheres 93, 10909–10924. https://doi.org/10.1029/ 
JD093iD09p10909. 

Gower, J., King, S., Borstad, G., Brown, L., 2005. Detection of intense plankton blooms 
using the 709 nm band of the meris imaging spectrometer. International Journal of 
Remote Sensing 26, 2005–2012. https://doi.org/10.1080/01431160500075857. 

Gower, J.F.R., Doerffer, R., Borstad, G.A., 1999. Interpretation of the 685nm peak in 
water-leaving radiance spectra in terms of fluorescence, absorption and scattering, 
and its observation by meris. International Journal of Remote Sensing 20, 
1771–1786. https://doi.org/10.1080/014311699212470. 

Guanter, L., Ruiz-Verd, A., Odermatt, D., Giardino, C., Simis, S., Estells, V., Heege, T., 
Domnguez-Gmez, J.A., Moreno, J., 2010. Atmospheric correction of envisat/meris 
data over inland waters: Validation for european lakes. Remote Sensing of 
Environment 114, 467–480. https://doi.org/10.1016/j.rse.2009.10.004. 

Gurlin, D., Gitelson, A.A., Moses, W.J., 2011. Remote estimation of chl-a concentration in 
turbid productive waters - return to a simple two-band nir-red model? Remote 
Sensing of Environment 115, 3479–3490. https://doi.org/10.1016/j. 
rse.2011.08.011. 

Ham, J., Chen, Yangchi, Crawford, M.M., Ghosh, J., 2005. Investigation of the random 
forest framework for classification of hyperspectral data. IEEE Transactions on 
Geoscience and Remote Sensing 43, 492–501. https://doi.org/10.1109/ 
TGRS.2004.842481. 

Head, T., MechCoder, Louppe, G., Shcherbatyi, I., fcharras, Vincius, Z., cmmalone, 
Schrder, C., nel215, Campos, N., Young, T., Cereda, S., Fan, T., Schwabedal, J., 
Hvass-Labs, Pak, M., SoManyUsernamesTaken, Callaway, F., Estve, L., Besson, L., 
Landwehr, P.M., Komarov, P., Cherti, M., Shi, K.K., Pfannschmidt, K., Linzberger, F., 
Cauet, C., Gut, A., Mueller, A., Fabisch, A., 2018. scikit-optimize: High five - v0.5. 
doi: 10.5281/zenodo.1165540. 

Heisler, J., Glibert, P., Burkholder, J., Anderson, D., Cochlan, W., Dennison, W., 
Dortch, Q., Gobler, C., Heil, C., Humphries, E., Lewitus, A., Magnien, R., 
Marshall, H., Sellner, K., Stockwell, D., Stoecker, D., Suddleson, M., 2008. 
Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 8, 
3–13. https://doi.org/10.1016/j.hal.2008.08.006. 

M. Werther et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.pocean.2013.12.008
https://doi.org/10.1016/j.pocean.2013.12.008
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0055
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0055
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0055
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1016/j.scitotenv.2011.05.001
https://doi.org/10.1029/95JC00463
https://doi.org/10.1029/98JC02712
https://doi.org/10.1214/07-STS242
https://doi.org/10.1364/OE.391470
https://doi.org/10.4319/lo.1977.22.2.0361
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0105
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0105
https://doi.org/10.1007/s10452-008-9189-4
https://doi.org/10.1016/S0925-8574(00)00089-6
https://doi.org/10.1016/S0925-8574(00)00089-6
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1007/s10021-006-9013-8
https://doi.org/10.1007/s10021-006-9013-8
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1016/0034-4257(91)90048-B
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0140
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0140
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0140
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.rse.2011.12.007
https://doi.org/10.1016/j.rse.2011.12.007
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0155
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0155
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0155
https://doi.org/10.1029/2003GL018065
https://doi.org/10.1029/2003GL018065
https://doi.org/10.1016/j.rse.2005.02.007
https://doi.org/10.1029/2006JC003847
https://doi.org/10.1029/2006JC003847
https://doi.org/10.1002/lol2.10073
https://doi.org/10.1080/01431160600821127
https://doi.org/10.3390/rs9050420
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0195
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0195
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0195
https://doi.org/10.1006/jcss.1997.1504
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0205
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0205
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0210
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0210
https://doi.org/10.1029/96JC03243
https://doi.org/10.1029/96JC03243
https://doi.org/10.3390/s141224116
https://doi.org/10.3390/s141224116
https://doi.org/10.4081/jlimnol.2014.817
https://doi.org/10.1016/j.rse.2014.04.034
https://doi.org/10.14358/PERS.71.9.1045
https://doi.org/10.1364/OE.18.024109
https://doi.org/10.1364/OE.18.024109
https://doi.org/10.1016/j.rse.2008.04.015
https://doi.org/10.1016/j.rse.2007.01.016
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0255
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0255
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0255
https://doi.org/10.1016/j.rse.2007.06.029
https://doi.org/10.1093/plankt/24.9.947
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0270
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0270
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0270
http://refhub.elsevier.com/S0924-2716(21)00098-8/h0275
https://doi.org/10.1029/JD093iD09p10909
https://doi.org/10.1029/JD093iD09p10909
https://doi.org/10.1080/01431160500075857
https://doi.org/10.1080/014311699212470
https://doi.org/10.1016/j.rse.2009.10.004
https://doi.org/10.1016/j.rse.2011.08.011
https://doi.org/10.1016/j.rse.2011.08.011
https://doi.org/10.1109/TGRS.2004.842481
https://doi.org/10.1109/TGRS.2004.842481
https://doi.org/10.1016/j.hal.2008.08.006


ISPRS Journal of Photogrammetry and Remote Sensing 176 (2021) 109–126

125

Hieronymi, M., Mller, D., Doerffer, R., 2017. The olci neural network swarm (onns): A 
bio-geo-optical algorithm for open ocean and coastal waters. Frontiers in Marine 
Science 4, 140. https://doi.org/10.3389/fmars.2017.00140. 

Hsieh, W.W., 2009. Machine Learning Methods in the Environmental Sciences: Neural 
Networks and Kernels, 1st ed. Cambridge University Press, USA.  

Huot, Y., Babin, M., Bruyant, F., Grob, C., Twardowski, M.S., Claustre, H., 2007. Does 
chlorophyll a provide the best index of phytoplankton biomass for primary 
productivity studies? Biogeosciences Discussions 4, 707–745. 

Ioannou, I., Gilerson, A., Gross, B., Moshary, F., Ahmed, S., 2013. Deriving ocean color 
products using neural networks. Remote Sensing of Environment 134, 78–91. 
https://doi.org/10.1016/j.rse.2013.02.015. 

Jaelani, L.M., Matsushita, B., Yang, W., Fukushima, T., 2013. Evaluation of four meris 
atmospheric correction algorithms in lake kasumigaura, japan. International Journal 
of Remote Sensing 34, 8967–8985. https://doi.org/10.1080/ 
01431161.2013.860660. 

Jones, D.R., Schonlau, M., Welch, W.J., 1998. Efficient global optimization of expensive 
black-box functions. Journal of Global Optimization 13, 455–492. https://doi.org/ 
10.1023/A:1008306431147. 

Kallio, K., Koponen, S., Ylstalo, P., Kervinen, M., Pyhlahti, T., Attila, J., 2015. Validation 
of meris spectral inversion processors using reflectance, iop and water quality 
measurements in boreal lakes. Remote Sensing of Environment 157, 147–157. 
https://doi.org/10.1016/j.rse.2014.06.016. 

Kasprzak, P., Padisk, J., Koschel, R., Krienitz, L., Gervais, F., 2008. Chlorophyll a 
concentration across a trophic gradient of lakes: An estimator of phytoplankton 
biomass? Limnologica 38, 327–338. https://doi.org/10.1016/j.limno.2008.07.002. 

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y., 2017. 
Lightgbm: A highly efficient gradient boosting decision tree, in: Guyon, I., Luxburg, 
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), 
Advances in Neural Information Processing Systems 30. Curran Associates Inc, pp. 
3146–3154. 

Keller, A.A., Cavallaro, L., 2008. Assessing the us clean water act 303(d) listing process 
for determining impairment of a waterbody. Journal of Environmental Management 
86, 699–711. https://doi.org/10.1016/j.jenvman.2006.12.013. 

Krasnopolsky, V., Chalikov, D., Tolman, H., 2002. A neural network technique to 
improve computational efficiency of numerical oceanic models. Ocean Modelling 4, 
363–383. https://doi.org/10.1016/S1463-5003(02)00010-0. 

Krasnopolsky, V., Nadiga, S., Mehra, A., Bayler, E., 2018. Adjusting neural network to a 
particular problem: Neural network-based empirical biological model for 
chlorophyll concentration in the upper ocean. Applied Computational Intelligence 
and Soft Computing 2018, 1–10. https://doi.org/10.1155/2018/7057363. 

Kravitz, J., Matthews, M., Bernard, S., Griffith, D., 2020. Application of sentinel 3 olci for 
chl-a retrieval over small inland water targets: Successes and challenges. Remote 
Sensing of Environment 237, 111562. https://doi.org/10.1016/j.rse.2019.111562. 

Kutser, T., Paavel, B., Verpoorter, C., Kauer, T., Vahtmäe, E., 2012. Remote sensing of 
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