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Matching creeping waves with lit area diffraction field
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We continue explorations of the shortwave plane
wave diffraction for an axisymmetric elongated
body. The previously obtained formulae for the
boundary currents were evaluated numerically and
showed matching in the borders of the regions going
from the lit zone into the shadow. The results are
presented for the case of both Dirichlet and Neu-
mann boundary conditions.

1 Introduction

This paper gives an update on the ongoing project
with previous results published in [3] - [8]. We
consider a three-dinensional body of revolution Ω
(called a scatterer). The body is axisymmetric,
strictly convex, and prolate. Assume the surface
∂Ω of the scatterer is generated by revolving in
ϕ ∈ [0, 2π] a plane convex curve x = γ(z) around
the z−axis, i.e.,

x = γ(z) cosϕ, y = γ(z) sinϕ,

in a Cartesian coordinate system x, y, z, see Figure
1.

A cross-section of ∂Ω by a plane z = 0 is
called an Equator and it coincides with the shadow-
light boundary created by the plane incident wave
Uinc = exp(ikz), k = 2π

λ � 1 which radiates along
the axis of revolution z. Here λ is a wavelength.

The five zones of our interest (see Figure 1) are
correspondingly, Zone 1 is an illuminated region,
Zone 2 is a neighbourhood of the limit ray touch-
ing point (called the Fock’s region), Zone 3 is a
penumbra region, Zone 4 is a shadow region, Zone
5 is a surface shadow layer.

1.1 Problem formulation

We introduce an orthogonal geodesic field formed
by parallels and meridians that follow the shape of
∂Ω. We denote by n the distance along the outward
normal n.We denote by s the arc length (distance)
along the meridians counted from the Equator. The
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Figure (1) Five different zones around the scat-
terer.

curvature of a meridian at a point s ∈ ∂Ω is denoted
by 1

ρ(s) .

We consider Helmholtz equation with either
Dirichlet or Neumann boundary conditions on ∂Ω

(∆ + k2)U = 0,
∂

∂n
U |n=0 = 0 or U |n=0 = 0, (1)

with decay at infinity conditions, namely, U →
0 as r →∞.

1.2 Main method

We use the Fock-Leontovich parabolic equation
method [1] in a vicinity of some point of ∂Ω that
belongs to the border of geometric shadow region,
together with several classical methods from [2], [9],
[10], and [11].

We use the following expansion of the total field
U = eiksW, and the first three terms of the asymp-
totic expansion

W = W0 +
W1

k
1
3

+
W2

k
2
3

+ . . . , k � 1. (2)

These terms in the expansion satisfy a recurrent
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system of differential equations

L0W0 = 0, L0W1 + L1W0 = 0,

L0W2 + L1W1 + L2W0 = 0, . . . . (3)

We keep an eye on two large parameters in the ex-
pansion. One is the Fock’s large parameter

M0 =

(
kρ0

2

) 1
3

,

the second one is a parameter of body prolongation

Λ0 =
ρ0

γ(0)
.

Here ρ0 = ρ(0) is the geodesic meridians curvature
radius at the light-shadow boundary (the Equator)
where s = 0. At the same time, the radius of curva-
ture of the geodesics (meridians) and the transver-
sal radius of curvature of the Equator are assumed
to satisfy the inequalities

kρ(0)� 1, kγ(0)� 1, as k →∞.

In the Fock’s region 2 , we introduce stretched
coordinates (σ, ν) instead of (s, n) in the following
way:

σ =
k1/3s

21/3ρ
2/3
0

=
M0s

ρ0
,

ν =
21/3k2/3n

ρ
1/3
0

=
2nM2

0

ρ0
. (4)

The prolongated shape of the scatterer reveals
itself in the second large parameter Λ0, which is the
ratio of longitudinal and traversal curvature radii.
Parameter Λ0 only appears in W2 of the expansion
(2).

We assume the total field satisfies the following
expansion

U = eiks

 2∑
j=0

Wj

k
j
3

+O(k−1)

 , Wj = W inc
j +W ref

j .

1.2.1 Plane wave diffraction: Incident field

The asymptotic expansion terms for the field
W inc
i , i = 0, 1, 2, take the form of the contour in-

tegrals of the linear combination of Airy functions
v(t) and their derivatives v′(t), and polynomials of
integration variable and a dimensionless coordinate
ν of order 2j at v(t), and of order 2j − 1 at v′(t) in

zone 2 . The integration contour Γ goes along the
straight line from ∞ei 2π3 to 0, and then from 0 to
∞ along the positive real axis in the complex plane
of ζ.

1.2.2 Plane wave diffraction: Reflection

As for W ref
j , j = 0, 1, 2, one should replace Airy

functions v(t), v′(t) with w1(t), w′1(t), then their
form would be similar to the ones of W inc

j . Func-
tions w1(t), w′1(t) satisfy the limiting absorption
principle as ν → +∞.

Besides, W ref
j also satisfy the following recurrent

system of differential equations similar to system
(3).

1.2.3 Fock’s famous formulae

The main terms of the asymptotic expansion (de-
noted by subscript 0 in this paper) of the total wave
field can be constructed in the neighbourhood of the
s = 0 point, in zone 2

UDir
0 = eiks

(
W inc

0 +W ref
0

)
=

eiks√
π

∫
Γ

eiσζ
[
v(ζ − ν)− v(ζ)

w1(ζ)
w1(ζ − ν)

]
dζ, (5)

UNeu
0 =

eiks√
π

∫
Γ

eiσζ
[
v(ζ − ν)− v′(ζ)

w′1(ζ)
w1(ζ − ν)

]
dζ.

(6)
The integration contour Γ can be taken the same
as in Subsection 1.2.1.

1.2.4 Shadow zones

Now we consider shadow zones, see Figure 2. The
arclength in zone 5 s = O(1), and the normal
ν(s, n) is defined by

ν(s, n) =
k

2
3n2

1
3

ρ
1
3 (s)

, ν(s, n) = O(1). (7)

Hence, the Fock’s large parameter M0(s) depends
on s in zone 5 . Taking into account the residues,
we get the following main term representations

UDir
0K = eiks(−2

√
πi)

K∑
p=1

eiσζp
w1(ζp − ν)

[w′1(ζp)]2
(8)

and

UNeu
0K = eiks(2

√
πi)

K∑
p=1

eiσζ
′
p
w1(ζ ′p − ν)

[w1(ζ ′p)]
2
, (9)
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Figure (2) Penumbra and shadow regions. The
field in the shadow region 4 between regions 3
and 5 has ray nature of the leaving wave. Region
5 is the creeping waves zone with ν = O(1), s =
O(1).

in zone 5 for the Dirichlet and Neumann bound-
ary conditions correspondingly. Here w1(ζp) = 0
and w′1(ζ ′p) = 0, and K counts the number of the
roots taken into account.

2 Numerical matching in the lit zones

Zone 5 in local coordinates (σ, ν) corresponds to
the conditions σ → +∞ and ν = O(1).

First of all, we made sure the following functions
match their classical definitions (see [1])

f(σ) =
1√
π

[∫
Γ

eiσζ

w1(ζ)
dζ

]
; F (σ) = eiσ

3/3f(σ),

g(σ) =
1√
π

[∫
Γ

eiσζ

w′1(ζ)
dζ

]
; G(σ) = eiσ

3/3g(σ),

and their asymptotics are as follows

Im(F )→ 2σ, Re(G)→ 2, asσ → −∞.

The dimensionless Dirichlet current, obtained in [3],
has the form

k−1IDir =
1

M0
√
π

[∫
Γ

eiσζ

w1(ζ)
dζ+

Λ0

2M2
0

∫
Γ

eiσζ
[

ζ

w1(ζ)
− [w′1(ζ]2

[w1(ζ)]3

]
dζ

]
. (10)

It was compared to its main approximation

k−1IDir0 ≈ 1

M0
e−i

σ3

3 F (σ) =
1

M0
f(σ)

Figure (3) Matching the dimensionless Dirichlet
current with the main term for −5 < σ < 5.

Figure (4) Matching the dimensionless Dirichlet
current with its asymptotics as σ → −∞ for kρ =
50.

for kρ(0) = 20 and kρ(0) = 50, see Figure (3) for
the illustration of the case kρ(0) = 50. The picture
for kρ(0) = 20 is pretty similar and hence omit-
ted here. The choice of the numerical values for
the simulations is justified in [6]. The current (10)
was also compared to the asymptotics of its main
approximation

k−1IDir0 ≈ 2iσ(
1

M0
)e−i

σ3

3

as σ → −∞ for kρ(0) = 20 and kρ(0) = 50, follow-
ing [5], see Figure 4. The dimensionless Neumann



4 DAYS on DIFFRACTION 2021

Figure (5) Matching the dimensionless Neumann
current with its main approximation for kρ = 50.

Figure (6) Matching the dimensionless Neumann
current with its asymptotics at σ → −∞ for kρ =
50.

current, obtained in [4], has the following form

k−1INeu =
1√
π

[∫
Γ

eiσζ

w′1(ζ)
dζ+

1

M ε
0

∫
Γ

eiσζ
[

ζ

w′1(ζ)
− ζ2w2

1(ζ)

[w′1(ζ)]3

]
dζ

]
. (11)

It was first compared to its main approximation
INeu0 ≈ g(σ), see Figure 5 and then compared to
the asymptotics of its main approximation INeu0 ≈
2e−i

σ3

3 when σ → −∞, see Figure 6.

Figure (7) Comparison of the Dirichlet currents
with its asymptotics for σ > 0.

The difference between the Dirichlet (10) and
Neumann currents (11) is in the order of their
amplitudes: the amplitude of k−1IDir is of order
O(M−1

0 ) compared with the amplitude of k−1INeu.

3 Numerical justification of the transi-
tion to the shadow zone

The incident field does not penetrate into the
shadow zone 5 , but it remains in the boundary
layer ν = O(1), and with s > 0 increasing, the ob-
servation point (s, ν) appears to be in 5 . It is
convenient to lift the integration contour up into
the upper half-plane (where Im (ζ) > 0, σ → +∞),
as the exponent eiσζ decays as fast as exp(−σIm ζ).
This will lead to keeping only a few roots (w1(ζp) =
0 for Dirichlet and w′1(ζ ′p) = 0 for Neumann) in the
expansion.

Since the slowest decay of the exponents of (8),
(9) is due to the first root ζ1(ζ ′1), we will further
consider only ζ1, ζ ′1 instead of the sum in the above
formulae (8), (9) , and will work with U01, namely,
see formulae (8), (9) for K = 1.

Shadow zone asymptotics for the F and G func-
tions when σ > 0 are

F (σ) ≈ ei
(
σ3

3 +
σ|ζ1|

2

)
c1e
−σ|ζ1|

√
3

2 ,

c1 = 1.8325, ζ1 = 2.22811 · eiπ3 , σ > 0,

G(σ) ≈ e
i

(
σ3

3 +
σ|ζ′1|

2

)
c2e
−σ|ζ′1|

√
3

2 ,

c2 = 1.8325, ζ ′1 = 1.01879 · eiπ3 , σ > 0.



DAYS on DIFFRACTION 2021 5

Figure (8) Comparison of the Neumann current
with its asymptotics for σ > 0.

3.1 Matching currents when going into the shadow

We match Dirichlet current (10) with the following
shadow asymptotics for large positive σ (see Figure
7)

k−1IDir0 ≈ 1

M0

2
√
πi

w′1(ζ1)
e
σ|ζ1|

2 (i−
√

3)

to reveal pretty good match.
Similar match was found for the Neumann cur-

rent (11) when we compare it to the following
shadow asymptotics

k−1INeu0 ≈ 2
√
πi

ζ ′1w1(ζ ′1)
e
σ|ζ′1|

2 (i−
√

3)

for positive σ, see Figure 8.

4 Conclusion

The following results were obtained in the project
so far. The representation of the wave field in the
Fock’s zone with the first three terms of the expan-
sion was obtained in [3] for the Dirichlet case, and in
[4] for the Neumann case. Also the influence of the
prolongation parameter has been established. The
wave field currents were obtained and compared
numerically with their the asymptotic expansions.
The main terms of the expansions were compared
with their asymptotics also. The obtained expres-
sions were used as initial conditions for the field in
the shadow zone, where the solution takes form of a
sum of the residues in the roots of the denominator
of the integrand.

It is interesting what happens if we go away from
the boundary. If the observation point M(s, ν)

goes out of the surface layer
(
n ∼ O(k−

2
3 )
)
, then

ν � 1 and Airy function w1 can be replaced with its
asymptotics as ν → +∞.Going away from the scat-
terer, the ray field of creeping waves corresponds to
the behaviour of leaving wave which has the scat-
terer as a caustic (at least in the main approxi-
mation). It would be interesting to consider what
happens away from the scatterer numerically. Also
it is interesting to vizualize the creeping wave in
the shadow zone.
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