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Signal models for changes in Polarimetric SAR data
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Abstract—
SAR polarimetry (PolSAR) can improve change detection in terms of

detection capabilities. In this work, we are proposing to extend the idea of
target decomposition to changes affecting partial targets. This will allow the
separation of polarimetric dependent changes, providing extra information
that can be used to better understand the processes affecting the targets.

Three models for changes are proposed and compared. The methodolo-
gies are based on Lagrangian optimisations of distinct operators built using
quadratic forms for a power ratio and a power difference. The optimisa-
tions can be accomplished by diagonalisations of specific matrices derived
from polarimetric covariance matrices. These are therefore spectral de-
compositions of an appropriate matrix which we define as change matrix.

The theoretical validity of the models is assessed using Monte Carlo sim-
ulations. Additionally, we perform real data validation exploiting L-band
quad-polarimetric data from the E-SAR (DLR) SARTOM 2006 campaign
and ALOS PALSAR (JAXA) acquisitions in Morecombe Bay (UK).

We observed that the two algorithms based on power difference allow to
decompose the change into the minimal set of scattering mechanisms that
have been added or removed from the scene. The two algorithms differ on
the initial assumption on the change. On the other hand the ratio operator
provides a better detection performance although the eigenvalues do not
correspond to meaningful scattering mechanisms. A combination of the
three methodologies can therefore improve detection and classification of
changes.

Keywords— Synthetic Aperture Radar, Polarimetry, Change Detection,
Signal Models, Decompositions.

I. INTRODUCTION

Change detection is a valuable topic in SAR remote sensing.
Polarimetric SAR (PolSAR) can improve the results of single
polarimetric algorithms [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10]. The polarization of the transmitted and received waves
can be exploited to extract more information about the observed
targets. This information enhances classification. In this work,
we want to propose decompositions to help classify the change.

It is always possible to perform approaches where the two set
of PolSAR acquisitions are analysed separately. However due to
the complexity of the multi-dimensional SAR data, it is gener-
ally hard and not streighforward to identify the scattering mech-
anisms (SM) which have suffered the change. Specifically, from
an algebraic point of view, there is no methodology to identify
the minimal unique set of scattering mechanisms (SM) that have
changed. Often we can just measure the increase or decrease of
a set of targets (surface, dihedral [11], [12]) or parameters (en-
tropy, α [13]), but not point at the exact scattering mechanism
that produced such changes. In this work, we want to propose
an operation that is able to synthesise the change and reveal in a
straightforward way the scattering mechanism (SM) which pro-
duced the maximum change.

In the following there is a brief introduction to PolSAR tools
that we will use. A single target is defined as a determinis-
tic target which does not change its polarimetric behavior in
time/space. Therefore, it can be represented by a single scat-
tering matrix [S] or equivalently a single scattering vector [14],
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[15]:
kL = [HH,HV, V H, V V ]

T
, (1)

where H and V stands for linear horizontal and vertical and
the repeated letter indicates the transmitter-receiver sequence.
The previous is obtained employing the Lexicographic basis
set. In the case of a reciprocal medium and monostatic sensor,
HV = V H and k is three-dimensional complex (i.e. kP ∈ C
3) [14]. Another largely used basis set to convert [S] into a scat-
tering vector is the Pauli basis. In the reciprocal case, this is
kP = 1/

√
(2) [HH + V V,HH − V V, 2 ∗HV ]

T . A Scatter-
ing Mechanisms (SM) ω is an ideal target and is defined as a
normalized scattering vector.

The targets observed by a SAR system are often distributed
over an area larger than the resolution cell and composed by
different objects. For this reason, each pixel of the image con-
taining such distributed targets shows a specific polarimetric
behaviour. Such targets take the name of partial targets and
they are generally described exploiting the second order statis-
tics [14], [15]. In this context, a target covariance matrix can be
estimated as [C] = 〈k k∗T 〉 , where 〈.〉 is the finite averaging op-
erator. In case that the Single Look Complex (SLC) pixel can be
modelled by a Complex Gaussian, the second order statistics are
necessary and sufficient to completely characterize a partial tar-
get (and the covariance matrix is Wishart distributed). In case of
the Pauli basis, the covariance matrix is often named Coherency
matrix.

An important concept exploited in this work is the quadratic
form of a covariance matrix

PT = ω∗T [C]ω. (2)

The latter represent the power backscattered by the scattering
mechanism represented by ω. This is provided the scattering
mechanism is present. Otherwise it just represents the power on
that projection vector ω.

The novelties of this paper are the following: a) developping
and validating for the first time (in a peer reviewed publication)
the change detector based on optimisation of DIFFERENCE of
power [16], b) provide a comparison using simulated and real
data of three methodologies based on optimisations of quadratic
forms for change detection including [17], [18], [19].

II. SIGNAL MODELS FOR CHANGE DETECTION WITH
POLARIMETRIC DATA

The starting point of this work is the consideration that the
power of a SM can be estimated using a quadratic form of the
covariance matrix [C] and the appropriate projection vector ω.
In the following we will present analyses using a general co-
variance matrix, however it is important to keep in mind that if
we want to interpret the results in sight of the Cloude-Pottier
decomposition [20], the scattering vector needs to be in Pauli
basis.
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The analyses in this paper are based on the following two key
assumptions:
i) We refer to ”polarimetric scattering mechanism” (SM). These
are idealised targets that can be represented by a single and
unique normalised scattering matrix (these can be different from
interferometric scattering mechanisms). We will also omit the
word ”polarimetric” unless this can produce confusion.
ii) If there is a change of SM between two acquisitions, this
will reveal itself in a change of the matrix [C]. Unfortunately,
PolSAR signal decomposition is ill posed and we can only mon-
itor three independent targets (unless a physical model is used).
If changes in the scene are such that the covariance matrix re-
mains identical, then it is not possible to detect such changes
using PolSAR.

The three change models proposed and compared here are
based on spectral signal decompositions of what we define as
change matrices. Therefore, the output of these three algo-
rithms are sets of eigenvalues and eigenvectors. It is important
to keep in mind, that a change matrix does not necessarily rep-
resent a unique partial target, but a set of targets or transforma-
tions. In the following, we sometime refer to these optimisations
as ”change decompositions”, however these are more similar
to signal decompositions and therefore should not be confused
with traditional ”target decompositions” such as [13], [11], [12].
These concepts will be described in more details and validated
in the reminder of this paper.

The first step in interpreting the new decompositions is to
build a change framework based on detection hypotheses [21]:
• The Null hypothesis H0 states that there is no modification of
SM
• The Alternative hypothesis H1 states that there is a change of
SM.

Since we are interested in identifying optimal basis for change
matrices, we can apply optimisations techniques:

ωrmax = Argmax
ω∈Ω

[F ([C1], [C2], ω)] , (3)

where F [.] is a function of covariance matrices for the two ac-
quisitions ([C1] and [C2]) and the projection vector ω. Ω is a
unitary complex sphere, therefore ω ∈ C3, ||ω|| = 1.

Although many different functions can be designed, in the
following we focus on two main expressions for F [.], since
these are derived from the two most straightforward operations
in change detection: the ratio and the difference.

Another final note is on the fact that all the detectors tested
in this paper are not scale invariant. This is because, in general
applications, the overall intensity (or SPAN) of the acquisitions
provides useful information. Therefore, changes in span will
affect the detectors. However, if we want to use these detectors
in applications where the overall intensity is introducing errors
(e.g. if there are calibration errors), then each of the covariance
matrices could be normalised by their Trace before using the
matrices in the detectors.

A. Multiplicative model

A change detector based on the optimisation of the power ra-
tio was already proposed by the authors for PolSAR data [22],
[23], [24].

F ([C1, C2, ω]) = M = ρ21 =
ω∗TC2ω

ω∗TC1ω
. (4)

ωrmax = Argmax
ω∈C3

[
ω∗TC2ω

ω∗TC1ω

]
. (5)

Additionally, the optimisation of this functional is not new to
the community, since it was previously proposed few decades
ago by Swartz and Novak with the Polarimetric Match Filter
(PMF) [25], [17]. The PMF aims at optimising the contrast be-
tween a target [C2] and clutter [C1] by selecting the projection
vector that maximises the ratio of the quadratic forms. It also
has to be said that this optimisation was previously known to
the pattern recognition community and it sits in the context of
Linear Discriminant Analysis [26].

In our approach, the optimization can be implemented using
a constrained Lagrangian methodology which returns a diago-
nalization:

L = ω∗T [C2]ω − λ(ω∗T [C1]ω − C), (6)
∂L

∂ω∗T
= [C2]ω − λ[C1]ω = 0

[C1]−1[C2]ω = λω.

To conclude, [C1]−1[C2] = [Ur]
∗T [Σr][Ur], where [Σr] =

diag(λ1r, λ2r, λ3r) with λ1r, λ2r, λ3r ∈ R+ and the columns
of [Ur] are the eigenvectors. The maximum eigenvalue λ1r rep-
resents the value of the maximum ratio. Interestingly optimising
the ratio:

ρ12 =
ω∗T [C1]ω

ω∗T [C2]ω
, (7)

ends up with the diagonalization of the matrix: [C2]−1[C1].
Therefore, the projection vector that suffers the maximum

change ωmax is:

ωmax = Argmax

[
Opt
ω∈Ω

ρ12, Opt
ω∈Ω

ρ21

]
. (8)

It is interesting to note that ([C1]−1[C2])−1 = [C2]−1[C1],
therefore they will have the same eigenvectors, but inverted
eigenvalues (elevating a matrix does not change the eigenvec-
tors) [27]. We can define the change matrix to diagonalise as
[Cm] = [C1]−1[C2]. In [22] we showed how it can be proved
that [Cm] can be diagolinised and it has real positive eigenval-
ues. Additionally, the matrix is not Normal and therefore its
eigenvectors are not bound to be orthogonal.

ωmax = Argmax

[
max
ω∈Ω

(ρ12), 1/min
ω∈Ω

(ρ12)

]
. (9)

The eigenvalues are included in the interval between zero and
infinity. A change reducing power will appear close to zero,
while a change increasing power will appear as a large number.
With the goal of improving the visualization of the results, the
eigenvalues can be inverted when they are smaller than one. In
other words: {

ρ̂max = ρmax if ρmax ≥ 1,
ρ̂max = 1

ρmax
if ρmax < 1. (10)
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In the following, for the sake of brevity, we will refer to this
change decomposition as RATIO.

B. Additive model

Another model considers the difference of quadratic forms for
the function F []. Preliminary results were already presented at
conferences [28], [16], [29] and recently a modification of this
optimisation was proposed in [19].

B.1 Difference matrix

The function we want to optimise now is

F ([C1, C2, ω]) = D = ω∗TC2ω − ω∗TC1ω. (11)

D can be re-written as D = ω∗T [C2 − C1]ω. We can define
the change matrix Cc as Cc = C2 −C1. Cc is a Normal matrix,
since it is the difference of two Normal matrices. This means
that the diagonal elements of Cc are real and the upper trian-
gular part is the complex conjugate of the lower triangular part.
However, there is a difference with ordinary coherency matrices
which are also Hermitian. Cc is not bound to be positive semi-
definite, because the diagonal element can be negative. This
means that its quadratic forms (using a generic ω) or its Trace
can be negative. In other words, P = ω∗T [Cc]ω ∈ R can be
negative for some ω and Trace([Cc]) ∈ R can be negative.

Not being bound to be positive semi-definite could be a de-
sirable feature for the change matrix since it allows to retrieve
if the change in the partial target is increasing or reducing the
power of a SM.

To find the maximum and minimum ω we can apply again the
Lagrangian optimisation for the quadratic form ω∗T [Cc]ω. That
is:

ωmax = Argmax
ω∈Ω

[
ω∗T [Cc]ω

]
. (12)

By constraining ω to be unitary we can obtain the Lagrangian
as:

L = ω∗T [Cc]ω − λ(ω∗Tω + C). (13)

After differentiating over dω∗T and setting the derivative
equal to zero we obtain the equation:

Ccω = λω. (14)

The Lagrangian multipliers can be calculated by performing
a diagonalisation of the matrix [Cc]. Since [Cc] is Normal, the
eigenvalues will exist and be real, but not necessarily positive.
This is because a change can increase or decrease the resulting
power of a scattering mechanism. Additionally the eigenvectors
are orthogonal, which allow this decomposition to capture the
minimal change (please see next section for more details).

We will refer to this decomposition as DIFFERENCE, or
DIFF in short.

B.2 Constrained difference matrix

In [19] a constraint of the difference matrix is proposed. The
rational is to allow the final change matrix to regain the property
of being positive semi-definite. In this way, the matrix will rep-
resent a single physically feasible partial target. Clearly, one co-
variance matrix can only represent one partial target and there-
fore we need to define in which time direction the change has
happened. In other words, we need to define if one partial target
has been added to or removed from the scene.

The optimisation is again based on a diagonalisation of a ma-
trix [Cp], where:{

[Cp] = [C2]− rp[C1] : if rp > rm
[Cp] = [C1]− rm[C2] : if rp < rm

(15)

where, 
rp = max eig([C1]−1[C2])

rm =
1

max eig([C1]−1[C2])

(16)

The optimisation initially checks for the bigger rp and rm
value, and then produces a covariance matrix representing a par-
tial target that has been either added or removed. The constraint
ensures that the resulting matrix is positive semi-definite [19].

We will refer to this decomposition as PARTIAL DIFFER-
ENCE, or ParDIFF in short. The word ”partial” wants to lead
the attention on the fact that the constraint produces a change
matrix that can represent a partial target (if the assumptions for
the change are met).

III. THEORETICAL EVALUATION OF SIGNAL MODELS

The three previous decompositions are focused at very differ-
ent typologies of changes, therefore the eigenvectors have very
different interpretations. To interpret these, we need to analyse
the assumptions of the different physical models.

A. Additive models: Unconstrained optimisation

In this model, the change is caused by an increase or reduction
of power for a scattering mechanism. The detection hypotheses
for the addition case are in the following (the subtraction can be
achieved by flipping the role of 1 and 2):{

H0 : [C2] = [C1]
H1 : [C2] = [C1] + [Cc]

(17)

The Null hypothesis sees no change, while the Alternative hy-
pothesis converts the first acquisition into the second by adding
the partial targets enclosed in [Cc].

We name this signal model as Additive, since the change is
additive. This signal model covers all the circumstances where
a target has been added or removed from the scene. For instance,
in the agricultural context, we may have that the first scene only
has scattering from the ground [C1g], while the second may have
only horizontal dihedrals [C2d] due to plants. H1 is true, with
matrices [Cc] = [C2d]− [C1g]. The matrix [Cc] will encapsulate
that a dihedral scattering mechanism was added and a surface
scattering mechanism was removed.

This decomposition is data driven and when the number of
scattering mechanisms increases and surpasses the number of
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observables (the 3 polarisation channels), the analysis becomes
more complex and extra physical models need to be used to in-
terpret the targets encapsulated in [Cc] (as it is for the model
based decompositions that can have more than 3 components)
[14].

The decomposition DIFF tries to provide an answer to the
Additive hypothesis testing.

In the circumstance that the additive model is a good fit to
reality these results can be physically interpreted. The largest
eigenvalue (if positive) represents the power of the largest scat-
tering mechanism that has been added to the scene, while the
minimum (if negative) is the power of the scattering mechanism
that has been maximally removed from the scene. The maxi-
mum eigenvector represents the SM that has been added. The
minimum eigenvector represents the SM that has been removed.

An interesting point is that the set of eigenvectors is orthog-
onal, because the matrix [Cc] is Normal. This means that the
eigenvectors also represent the minimal change that one could
apply additively to transform the first partial target into the sec-
ond partial target. It is minimal because the added and sub-
tracted components are uncorrelated and therefore they have no
projection on one another. If they were not orthogonal one could
always add the same partial target to both [Ca] and [Cs], and the
result would not change (this would also have made the decom-
position not unique). Orthogonality therefore is an important
property for this decomposition.

It is also important to stress that the eigenvectors provide
complementary information from just knowing the covariance
matrices before [C1] and after [C2]. It is decomposing the
change into its orthogonal (and therefore minimal and unique)
components.

This theoretical result will be tested in the following with
Monte Carlo simulations and real data.

B. Additive models: Constrained optimisation

In this model, the change is caused by either an increase or
reduction of power of a partial target. The detection hypotheses
for the addition case are:{

H0 : [C2] = [C1]
H1 : [C2] = r[C1] + [Cp]

(18)

The Null hypothesis sees no change, while the Alternative
hypothesis converts a scaled first acquisition into the second by
adding one partial target represented by [Cp].

The change is additive although it is constrained by a scaling
of the covariance matrix of the acquisition that is reducing. This
signal model covers the circumstances where a unique partial
target has been added or removed from the scene. For instance,
in the agricultural context, we may have that the first scene only
has ground component [C1g], while the second may have a com-
bination of ground and horizontal dihedrals r[C1g] + [C2d] due
to plants. The scaling is needed to make sure that the change
matrix [Cp] can be interpreted as a unique feasible partial target.

[Cp] is forced to be rank deficient (rank 2) by the constraint.
It therefore only represents the 2 main spectral components of
the added or removed target [19].

Since it is focused on a unique [Cp] matrix, this decomposi-
tion is only valid when one unique partial target is either added

or removed. The decomposition is resilient in dealing with situ-
ations when we have changes in both directions (part of a target
is removed and a new target added), because r can be small to
allow for reductions of one of the partial targets. However, if a
partial target is completely removed [C1] the constraint will re-
sult in a very small r value. In fact, it can be proven that the only
way to avoid negative eigenvalues for [Cp] when we remove [C1]
orthogonal to [C2] is by having rp = rm = 0. In general, the
constraint will result in a [Cp] that converges toward [C1] or [C2]
when the assumption of a unique change is not met.

One may think to run two separate optimisations and obtain
two matrices [Cp1] and [Cp2]. This will not ensure that one of the
resulting matrices may end up not being positive semi-definite
(it was discouraged in [19]). Additionally, this will not remove
the convergence effect. However, if we only focus on the domi-
nant eigenvector of the two optimisations, the algorithm should
still obtain estimations of the dominant change, providing the
scattering mechanisms that suffer the maximum addition or sub-
traction.

To conclude, in the circumstance that the additive model is a
good fit and a unique partial target is added or removed, the de-
composition assumptions are met. The largest eigenvalue rep-
resents the power of the largest scattering mechanism that has
been either added or removed. The maximum eigenvector rep-
resents the SM that has been added or removed.

This theoretical result is tested and validated in the following
with Monte Carlo simulations and real data.

C. Multiplicative model

In this model, we consider that a change in the partial target
is not due to adding or removing scattering mechanisms, but
rather a transformation of the partial target itself. The detection
hypotheses are: {

H0 : [C2] = [C1]
H1 : [C2] = [A][C1]

(19)

The change that transforms the second partial target into the
first partial target is modelled as a multiplication by a transfor-
mation matrix [A]. We can derive that

[A] = [C2][C1]−1 (20)

We can see that:

[A]−1 = ([C2][C1]−1)−1 = [C1]−1[C2] = [Cm]. (21)

The matrix [C1]−1[C2] = [Cm] is the change matrix used in
the spectral decomposition. This means that the eigenvectors of
[A] are the same as [Cm] and they represent transformations.

When the multiplicative model is a good fit to reality these re-
sults can be physically interpreted. The maximum eigenvector
represents the direction in which the ellipsoid of the first par-
tial target has been maximally stretched out to transform into
the ellipsoid of the second partial target. On the other hand
the minimum eigenvector is the direction in which the ellipsoid
has been squashed (compressed) to become the second ellipsoid.
The eigenvalues present the ratio between the ellipsoid surface
(i.e. the power) in the directions where the stretching happened.
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Please note, it is not possible to interpret these eigenvectors
as scattering mechanisms since they are directions of stretching
for the partial targets. It is therefore more similar to a signal de-
composition than a classic target decomposition and the optimal
ω are not SM.

This theoretical result will be tested in the following using
Monte Carlo simulations and real data.

D. When to use the different decompositions

(i) Additive unconstrained: If partial targets have been added
or removed than DIFF will allow to classify the change.
Examples of such scenarios include several environmental
changes such as deforestation (trees are removed), coastal
erosion (the coast line has been replaced by water), some
agricultural crops (ground is substituted by small stems,
larger plants and ground again). This is also useful for
artificial targets (a vehicle appearing or disappearing) and
urban (building built or demolished). It is important to
note that this model also fits situations when the ”visible”
change is not clear. For example in agriculture when the
plants get dry and the ground underneath get visible. Or
when different moisture levels change the amount of sur-
face scattering.

(ii) Additive constrained: If we have a priori knowledge that a
unique partial target has been added or removed then Par-
DIFF will allow to classify the change in a better way. Ex-
amples include deforestation of sparse forests (we need to
see the ground when the forest is present) and changes on
crops. Practically we still need to have portions of both
partial targets [C1] and [C2] in both images to avoid con-
vergence of the change matrix into the two original partial
targets [C1] and [C2]. Using a modification of ParDIFF
that applies two optimisations instead of one, we can pro-
vide results similar to the unconstrained additive model,
however it still suffers from convergence of the change ma-
trix.

(iii) Multiplicative: This decomposition fits when the same tar-
get is modified and the parts that appear as being added or
removed do not constitute proper interpretable polarimet-
ric targets. For instance, if we rotate a car of 20 degrees, it
is very likely to show different scattering mechanisms, but
it is hard to argue that these are added to the scene, since
the real point target producing them is the same. In this
case a multiplicative model is more appropriate, although
retrieving information from the transformation may still
be not straightforward and it may need the development of
physical models.

Concerning detection capability, we expect the larger dy-
namic range of the RATIO to produce better point detection
results. For instance, if we consider the Signal to Clutter Ra-
tio (SCR) as an indicator of separability, then RATIO optimises
this and therefore provides the highest SCR achievable. How-
ever, SCR is not the only parameter that impact detection perfor-
mance and the standard deviation of target and clutter are also
very important.

In the following, we are performing Monte Carlo simulations
and use real data to test these theoretical considerations.

IV. TEST WITH SIMULATED DATA

A. Monte Carlo Simulations

In this simulation, we assume fully developed speckle with
scattering vectors that can be modelled using 3 dimensional
zero-mean complex Gaussian. This assumption makes interpre-
tation of the results easier, but interestingly it can also cover
classification results when the texture does not change the struc-
ture of the covariance matrix.

The generation of the random variables is mostly following
the processing steps proposed in [15]:
(1) A Monte Carlo method is used to generateN realizations of

scattering vectors drawn by a 3D-Complex Circular Gaus-
sian distribution. This is performed twice (one for each ac-
quisition). Therefore, we generate two sets of ”white ran-
dom vectors”: kw1 (i) and kw2 (i), where i = 1, ..., N .

(2) The white random vectors are coloured using two asymp-
totic covariance matrices [Ċ1] and [Ċ2] (representing
the partial targets observed in the two acquisitions):
[Ċ1]

1
2 kw1 (i) = k1(i) and [Ċ2]

1
2 kw2 (i) = k2(i)

(3) The simulated covariance matrices are calculated by averag-
ingN realizations of the outer product of simulated vectors:
[C1] = 〈k1k

∗T
1 〉N and [C2] = 〈k2k

∗T
2 〉N , where 〈.〉N is the

finite average of N realizations. Since the simulation pro-
vides random variables that are close to be independent, the
value of ENL can be approximated by N .

(4) Points 1 to 3 are repeated K times to provide more samples
for evaluating statistics (e.g. they representK experiments).
In other words, a set of K covariance matrices is produced:
[C1(k)] and [C2(k)], with k = 1, ...,K. Each of these real-
izations is slightly different due to speckle.

(5) For each pair of the K experiments (e.g. [C1(k)] and
[C2(k)]) we evaluate the diagonalisations: ([C2(k)] −
[C1(k)])ω = λω and [C1(k)]−1[C2(k)]ω = λω..

To summarize,K samples are generated averagingN realiza-
tions and for each sample the change optimisations are applied.
We therefore have two K sets of eigenvalues and eigenvectors,
one set for each change detector. A block diagram of the simu-
lation procedure is presented in Figure 1.

B. Classifying changes: Eigenvector analysis

In this section we test the capability of the three optimisations
to classify a polarimetric change. In all the following simula-
tions we use an Equivalent Number of Look ENL equal to 50.
This may correspond to an averaging window of around 11×11
for most of the current sensors. Since the purity of polarisation
of the partial target is very important, we perform simulations
where we modify the entropy of the considered targets. The α
values provided in the following are refereed to the dominant
component of the partial target using Pauli basis. We use this
because all the optimisations focus on the dominant changes (or
the first two dominant in case of ParDIFF) and α allows a clear
and synthetic representation of the target characteristics.

In this section we will be showing figures where the horizon-
tal axis is the Realisation (or repeat of the experiment), while the
vertical axis is the dominant α angle that has been retrieved by
the algorithm. The captions give information about the actual α
values that are simulated in each of the plots.
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Fig. 1. Block diagram for the Monte Carlo simulations. r.v.: random variables. ×K (bottom right of shaded areas) indicates the number of times the operation is
repeated.

B.1 Adding one target

In the first test, the second partial target is obtained by adding
1 partial target to the first one. This follow the hypothesis H1 :
C2 = C1+Ca, whereCa is a unique partial target. This physical
change meets the assumptions for both DIFF and ParDIFF. We
want to assess the retrieval of the dominant SM of Ca.

Polarised targets: Figure 2 shows a simulation where both
targets C1 and Ca are polarised (almost single targets) with an
entropy of 0.1. The dominant α of the first target C1 is zero (a
surface) and the dominant α of Ca is swept from zero to 90 de-
gree (from surface to dihedral). A good retrieval will therefore
estimate an α that goes from 0 to 90 along a line throughout
the different realisations. The maximum eigenvector will esti-
mate the dominant α of Ca and Cp, since this is the SM that has
been maximally added to the scene. In the plot, this is shown
as a red line. We can observe that DIFF and ParDIFF are able
to identify the polarimetric characteristic of the added target,
where the red line follows a ramp in the plot. On the other hand,
the RATIO is not able to retrieve the correct α. Looking at the
estimation errors it seems both difference optimisations do not
show any evident pattern and provide decent estimations with er-
rors that are overall smaller for the ParDIFF with a RMS of 3.9
degrees compared to 4.7 for DIFF. Please note, ParDIFF min-
imum eigenvector is not shown because the matrix Cp is rank
deficient. Additionally the DIFF minimum eigenvector (the tar-
get removed) is unstable (blue line), because nothing has been
”removed” and the third eigenvalue is practically zero.

Partially polarised target: Figure 3 shows a more challenging
scenario when the entropy of [C1] and [Ca] is 0.5. Please note
that in this simulation we are not adding a single target, but a
proper partial target (formed by 3 single targets). DIFF and Par-
DIFF can only evaluate a portion of the total number of SM as
discussed previously. This is why we are showing and concen-
trating only on the dominant change. As for the previous case,
DIFF and ParDIFF can retrieve the added α, while RATIO pro-
vides completely unrelated values. Looking at the RMS error
this has grown, where now DIFF can obtain a better result with
an average 9.2 degree of error while ParDIFF has 12.8 degree.

Depolarised target: The final test in Figure 4 shows the same
simulation when the entropy of C1 and Ca is increased to 0.99.
There is very little polarimetric information left and therefore

retrieving any SM is very challenging. We can conclude that
almost completely depolarised targets do not allow to retrieve
α changes when the equivalent number of looks is 50. Things
improve when averaging much more (e.g. N = 200), but these
simulations are excluded for the sake of brevity. The RMS errors
are now 27.8 degree for DIFF and 28.5 degree for ParDIFF.

The preliminary analysis shows that if the physical change is
the addition of a unique partial target, DIFF and ParDIFF are
able to retrieve the dominant SM that has been added to the
scene, provided the entropy is not too high.

B.2 Adding and removing targets

In this more challenging scenario we want to test if we can
retrieve changes to two (and not one) partial targets. Specifically
we are adding a partial target AND removing another partial
target. Note, this is the most general additive change and this
assumption is not met by ParDIFF, which is only modelling the
change to a unique partial target.

Please note in this experiment we are adding AND sub-
tracting, considering both time directions (e.g. a dense for-
est, which becomes bare ground, the forest is subtracted and
the ground is added). If we add (subtract) more partial tar-
gets in the same time direction the superposition of effects
will make it appears as a unique final partial target. That is
H1 : [C2] = [C1] + [Ca1] + [Ca2] ↔ [C2] = [C1] + [Ca],
where [Ca] = [Ca1] + [Ca2]. In this case, ParDIFF will meet
its assumptions and clearly, the only way to unpack the partial
targets of origin [Ca1] and [Ca2] is by using scattering models.

The alternative hypothesis is now equal to H1 : [C2] =
[C1] + [Ca]− [Cs]. The targets we want to retrieve now are two,
the added [Ca] and the subtracted [Cs] which we will analyse us-
ing the dominant α parameters for the maximum and minimum
eigenvectors respectively.

In the first test we select two orthogonal targets, where the
dominant α of C1 is zero, the α of Ca is 90 degree (a dihedral)
and the α of Cs is 0. In this way, we have that Cs = C1 and
Ca = C2. In practice, we are substituting a surface with a dihe-
dral, both of equal power.

Polarised targets: Figure 5 shows a plot where the entropy
of all the targets is 0.1 (they are almost single targets). Inter-
estingly, DIFF can retrieve both the targets added α = 90 (red
line) and removed α = 0 (blue line). The RATIO cannot retrieve
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(a) DIFF (b) RATIO (c) ParDIFF
Fig. 2. Adding one target. Simulation of retrieved α values when the (a) DIFF, (b) RATIO and (c) ParDIFF optimisations. The dominant α of the target that has

been added is swept from 0 to 90 degree. Entropy of targets = 0.1

(a) DIFF (b) RATIO (c) ParDIFF
Fig. 3. Adding one target. Simulation of retrieved α values when the (a) DIFF, (b) RATIO and (c) ParDIFF optimisations. The dominant α of the target that has

been added is swept from 0 to 90 degree. Entropy of targets = 0.5

(a) DIFF (b) RATIO (c) ParDIFF
Fig. 4. Adding one target. Simulation of retrieved α values when the (a) DIFF, (b) RATIO and (c) ParDIFF optimisations. The dominant α of the target that has

been added is swept from 0 to 90 degree. Entropy of targets = 0.99

the α for the minimum, but the maximum is correct. The Par-
DIFF presents a very peculiar behaviour where the maximum
eigenvector jumps randomly between the target that has been
added and the one that has been removed. The algorithm has
not enough information to evaluate if a target has been added or
if it has been removed and selects rm or rp based on considera-
tion on total power [19], which in this case is simulated as being
in average the same. However, if we fix the time direction then
the estimations become comparable to DIFF with RMS around
0.005 degrees. The plots with ParDiff applied fixing the time
direction are not shown for brevity.

Partially polarised targets: The same test was done when the

entropy of all the targets is 0.5. For the sake of brevity the figure
is not shown, but the plots of α are very similar (just with an
increased spreading). Again, DIFF retrieves both the dominant
added target α = 90 and the removed one α = 0. The qual-
ity of the retrieval is still very good with estimation error of 2.8
degree (for DIFF). This shows that DIFF is able to cope with
situations when one target is added and one removed. Again
ParDIFF suffers from the same ambiguity where the algorithm
does not know which direction to select and only detects ”half”
of the change. By fixing the time direction and running the al-
gorithm twice we can retrieve results just as good as the DIFF.

Depolarised targets: The Figure when the entropy of all the
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(a) DIFF (b) RATIO (c) ParDIFF
Fig. 5. Adding and removing targets. Simulation of retrieved α values when the (a) DIFF, (b) RATIO and (c) ParDIFF optimisations. The added α is 90 degree,

the removed α is 0 degree. Entropy of target equal to 0.1.

targets is 0.99 is not shown for sake of brevity. Not surprisingly
the retrievals are very poor. However it is still possible to see
some pattern in the DIFF retrieval where we have a mean error
of 24.1 degrees. Interesting these results are much better than
the one obtained when only one target was added. The reason
for this is possibly that the change now is more marked than
before and even a tiny amount of polarimetric information is
magnified and more visible.

B.3 Adding and removing targets: non orthogonal

In the final test, we consider non orthogonal targets. This
means that the subtraction is not removing completely C1 and
the addition is not adding completely C2. In particular we have
a surface which becomes a dipole. The dominant α for C1 is 0,
while the dominant α for C2 is 45 degree. Clearly, mathemat-
ically there is no unambiguous combination of Ca and Cs that
could have produced that change. We could consider an infinite
number of different combinations that could have lead to such
result. What the optimisation is able to tell us is the minimal
addition Ca and subtraction Cs that would have transformed C1

into C2. This by definition leads to dominant scattering mecha-
nisms in Ca and Cs that do not have projections on each other
(i.e. they are orthogonal).

If in nature the change is obtained in a different way, we sim-
ply don’t have enough information in the SAR data alone to dis-
entangle this. However, we can always consider a scattering
model that is able to start from the minimal changes and project
these onto some target basis that we believe are responsible for
the physical scattering. This can be done for instance in agricul-
ture [30].

Polarised targets: Figure 6 shows the simulation using non-
orthogonal targets with entropy equal to 0.1. The α of the added
target is swept between 0 and 90 degrees, while the removed
target has always an alpha equal to 0. We observe that the max-
imum and minimum of DIFF are not equal to the targets before
and after. They are equal to the minimal change that would lead
the first target to become the second. These two SM will modify
the surface and make it into the second target. Interestingly, if
we look at the envelop of the red signal (top and bottom of red
area), ParDIFF seems to be able to cope with this estimation,
provided we fix the direction of time. This is because the op-
eration that is making [Cs] positive semi-definite is recognising

the assumptions are not met and estimating values of rm and rp
very close to zero (around 10−7 in this experiment). This mean
that [Cs] ≈ [C1] or [Cs] ≈ [C2]. The change matrix converged
to the partial targets in the two scenes. Clearly the same result
could have been obtained doing a diagonalisation of [C1] or [C2]
in the first place, but ParDIFF has the advantage to test the va-
lidity of adding a unique target and converges into the analysis
of the separate images only when its own assumptions are not
met.

Partially polarised targets: Figure 7 shows the simulation us-
ing non-orthogonal targets with entropy equal to 0.5. As for the
previous case, DIFF provides the α of minimum and maximum
change, while ParDIFF is able to recognise the model for a sole
partial target is not true and returns the eigenvectors of the two
matrices separately. Now the values of rm and rp are around
0.15. The differences between the estimation errors of DIFF
and ParDIFF (provided we apply ParDIFF twice) start getting
much smaller, because the change matrix needs to converge less
toward the original targets.

Depolarised targets: similarly to previous cases, none of the
algorithms, can estimate the scattering mechanisms and the re-
sults between DIFF and ParDIFF are very similar. The plots are
not showed here for the sake of brevity.

B.4 Summary of Classification

From the simulation we could produce the following conclu-
sions:
• Additive models: adding OR removing
– DIFF can retrieve the 2 dominant SM that have been added

and/or removed.
– ParDIFF can retrieve 1 dominant SM either added or re-

moved. If repeated twice disabling the automatic selection of
the time direction, than it can retrieve the 2 dominant SM.
• Additive models: adding AND removing
– DIFF retrieves the minimal changes to SM to go from [C1]

to [C2]. This information is complementary from knowing [C1]
and [C2].

– ParDIFF recognises its assumptions are not met and re-
trieves the two partial targets of origin or end (due to the change
matrix converging toward the original partial targets).
• RATIO produces eigenvectors that cannot be interpreted as
SM.
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(a) DIFF (b) RATIO (c) ParDIFF
Fig. 6. Adding and removing targets. Simulation of retrieved α values when the (a) DIFF, (b) RATIO and (c) ParDIFF optimisations. The added α is swept

between 0 and 90 degree, the removed α is 0 degree. Entropy of target equal to 0.1

(a) DIFF (b) RATIO (c) ParDIFF
Fig. 7. Adding and removing targets. Simulation of retrieved α values when the (a) DIFF, (b) RATIO and (c) ParDIFF optimisations. The added α is swept

between 0 and 90 degree, the removed α is 0 degree. Entropy of target equal to 0.5

• When the entropy approaches 1 all the algorithms fail.

C. Detection: Eigenvalue analysis

In this second simulation we want to test the detection ca-
pability of the three change optimisations. To do this we will
produce Receiving Operating Characteristics curves for differ-
ent situations and Signal to Clutter Ratio (SCR) values. These
are plots showing Probability of Detection Pd against Probabil-
ity of False Alarm Pf . The probability are calculated simulating
realisations of targets (H1) and clutter (H0).

C.1 Adding one target

The SCR is calculated considering the trace of Ca as our sig-
nal and the trace of C1 as our clutter. This is because we want
to detect an added target, embedded in the target of the first ac-
quisition. For instance a SCR = 0.5 means that the trace of Ca
is half the one of C1. We simulated 10,000 instances of the first
target and 10,000 instances of the second target, to calculate Pd
and Pf .

In these simulations as benchmark we considered the Whisart
change detector based on the likelihood ratio [18]. This was
developped by Conradsen et al [18] and it is sometime refereed
to as the Conradsen change detector. In the following figures
we will show ROC curves, where we express the probability
of false alarm Pf with a base 10 logarithmic scale. In each of
these plots, the color of the line identifies the algorithm, while
the style (solid, dashed, dotted) identifies the value of Signal to

Clutter Ratio (SCR).

Polarised targets: Figure 8 shows the ROC curves when [C1]
and [Ca] have an entropy equal to 0.1 (note [C2] = [C1]+ [Ca]).
The solid line is for SCR = 0.5, dashed line is for SCR =
0.1 and the dotted line (appearing as thicker in the plot) is for
SCR = 0.05. The black line (the lowest performance possible)
represents the random assignment (flipping a coin and deciding
if it is target or clutter). Please note the scale for Pf is in log10.

Interestingly, the performances of RATIO and Wishart are
top of the scale for SCR = 0.5 and for SCR = 0.1. They
provide perfect detection in our simulations (i.e. Pd = 1 and
Pf < 10−4) and they cannot be seen because they overlap on
each other at the top of the ROC plot (only visible a blue line, the
green line is underneath). Please note with 10,000 simulations
we can only estimate Pf < 10−4. Since this is a good limit
for change detection we didn’t simulate more samples which
would have lead to a slow down of the computation. The DIFF
is providing lower detection performance, which we may have
expected considering the ratios have larger dynamics. Finally
ParDIFF is providing the worst performance. This can be justi-
fied by the fact that to produce a positive semi-definite change
matrix we reduce the difference (rs and rm are generally smaller
than 1). The power of the test is therefore reduced while this is
not affecting false alarms.

Also note that when the SCR is very low (the added target is
5% of the initial target) the detection performance is very low
for all the detectors resembling the random assignment.
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Fig. 8. ROC curves, one target added. Simulation for different SCR when the
first target is a surface and the target added has a dominant α = 90 degree.
Entropy of targets equal to 0.1

Fig. 9. ROC curves, one target added. Simulation for different SCR when the
first target is a surface and the target added has a dominant α = 90 degree.
Entropy of targets equal to 0.5.

Partially polarised targets: Figure 9 shows the ROC curves
whenC1 andCa have an entropy equal to 0.5. Again the RATIO
and Wishart provide the best results and performance degrades
when the SCR reduces (green and blue lines overlap again). For
SCR = 0.5, we have that RATIO and Wishart obtain the per-
fect performance, with DIFF again inferior in detection perfor-
mance. For SCR = 0.1, RATIO and Wishart have a degraded
performance and we can clearly see that RATIO performs better
than Wishart. For SCR = 0.05 no algorithm is able to provide
decent performance.

Depolarised targets: Figure 10 shows the ROC curves when
C1 and Ca have an entropy equal to 0.99. A surprising thing
happens here when the SCR is high enough (SCR = 0.5). Once
polarimetry becomes less important because the depolarisation
is really high, DIFF performs much better than other algorithms.
When it comes to detection, DIFF sees more separability when
the polarimetric information is less important and the discrimi-
nation is done purely on the total intensity of the partial targets.
This is a result that we will see in real data as well. However,
the good detection performance of DIFF can only be achieved
when the SCR is large enough. If SCR = 0.1, no detector can
provide a decent performance.

To summarise these first results, when we observe single tar-
gets (e.g. vehicles, small buildings), then we will have larger
discrimination if we use RATIO or Wishart. On the other hand,
when dealing with high entropy systems, we would get better
detection performance by using DIFF.

Finally in Figure 11 we can observe the ROC curves when we

Fig. 10. ROC curves, one target added. Simulation for different SCR when the
first target is a surface and the target added has a dominant α = 90 degree.
Entropy of targets equal to 0.99.

Fig. 11. ROC curves, one target added. Simulation for different SCR when the
first target is a surface and the target added has a dominant α = 45 degree.
Entropy of targets equal to 0.5.

add a dominant dipole α = 45. The entropy is 0.5. We can see
that the performance reduces especially for RATIO and Wishart
with lower SCR, but the ranking of the detectors remains the
same.

C.2 Adding and removing targets

In this section, we want to simulate the general situation when
we add and remove targets. In the following simulations we
always start with an initial target [C1] equal to a surface and
modify this into a second target [C2] with a variable dominant α
(choosing between 90, 45 and 22 degree).

Polarised targets: when the entropy is 0.1 we can obtain per-
fect detection for all the algorithms. The ROC curve is not
shown for sake of brevity.

Partially polarised targets: The situation is identical to Figure
12 and not showed here for the sake of brevity. An entropy of
0.5 still provides perfect detection (i.e. Pd = 1 and Pf < 10−4).
Targets with a difference of 22 degree cannot be discriminated
using 50 ENL.

Depolarised targets: If we simulate very depolarised targets
with entropy 0.99 (Figure 13) we discover that all the detectors
perform very bad. The problem is that there is very small po-
larimetric difference with entropy 0.99 and the SCR of the two
targets is identical. Therefore DIFF cannot separate the targets
based on the overall power as it was doing before for depolarised
targets with different Trace. To have separability when there is
no polarimetric information we need a difference in overall in-
tensity.
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Fig. 12. ROC curves, targets added and removed. Simulation for different α of
the second target (90, 45 and 22 degree). Entropy of targets equal to 0.5.

Fig. 13. ROC curves, one target added. Simulation for different SCR when first
target is a surface and the α added is 45 degree. Entropy of target 0.99.

V. TESTS WITH REAL DATA

A. Data Presentation: SARTOM E-SAR (DLR)

The first dataset was acquired by the E-SAR DLR system
and it is L-band quad-polarimatric. The data collection called
SARTOM [31] was performed in 2006 and it was mainly aimed
at target detection using tomography and polarimetry. Interest-
ingly, several targets were deployed in open field and under veg-
etation. Additionally, some of the targets were moved during the
acquisitions. Figure 14 shows the RGB Pauli images of the test
area for two separated acquisitions. The spatial baseline is zero
(in average) and the temporal one is four days. Several targets
among two trihedral corner reflectors (CR) in open field and one
CR in the forest were removed during the four days.

B. Change models on SARTOM

The three optimisations were applied to the SARTOM data
and Figure 15 shows the images of the eigenvalues.

All the targets with validated changes can be easily detected
in the maximum eigenvalues of the RATIO (some in the max-
imum and some in the minimum). This includes the corner
reflectors under canopy cover. Interestingly, using only the
backscattering the latter cannot be detected. Moreover, some
further point targets have a relatively large RATIO. Note that
the northernmost of the corner reflectors was positioned on the
ground without pedestal. This was removed at the end of the
first acquisition and then replaced on the ground four days after.
It was not used for calibration purposes, but it only functioned
as a target for detection. We can still detect the change, because
its different positioning made it look different in the two images

(looking at the Pauli RGB images reveals that the color around
the corner reflector looks different in the two images).

Targets are also visible in the DIFF and ParDIFF eigenvalues,
however the forest clutter is very high and an automatic change
detector may struggle separating the point targets change from
the background. Please note the scale of these two are different
and this explains most of the differences in colours.

Figure 16 shows the retrieved α using the two optimisations.
Before interpreting these results, it is important to keep in mind
that α is a scale invariant measurement and it will be retrieved
regardless of the intensity of the eigenvalue. This makes α im-
ages look very noisy. In the following we propose a better way
to visualise the α, however it is interesting to have a look at α
everywhere for testing purposes.

Looking at DIFF and ParDIFF, the images show a reduction
of surface scattering on the fields. As expected, the α retrieved
by the ratio, does not seem to be interpretable as a scattering
mechanism.

Figure 17 is build by using α as the colour and the eigenvector
as the saturation. A pixel will keep the colour given by α, but
appear very dark if the eigenvalue is low. Looking at the moved
targets we can observe how the removed scattering mechanisms
(smallest eigenvalue) resemble in colours the Pauli RBG of the
first acquisition. The corner reflectors appear mostly blue, al-
though the northernmost one has a strange behaviour when re-
deployed showing different colours. The CR in the forest is very
hard to identify, due to the large clutter represented by forest
changes. From the simulation we saw that changes of depo-
larised targets seem to be enlarged by DIFF.

Finally Figure 19 presents the same colour image where the
RATIO optimisation is performed. Interestingly, the detection
of point targets is improved using the ratio, but the colours do
not suggest any possibility to perform classification.

Figure 18 presents the same colour image where the ParDIFF
model is performed. Interestingly the RGB seems very similar
to a mix of the Largest and Smallest RGBs of the DIFF. Simu-
lations did show that both DIFF and ParDIFF are able to iden-
tify the changing scattering mechanisms. Finally Figure 18 also
presents a change detection image obtained using the Wishart
change detector tested in the simulation section. Obviously, the
Wishart detector will not be able to classify the change (it is
black&white). Additionally some of the targets, as the ones in
the forest are almost invisible in the image, showing that in real
data RATIO may have some advantage to the Wishart. This
could be linked to the fact that simulations were assuming a
Wishart distribution of the target and clutter, while real data may
have a different distribution due to texture.

Finally we want to investigate further the similarity of DIFF
and ParDIFF on real data. To do so, Figure 20 plots a 2D density
distribution of DIFF against ParDIFF estimations. If the density
is on the bisect then the two results are identical. The three plots
represent the three elements of the Pauli decomposition that we
used for the RGB. The estimations are in pretty good agreement,
as indicated by the RMS and bias. Although ParDIFF tends to
estimate more surface change than DIFF. From this comparison
we can conclude that indeed the two algorithms are looking at
very similar scattering mechanisms.
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Fig. 14. RGB Pauli images of the SARTOM test site with 4 days of temporal baseline: (a) Master acquisition (b) Slave acquisition (4 days after). Circles indicate
targets that were removed/moved. Yellow is for corner reflectors, while Red were jeeps (DLR E-SAR L-band SARTOM2006 Campaign).

C. Data Presentation: ALOS-1 (JAXA)

The second dataset was acquired by the PALSAR instrument
on board of the JAXA ALOS satellite. The images analysed
here were acquired in 2007 in the west of the UK over the More-
combe Bay.

The first image was acquired on the 1st of April, while the
second was on the 17th of May 2006. The area presents a very
dynamic portion of the coast (with a salt marsh in the red rect-
angle) and a caravan park included in the red circle.

The Pauli RGB of the two images are presented in Figure
21. It is possible to observe how the sea region is showing
some change due to different wind conditions. Additionally a
large area of agricultural fields near the coast shows an increased
green colour (indicating an increase in volume scattering). The
caravan park also presents several point target changes.

C.1 Change detection with ALOS data

The resolution is 30 × 10m in slant range and azimuth. The
coherency matrices were filtered with a 3x9 boxcar and multi-
looked to produce a pixel on the ground that is more squared.
For the sake of brevity we only present the final RGB images.

In Figure 22 we present the α angle saturated by the eigen-
values for the DIFF optimisation. Interestingly, DIFF is able
to classify the changes to scattering mechanisms, for instance
identifying an increase in surface scattering over the sea. Also
DIFF identifies an increase of volume scattering over the agri-
cultural areas. It monitors an increase and reduction of dihedral
scattering over the caravan park (due to large moving vehicles).

Figure 23 presents the same colour image where the RATIO is
performed. These images cannot be used to classify the changes.
Additionally, they seem more appropriate for point target detec-
tion.

Figure 24 presents the same colour image where the ParDIFF
is performed. Again the image seems to be a mix of the two
DIFF images. The Wishart change detector is also presented
and clearly it can detect but not classify the change.

To test again the similarity of outputs between DIFF and Par-
DIFF Figure 25 plots a density map of estimations. Again the
three plots are the three elements of the Pauli decomposition.
The RMS and bias show minimal differences of more than an
order of magnitude smaller than the actual values. From this
comparison we can again conclude that the simulations where
realistic and DIFF and ParDIFF produce similar results because
they are observing the same underlying physical phenomena.

CONCLUSIONS

In this work, a validation and comparison of three optimisa-
tions for change detection with PolSAR was carried out. One of
these optimisations was also first published in this article. The
algorithms are based on diagonalisations of change matrices and
therefore they can be referred as spectral decompositions of the
change matrix. These have the aim to separate the different com-
ponents of signal representing a polarimetric change. The pro-
posed decomposition is aimed at optimising the DIFFERENCE
(or DIFF) of covariance matrices [Ca] = [C2] − [C1] while the
second considers the RATIO of powers which lead to the change
matrix [Cm] = [C1]−1[C2]. The last was recently proposed [19]
and aims at constraining the change matrix of DIFF to be pos-
itive semi-definite. This decomposition is here referred as Par-
DIFF.

The DIFF and ParDIFF decompositions can be used to pro-
vide physical interpretation to additive changes. This is when
scattering mechanisms are added or subtracted from the scene.
The constrain applied to ParDIFF assumes that only one partial
target is either added or removed, while DIFF does not need this
assumption. Finally, RATIO could provide physical interpreta-
tion only when a transformation modifies the first partial target
into the second one (e.g. a change in orientation).

It is important to notice that these are signal decompositions
focused on Changes and not Targets. They therefore have differ-
ent properties from ordinary Target Decompositions [13], [11].

The three decompositions were validated using Monte Carlo
simulations. It was evident that DIFF can retrieve the domi-
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Fig. 15. Eigenvalues(SARTOM): (A) Largest Eigenvalue of DIFF (B) Smallest Eigenvalue of DIFF (C) Largest Eigenvalue of RATIO (D) Smallest Eigenvalue of
RATIO (if smaller then 1, the inverse is shown), (E) Largest Eigenvalue of ParDIFF. Circles indicate targets that where removed/moved. Yellow is for corner
reflectors, while Red were jeeps. Averaging: 9x9 boxcar.

nant scattering mechanisms that were added or removed, while
RATIO was not providing this information. ParDIFF can also
retrieve the two dominant SM changes, if applied twice to cover
the two time directions (1 → 2 and 2 → 1). On the other hand,
RATIO and Conradsen detectors [18] provided better detection
performance for polarised point targets.

Finally, the algorithms were tested on two different quad-
polarimetric L-band datasets. The first was acquired during the
E-SAR DLR SARTOM 2006 campaign and it is largely ded-
icated to point target detection. The second considers JAXA
ALOS data acquired in 2006 over Morecombe Bay in the UK.
This dataset was very beneficial to assess detection and clas-
sification of distributed targets. Interestingly, the eigenvectors
results from DIFF and ParDIFF are very similar showing that

both algorithms are able to identify the dominant changes in the
scene.

• DIFF: When the additive hypothesis is true, DIFF can rep-
resent the dominant scattering mechanisms both added and re-
moved. In case that there are multiple scattering mechanisms
added or removed, the decomposition is focusing on the unique
minimal change that can lead from the first to the second target.
This is ensured by the property of orthogonality of the eigen-
vectors. Since it focuses on the minimal change, its information
is complementary to applying a spectral decomposition of [C1]
and [C2] separately and looking at differences in parameters.
• ParDIFF: When the additive hypothesis is true and only one
partial target is either added or removed, ParDIFF is equivalent
to a target decomposition because the change matrix will rep-
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Fig. 16. α (SARTOM): (A) α for largest eigenvector of DIFF (B) α for lowers eigenvector of DIFF (C) α for largest eigenvector of RATIO (D) α for lowest
eigenvector of RATIO (E) α for largest eigenvector of ParDIFF. Averaging: 9x9 boxcar.

resent a physically feasible partial target. However, if there are
multiple partial targets added or removed, the algorithm will not
be able to follow both changes and it needs to be applied twice
in the two time directions. Interestingly, when the assumptions
are not met, the algorithm is able to deal with the situation by
converging toward the covariance matrices of destination (first
or second depending on time direction). Although the result is
equivalent to apply a diagonalisation of the original covariance
matrix, ParDIFF is able to automatically recognise when this is
needed. As a note of caution, applying the diagonalisation in
both direction may result in one of the matrices not being posi-
tive semi-definite.
• RATIO provides eigenvectors that cannot be interpreted as
scattering mechanisms, but directions in which we stretch the el-
lipsoid of the first partial target to make it into the second partial

target. They are therefore very different from Target Decompo-
sitions and provide complementary information.

In terms of computational cost, DIFF presents the quickest
algorithm with one diagonalisation of a symmetric matrix per
pixel. RATIO performs one diagonalisation of a Normal, but
asymmetric matrix and ParDIFF requires two diagonalisations
if applied with the automatic selection of time direction (1 sym-
metric and 1 symmetric) or three diagonalisations if applied
twice.

To summarise, the DIFF and ParDIFF decompositions are
suited to classify the type of change (if the additive hypothesis
is fulfilled), while RATIO is better in detecting polarised point
targets.

As a future work, we want to explore more optimisations of
different change matrices. We want also to investigate how to
combine physical models to interpret the changes (e.g. for agri-
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Fig. 17. DIFF optimisation(SARTOM): (Left) Largest eigenvalue; (Right) Lowers eigenvalue. Averaging: 9x9 boxcar.

Fig. 18. RATIO optimisation (SARTOM): (Left) Largest eigenvalue; (Right) Lowers eigenvalue. Averaging: 9x9 boxcar.

Fig. 19. Changed detection (SARTOM): (Left) ParDIFF optimisation largest eigenvalue; (Right) Wishart. Averaging: 9x9 boxcar.
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Fig. 20. Comparison(SARTOM): (Left) Largest eigenvalue; (Right) Lowers eigenvalue. Averaging: 9x9 boxcar.

Fig. 21. RGB Pauli images of the JAXA test site with 1 and a half month of temporal baseline: (a) 1st of April 2007 (b) 17th of May 2007. (JAXA L-band).

Fig. 22. DIFF optimisation (JAXA): (Left) Largest eigenvalue; (Right) Lowers eigenvalue. Averaging: 3x9 boxcar.
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Fig. 23. Ratio optimisation (JAXA): (Left) Largest eigenvalue; (Right) Lowers eigenvalue. Averaging: 3x9 boxcar.

Fig. 24. ParDIFF optimisation (JAXA): (Left) Averaging: 3x9 boxcar.

Fig. 25. Comparison (ALOS): (Left) Largest eigenvalue; (Right) Lowers eigenvalue. Averaging: 9x9 boxcar.
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cultural purposes) and we want to extend these decompositions
to time series of PolSAR data.
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