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a b s t r a c t 

The purpose of this article is to provide raw data and 

measure-validation data pertaining to a co-submission pub- 

lished in European Journal of Radiology and entitled: Devel- 

opment and validation of a novel measure of adverse patient 

positioning in mammography. 

This Data in Brief article serves not only to provide greater 

detail than its companion article but also as an educa- 

tional worked example of the Rasch measurement frame- 

work. Rasch measurement is a form of modern psychomet- 

ric technique and our articles provide the first known exam- 

ple of its use in the evaluation of clinical radiological image 

quality. 

The data consist of observations of mammographic images, 

plus limited participant parameters relevant to the measure 

validation process. Also provided are validation indices pro- 

duced by subjecting the primary data to Rasch analysis. 

An expert observer generated the primary data by review- 

ing mammographic images to judge the presence or absence 

of a set of features developed through theory and consulta- 

tion with other experts. The validation data were generated 

through Rasch analysis, performed using Winsteps® soft- 
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ware, which mathematically models the probability of having 

a correct response (or a present feature in this dataset) to an 

item in a given measurement instrument ( e.g . questionnaire), 

as a function of the participant’s ability/position on the un- 

derlying construct under study. 

The data can be reused by anyone wishing to learn and prac- 

tice psychometric validation techniques. They can also form 

a basis for researchers wishing to build on our preliminary 

measure for the assessment of mammographic clinical image 

quality. 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

S
pecifications Table 

Subject Radiology and radiography 

Specific subject area Mammography: measurement of positioning quality 

Type of data Table 

Image 

Graph 

Figure 

How data were acquired A questionnaire (supplied) was completed by an observer analysing 

mammographic images. Direct entry of observations (yes/no – feature present or 

absent) was performed, using a bespoke database in Microsoft Access. 

Patients self-reported their height and weight from which body mass index was 

calculated https://www.nhs.uk/common- health- questions/lifestyle/ 

what- is- the- body- mass- index- bmi/ 

Patients’ ages and mammographer identity were extracted from images’ DICOM 

header using VolparaDataManager® software (Volpara Health Technologies Ltd, 

Wellington, New Zealand), algorithm version 1.5.2. The ages were then assigned to 

ten-year age bands and the mammographer identities were anonymised. 

Validation data were generated through Rasch analysis, performed using 

Winsteps® software. 

Data format Raw 

Analysed 

Filtered 

Parameters for data collection Data were collected from mammograms of women attending for breast cancer 

screening in the Scottish Breast Screening Programme, United Kingdom. 

Description of data collection Mammograms were viewed by an expert observer and scored for the presence of 

various features. The observer entered data directly into a Microsoft Access 

database, responding either Yes or No to whether a given feature was observed on 

the image. 

Data source location Institution: University of Dundee 

City/Town/Region: Dundee 

Country: Scotland, United Kingdom 

Latitude and longitude (and GPS coordinates, if possible) for collected 

samples/data: 56.4643 ° N, 3.0379 ° W 

Data accessibility The primary data are hosted in a reputable public repository hosted by the 

University of Dundee and known as “Discovery” https://discovery.dundee.ac.uk/ 

Data identification number: https://doi.org/10.15132/10 0 0 0165 

Related research article This article is a companion article to the following: 

P. Whelehan, M. Pampaka, J. Boyd, S. Armstrong, A. Evans, G. Ozakinci, 

Development and validation of a novel measure of adverse patient positioning in 

mammography, Eur. J. Radiol. 140 (2021) 109747. 

https://doi.org/10.1016/j.ejrad.2021.109747 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.nhs.uk/common-health-questions/lifestyle/what-is-the-body-mass-index-bmi/
https://discovery.dundee.ac.uk/
https://doi.org/10.15132/10000165
https://doi.org/10.1016/j.ejrad.2021.109747
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Value of the Data 

• The data can be used by researchers to learn and practice the techniques of Rasch analysis,

comparing their results to ours for verification of correct technique. 

• Any researcher wishing to develop skills in modern psychometrics can benefit from these

data. 

• Researchers can build on these data to develop an improved clinical image quality measure

for mammography. 

1. Data Description 

• The primary raw data are provided on an Excel file stored at the University of Dundee data

repository. The file includes one sheet with the data matrix with the first row being the

variable name. The 22 variables are described as follows: 

◦ Columns A to O – the names of the variables (also shown in Table 1 below) match the

short names provided with detailed descriptions in Table 1 in the associated manuscript

[1] , and are listed in full in the abbreviations table at the end of this section: These are

the binary responses/scores of the observer of the mammograms on whether the specific

features were present or not (coded as 1 = present and 0 = not present). 

◦ Column P – “Positioning”: the continuous scores on the constructed scale, as produced

by the Rasch procedures (described in the associated manuscript and detailed under the

“Validation Methodology” section below). 

◦ Column Q – “Age_Cat”: A categorical variable denoting the patients’ ages in three cate-

gories (coded as 1 = 50 to 59 years old, 2 = 60 to 69 years old, 3 = 70 and over). 

◦ Column R – “BMIcategory”: A categorical variable denoting the body mass index of

the patients (coded as 1 = Underweight (below 18.5), 2 = Healthy weight (18.5–24.9),

3 = Overweight (25–29.9), 4 = Obese (30 and over)). 

◦ Column S – “MammographerID”: a number from 1 to 12 used as the identifier of the

person performing the mammogram (anonymised). 

◦ In all variables the character X was used to denote missing information. 
Table 1 

Item fit statistics ( n = 310 participants; total missing datapoints: n = 8 instances in n = 2 participants). 

Infit Outfit 

Item TotalScore TotalCount Measure SE MNSQ ZSTD MNSQ ZSTD 

PecVisCC (1) 79 309 -0.18 0.14 0.95 -0.8 0.93 -0.7 

FoldsCC (2) 178 309 -1.77 0.12 0.99 -0.1 0.98 -0.4 

AirGapCC (3) 60 309 0.22 0.15 0.86 -1.7 0.76 -1.8 

ShoulderCC (4) 21 309 1.50 0.23 1.07 0.4 ∗1.76 ∗2.3 

CentredHigh (5) 126 309 -0.99 0.12 0.93 -1.6 0.90 -1.5 

WidePec (6) 23 310 1.40 0.22 0.95 -0.2 0.75 -0.9 

PecConcave (7) 84 310 -0.27 0.14 1.23 3.5 ∗1.47 ∗4.1 

PecConvex (8) 55 310 0.33 0.16 1.07 0.8 1.20 1.3 

PecSigmoid (9) 48 310 0.51 0.16 1.02 0.2 1.10 0.6 

FoldsUpper (10) 145 309 -1.28 0.12 0.96 -1.1 0.93 -1.3 

FoldsLower (11) 215 310 -2.38 0.13 0.95 -0.9 0.92 -0.9 

AirGapMLO (12) 148 310 -1.31 0.12 0.93 -1.8 0.89 -2.1 

MuscleOther (13) 61 309 0.18 0.15 1.06 0.7 1.13 0.9 

AnatOther (14) 2 309 3.95 0.71 1.00 0.2 0.64 -0.3 

Blur (15) 66 310 0.08 0.15 1.03 0.5 1.05 0.4 

Mean: 0.00 0.19 1.00 -0.1 1.03 0.0 

SD: 1.49 0.14 0.08 1.3 0.28 1.6 



4 P. Whelehan, M. Pampaka and J. Boyd et al. / Data in Brief 38 (2021) 107387 

Fig. 1. Instrument for rating mammograms, shown on the data entry screen into which the observer directly recorded 

their observations. Response was Yes or No. 

Table 2 

Standardized residual variance (in Eigenvalue units). 

Observed Modelled 

Eigenvalue Percentage Percentage 

Total raw variance in observations 20.9 100 100 

Raw variance explained by measures 5.9 28.4 27.9 

Raw variance explained by persons 1.2 5.6 5.6 

Raw variance explained by items 4.8 22.7 22.4 

Raw unexplained variance (total) 15 71.6–100 72.1 

Unexplained variance in 1st contrast 1.8 8.7–12.1 

 

 

 

 

 

 

 

 

 

◦ Various tables and figures are then presented in this paper to describe how this raw

dataset was constructed ( Figs. 1 to 3 ) and how the ratings can be analysed to construct

and validate the measure of positioning introduced in the associated manuscript ( Tables 1

and 2 ; Figs. 4 to 6 ): 

• Fig. 1 Screenshot of the data entry screen for the instrument for rating mammograms. The

observer directly recorded their observations. Response was Yes or No. 

• Fig. 2 Annotated medio-lateral oblique mammogram image showing examples of some of the

features of interest. 

• Fig. 3 Annotated cranio-caudal mammogram image showing examples of some of the fea-

tures of interest. 

• Fig. 4 Differential Item Functioning (DIF) according to patients’ age group. 

• Fig. 5 Differential Item Functioning (DIF) according to patients’ BMI category. 

• Fig. 6 Differential Item Functioning (DIF) according to which mammographer performed the

examination. 

• Table 1 Item fit statistics-showing how the observed data fit the predictions of the Rasch

Model. 

• Table 2 Standardised residual variance (in Eigenvalue units) – results of the principal compo-

nent analysis of the residuals (i.e. comparing observed values to the ideal Rasch Model). 
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Abbreviation in dataset Full name/description of variable 

PecVisCC (1) Pectoralis major muscle visible on cranio-caudal projection 

FoldsCC (2) Skin folds visible on cranio-caudal projection 

AirGapCC (3) Air gap visible on cranio-caudal projection 

ShoulderCC (4) Shoulder visible on cranio-caudal projection 

CentredHigh (5) X-ray beam centred too high in relation to breast (medio-lateral oblique 

projection) 

WidePec (6) Too much of pectoralis major muscle extending across the field of view 

PecConcave (7) Edge of pectoralis major muscle has a concave outline 

PecConvex (8) Edge of pectoralis major muscle has a convex outline 

PecSigmoid (9) Edge of pectoralis major muscle has a sigmoid outline 

FoldsUpper (10) Skin folds visible overlying the upper part of the breast in the medio-lateral 

oblique projection 

FoldsLower (11) Skin folds visible overlying the lower part of the breast in the medio-lateral 

oblique projection 

AirGapMLO (12) Air gap visible on the medio-lateral oblique projection 

MuscleOther (13) Any muscle other than pectoralis major visible on the medio-lateral oblique 

projection 

AnatOther (14) Any other extraneous anatomical structure visible on the medio-lateral oblique 

projection 

Blur (15) Motion blur visible 

Age_Cat Age category 

BMIcategory Body Mass Index category 

Mammographer ID Anonymised identity code of the mammography practitioner 
Fig. 2. Example of a medio-lateral-oblique mammogram showing (a) skin fold over the upper part of the breast, (b) skin 

fold at the lower part of the breast (inframammary angle), (c) air gap associated with the lower skin fold (darker area 

in front of skin fold). 
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Fig. 3. Example of a cranio-caudal mammogram showing (a) a minor skin fold and (b) the anterior aspect of the pec- 

toralis major muscle. 

Fig. 4. Differential Item Functioning (DIF) according to patient age group. Age groups are 1: 50–59 years; 2: 60–69; 3: 

70 and above. 
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Fig. 5. Differential Item Functioning (DIF) according to patient body mass index (BMI). 

Fig. 6. Differential Item Functioning (DIF) according to which mammographer performed the examination. Mammogra- 

phers 1, 4 and 7 have been removed because of low frequencies of examinations performed in the study participants. 

 

 

2. Experimental Design, Materials and Methods 

Participant recruitment and study design, materials and methods are described in full in our

associated manuscript [1] . 

Participants consisted of 310 women attending a population-based breast screening service

in the UK. 



8 P. Whelehan, M. Pampaka and J. Boyd et al. / Data in Brief 38 (2021) 107387 

 

m  

c

 

(  

L

2

 

t  

N  

i

 

w  

d

 

p  

i

3

 

s  

t  

p  

i

 

b  

s  

o  

R  

d  

R

 

l  

t  

d  

a  

0  

i  

f

 

p  

s  

t  

r

Consenting participants provided their self-reported height and weight, from which body

ass index (BMI) was calculated using the formula specified here: https://www.nhs.uk/

ommon- health- questions/lifestyle/what- is- the- body- mass- index- bmi/ 

Patient age and mammography practitioner identity were extracted from the DICOM header

metadata) of the image files using VolparaDataManager® software (Volpara Health Technologies

td, Wellington, New Zealand), algorithm version 1.5.2. 

.1. Mammogram data 

The observer viewed the mammograms on a mammography-grade workstation and recorded

he presence or absence of the features of interest directly into a database, responding Yes or

o to the questions. The instrument used for rating the mammograms is shown in Fig. 1 , which

s a screenshot of the data-entry screen in a Microsoft Access database designed for the study. 

Figs. 2 and 3 show examples of mammograms showing some of the features of interest. 

With written informed participant consent, the ratings of the mammograms were matched

ith patients’ age-bands, BMI and mammography practitioner, and this is the resulting raw

ataset (provided in the excel file as detailed earlier). 

In the following sections we describe the methodology for validating the measure of adverse

ositioning in mammography, providing considerably more detail than we were able to include

n the parent publication [1] . 

. Validation Methodology 

Although the Rasch model has principally been used in education research, it has also been

uccessfully applied in healthcare research over many years [2–6] . The validation process within

he Rasch framework involves the accumulation of evidence to establish whether the proposed

hilosophical/empirical construct exists as a distinct, unidimensional “measure” (or scale), and

f not whether there are other relevant or useful dimensions. 

Rasch analysis, performed using Winsteps® software [7] , mathematically models the proba-

ility of having a correct response (or a present feature in this case) to an item in a given mea-

urement instrument (e.g. questionnaire) as a function of the participant’s ability/performance

n the underlying construct under study. When this item-response data adequately fit the

asch model, objective and valid measurement has been achieved. Rasch techniques allow or-

inal/categorical raw data to be converted to a continuous scale – provided that the data fit the

asch model adequately. This facilitates further statistical analysis. 

In this dataset, “participants” are patients’ mammograms, with each consisting of four radio-

ogical images. The measurement instrument (or tool) is the list of items presented in Table 1 in

he main manuscript [ 1 ] (and also shown in Fig. 1 and Table 1 in this article). The measurement

ata were generated by a human observer responding to the items (questions) in the instrument

s to whether or not the item was present in each mammogram. The responses were denoted as

 (absence of the feature) and 1 (presence of the feature), dictating the direction of the result-

ng measure: the higher the score, the more adverse the positioning. Given the binary response

ormat used in this study, the dichotomous Rasch model was the most appropriate [8] . 

Decisions about the validity of the measures are based on a range of statistical indices com-

aring the observed data to the predictions of the Rasch model. These indices include item fit

tatistics, item and person separation and reliability, and differential item functioning [9] as de-

ailed next and illustrated with example outputs from the analysis of this dataset to help the

eader with the interpretation of such outputs. 

https://www.nhs.uk/common-health-questions/lifestyle/what-is-the-body-mass-index-bmi/
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3.1. Item fit statistics 

Item fit statistics indicate how accurately the data fit the Rasch model and thus provide evi-

dence of whether the unidimensionality assumption has been fulfilled. Unidimensionality means

the presence of a single coherent construct captured by the items in the measurement instru-

ment ( e.g . questionnaire or the scoring instrument in this case). 

In a “perfect” model, fit statistics ( i.e . infit and outfit mean-squares (MNSQ)) should be 1,

but an acceptable range is 0.6 to 1.4 depending on the analysis. Higher infit and outfit values

indicate more variation in the observed data than those expected from the Rasch model (in an

ideal measurement), while lower values indicate less variation in the observed response pattern

compared to that predicted [8] . Infit and outfit values above the recommended thresholds (data

underfitting the model) indicate that responses are more haphazard than expected. 

Infit is affected by unexpected responses to the item by participants whose overall level on

the scale is near that of the item’s level; outfit is more sensitive to unexpected responses among

those whose level on the scale is far from the item’s level [5] . Infit/outfit values below acceptable

thresholds (data overfitting the Rasch model) indicate item redundancy [6] . 

For most analyses, such as the example here, we take values for infit and outfit mean squares

of 1.4 and above as suggesting cause for concern and requiring further exploration, because val-

ues above 1 suggest that data are unpredictable, under-fitting the model. 

All infit values ( Table 1 ) were within acceptable ranges, providing evidence for measure va-

lidity. Two items (asterisked) show slightly higher than desirable values for outfit, which is as-

sociated with outlier response patterns, i.e. responses which do not fit well with the model’s

expectations. Removal of these two items is not desirable because they are considered impor-

tant to the measure overall. For example, Item 4 was the least frequently observed item so its

removal would reduce the amount of variation captured by the measure. 

Item 4 refers to the inclusion on the cranio-caudal image of part of the patient’s shoulder.

According to clinical experience, this is an uncommon fault and may be more likely in slim

and/or elderly women with postural or anatomical concavity of the chest and shoulder area.

Item 7 refers to the contour of the pectoralis major muscle being shown on the medio-lateral

oblique image as concave. This fault is believed to indicate that the muscle is not lying flat on

the detector assembly, and/or is tense. It may also be caused by insufficient displacement of the

muscle and breast medially or by the breast being considerably thicker than the muscle mass

in the included field in slim women with relatively large breasts. Overall, the acceptable infit

values suggest outlier responses as the cause of the observed outfit misfit. Item 4 is infrequently

endorsed so it is not surprising for it to be subject to outlier responses. 

3.2. Dimensionality checks 

Principal component analysis of the residuals produced by comparing the observed data to

the Rasch ideal model provides additional evidence of unidimensionality or lack thereof (pres-

ence of more than one dimension) [6] . 

Table 2 shows the results of principal component analysis (PCA) of the model residuals. The

closeness of the observed (empirical) and modelled variance percentages indicates that the value

for the raw variance explained by the measures is reliable. The low unexplained variance Eigen-

value of 1.8 is further evidence of unidimensionality to add to that provided by the item infit

and outfit statistics. 

3.3. Item and Person separation and reliability indices 

Item separation indices give an estimate of the ordering and spread of items along the con-

tinuum of the construct being measured, i.e. indicating the ability of the measure to define a

distinct hierarchy of items along the overall variable being measured [8] . 
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Item reliability reports how reproducible the ordering of items along the measure is. Higher

tem reliability indices imply greater confidence in reproducibility of item ordering across differ-

nt samples. Item reliability indices perform a similar function to the Cronbach’s Alpha statistic

sed in classical test theory approaches to psychometric validation. In the Rasch measurement

ramework, if item separation and reliability indices are below recommended thresholds, a larger

ample size may be necessary. 

Person separation indices indicate the ability of the measure to differentiate participants (par-

icipants’ mammograms in our example) into different groups. Person reliability refers to the

eproducibility of the differentiation afforded by the measure across different samples of partic-

pants. Poor person separation and reliability values indicate that more items may be required

n the measurement instrument, and/or response formats with more categories may be needed.

The values for item and person separation and their reliability are as follows for this example:

• Item separation: 6.17; Reliability: 0.97 

• Person separation: 0.65; Reliability: 0.30. 

Interpreted according to guidance from Wright and Stone [10] , item separation and reliability

ndices are very good. These indices suggest that the sample of examinations was sufficient to

roduce a reliable item hierarchy map, i.e. they provide further evidence of measure validity. 

The person separation and reliability indices, which should be > 2 and > 0.8 respectively, are

ess satisfactory. This suggests that the instrument may not be sensitive enough to distinguish

etween high and low scoring mammograms on the adverse positioning measure, and more

tems or the use of multi-category response formats, rather than binary (yes/no) may be needed.

.4. Differential item functioning (DIF) 

Along with person reliability indices, differential item functioning relates to the reliability of

roup differentiation of the constructed measure, which is an important aspect of validity when

n instrument is to be used with different groups of participants or on different occasions. For a

easure to be unidimensional, and the variable to be linear, the scale values of the items have

o work invariantly across individuals and groups [11] . Lack of invariance among sample groups,

or example according to gender or country, is known as differential item functioning or DIF.

owever, DIF may indicate genuine, relevant differences between groups, so items demonstrat-

ng DIF do not necessarily need to be resolved or eliminated. 

The line graphs in Figs. 4 to 6 show the differences in items’ measures based on different

alibrations per group, and the average. The figures also indicate (asterisks) items with statis-

ically significant differences, i.e . DIF. As shown in Fig. 4 , there are no significant differences in

tem functioning based on patient age-group but four items exhibit significant DIF based on BMI

roup ( Fig. 5 ). For mammographers ( Fig. 6 ), most of the items exhibit significant DIF. 

In the absence of an existing evidence base, clinical experience suggests that three of the

our items with significant DIF for BMI group can be explained. The observation “PecConcave”

Item 7) is subjectively perceived to be more common in women with low BMI whereas “Pec-

onvex” (Item 8) seems more common in high BMI. “FoldsLower” is also considered more likely

n women with high BMI, where the abdominal wall may frequently intrude on the image, over-

apping with the lower part of the breast posteriorly. The fourth BMI DIF item (“muscle other”)

s less easy to explain, pertaining as it does to the inclusion in the field of a muscle other than

ectoralis major, usually pectoralis minor . It is not immediately obvious whether this would be

bserved at different frequencies in either high or low BMI patients. Overall, the fact that the DIF

an mostly be reasonably explained by BMI indicates that it is likely resulting from substantive

ifferences rather than biased items. 

While mammographers undergo extensive specialist training, and while mammographic po-

itioning is ideally standardised, these are difficult examinations to perform unvaryingly. Experi-

nce in clinical and training contexts indicates that individual mammographers’ practice varies

nd that certain practitioners more frequently produce images with particular features. Research
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evidence suggests that the amount of compression force applied to the breast during mammog-

raphy varies according to mammographer [12] . Such variability in practice may extend to posi-

tioning and there is the additional likelihood of interplay between compression and positioning.

3.5. Person-item map for the “adverse positioning” measure 

Person-item maps and the item difficulty hierarchy provide evidence for substantive, content

and external validity. These aspects can be defined as follows: substantive validity is the extent

to which the theoretical foundation underlying the construct of interest is sound; content valid-

ity is whether the test items appear to be measuring the construct of interest; external validity

is whether the test has convergent, discriminant and predictive qualities [13] . 

Using Winsteps® software [7] , a “map” can be produced that displays the locations of both

participants and items on a single logit (log odds unit) scale, produced through log transfor-

mation of the raw categorical scores during the analytical process [8] (please see Fig. 3 in the

associated manuscript [1] . This is an interval scale, i.e. the gradations are of equal magnitude

to each other. Traditionally, because of the educational research origins of Rasch analysis, the

terms “person ability” and “item difficulty” are used in these person-item maps. In our exam-

ple, person ability translates to the level of adverse positioning pertaining to each mammogram

while item difficulty indicates where each individual feature of adverse positioning sits on the

overall adverse positioning scale. The resulting scores for each mammogram in this logit scale

are included in the excel file (under column Q, named “Positioning”) and were used in further

analysis presented in the associated manuscript [ 1 ]. 
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