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ABSTRACT A multilocus variable-number tandem-repeat analysis (MLVA) assay was
developed for epizootiological study of the internationally significant fish pathogen
Yersinia ruckeri, which causes yersiniosis in salmonids. The assay involves amplifica-
tion of 10 variable-number tandem-repeat (VNTR) loci in two five-plex PCRs, fol-
lowed by capillary electrophoresis. A collection of 484 Y. ruckeri isolates, originating
from various biological sources and collected from four continents over 7 decades,
was analyzed. Minimum-spanning-tree cluster analysis of MLVA profiles separated
the studied population into nine major clonal complexes and a number of minor
clusters and singletons. The major clonal complexes could be associated with host
species, geographic origin, and serotype. A single large clonal complex of serotype
01 isolates dominating the yersiniosis situation in international rainbow trout farm-
ing suggests anthropogenic spread of this clone, possibly related to transport of fish.
Moreover, subclustering within this clonal complex indicates putative transmission
routes and multiple biotype shift events. In contrast to the situation in rainbow
trout, Y. ruckeri strains associated with disease in Atlantic salmon appear as more or
less geographically isolated clonal complexes. A single complex of serotype O1 ex-
clusive to Norway was found to be responsible for almost all major yersiniosis out-
breaks in modern Norwegian salmon farming, and site-specific subclustering further
indicates persistent colonization of freshwater farms in Norway. Identification of ge-
netically diverse Y. ruckeri isolates from clinically healthy fish and environmental
sources also suggests the widespread existence of less-virulent or avirulent strains.

IMPORTANCE This comprehensive population study substantially improves our un-
derstanding of the epizootiological history and nature of an internationally impor-
tant fish-pathogenic bacterium. The MLVA assay developed and presented repre-
sents a high-resolution typing tool particularly well suited for Yersinia ruckeri
infection tracing, selection of strains for vaccine inclusion, and risk assessment. The
ability of the assay to separate isolates into geographically linked and/or possibly
host-specific clusters reflects its potential utility for maintenance of national biosecu-
rity. The MLVA is internationally applicable and robust, and it provides clear, unam-
biguous, and easily interpreted results. Typing is reasonably inexpensive, with a
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moderate technological requirement, and may be completed from a harvested col-
ony within a single working day. As the resulting MLVA profiles are readily portable,
any Y. ruckeri strain may rapidly be placed in a global epizootiological context.

KEYWORDS Atlantic salmon, MLST, MLVA, Yersinia ruckeri, fish pathogen, geographic
endemism, host specificity, molecular typing, rainbow trout, yersiniosis

ersinia ruckeri, a member of the family Enterobacteriaceae, causes the systemic

infection yersiniosis, commonly known as enteric redmouth disease (ERM), predom-
inantly in salmonid fish. The bacterium has a global distribution and is found in all
countries where salmonids are presently cultured. Internationally and economically,
yersiniosis is most commonly associated with farmed rainbow trout, although in a few
countries, including Norway, Australia, Scotland, and Chile, significant numbers of
outbreaks in farmed Atlantic salmon occur (1-4). In Norway, the incidence of yersiniosis
in Atlantic salmon has increased considerably in recent years, and the disease is
currently a major concern to the Norwegian aquaculture industry. While transmission of
the bacterium is believed to occur primarily in freshwater, disease outbreaks in Atlantic
salmon are also seen following sea transfer and, to an increasing degree in Norway, in
larger sea-farmed fish. It is suspected that outbreaks at sea may be related to stress-
induced activation of subclinical infections.

Previous studies have identified a considerable degree of inter-strain variation in
biochemical (5) and outer membrane protein (6, 7) profiles within the Y. ruckeri species.
Two biotypes have been described: biotype 1 (motile, phospholipase secreting) and
biotype 2 (nonmotile, non-phospholipase secreting) (5). Biotype 2 strains have evolved
independently in several different continents, and it has been hypothesized that
evolution of biotype 2 from biotype 1 has been driven by large-scale vaccination
against biotype 1 strains in rainbow trout (2, 8-10). Different serotyping systems have
been described for Y. ruckeri (11-13), which has resulted in a rather complex and
somewhat confusing serologically based nomenclature, comprehensively reviewed by
Barnes in 2011 (14). Recently, a new serotype (08) was identified as the most commonly
isolated serotype from Atlantic salmon in recent years in Scotland (7).

There are a relatively limited number and range of genetic studies on Y. ruckeri (14).
Multilocus sequence typing (MLST) (15, 16) has, however, identified 39 different se-
quence types among strains isolated from several different fish species, a single
mammal (muskrat), and the environment. A pulsed-field gel electrophoresis assay
affording relatively high resolution has also been developed (8), but this technique is
labor-demanding, and the results may not always be readily comparable between
laboratories. Recent whole-genome sequence (WGS) analysis of a number of Y. ruckeri
isolates, recovered largely in Tasmania, Australia, has shed light on some of the
evolutionary processes at work within this species (2). There is no doubt that WGS
combined with bioinformatics analysis offers the highest degree of resolution of all
typing systems. Both WGS and advanced bioinformatics capabilities remain restricted,
however, to a relatively small number of laboratories. To our knowledge, no established
molecular epizootiological typing system capable of rapid and unambiguous identifi-
cation and separation of isolates at the sub-MLST level exists for Y. ruckeri.

Multilocus variable-number tandem-repeat analysis (MLVA), based on identification
of variable-number tandem-repeat (VNTR) DNA sequences at a number of loci in
bacterial genomes, affords highly transportable data, is fast and inexpensive, and offers
strain resolution in some cases almost matching that of WGS (17-19). MLVA is now
accepted as a reference typing method for many bacterial species and has been utilized
in typing of several fish-pathogenic species, including, among others, Francisella noa-
tunensis (20), Edwardsiella piscicida (21), and Renibacterium salmoninarum (22).

As Y. ruckeri is an important fish pathogen internationally and of increasing signif-
icance in Norwegian aquaculture, there is an acute need for development of a rapid and
affordable molecular typing tool capable of sub-MLST resolution. The aim of the
present study was, therefore, to establish an MLVA assay for Y. ruckeri.
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TABLE 1 Observed characteristics of each VNTR locus?

Applied and Environmental Microbiology

VNTR Multiplex Repeat PCR fragment size Repeat No. of unique Simpson’s index
locus assay sequence range (bp) count alleles of diversity
YR2365¢ | GCCAGAA 195-475 7-47 32 0.87
YR3168 | TATTCTC 101-319 1-32 29 0.80
YR1524¢ | TGAGGTAT 391-519 2-18 14 0.67
YR2276¢ | AATCC 123-243 4-28 18 0.71
YR37500 | ATGGCGTA 339-635 3-40 25 0.84
YR1070 Il ATATCCT 198-437 4-38 27 0.83

YR57¢ Il CACTGC 94-160 2-13 12 0.83

YR940 ] TTTAGTGG 313-585 1-35 30 0.86
YR1899¢ Il CCTGATAAA 105-222 2-15 13 0.84
YR2794b< I CATGAC 443-509 4-15 9 0.64

aPCR fragment size ranges and repeat counts were calculated from corrected capillary electrophoresis fragment size calls (see Materials and Methods and Results).

bPCR fragment size ranges, repeat counts, and unique allele counts exclude cases of missing amplicons in this locus.

“Minor repeat sequence heterogeneity was observed in this locus.

RESULTS

MLVA development and deployment. Following identification and verification of
putative VNTR regions in the Y. ruckeri genome, 10 informative loci were selected for
inclusion in the present MLVA and divided equally among two multiplex PCR assays
(Table 1). Capillary electrophoresis (CE) performed on PCR products detected peaks
corresponding to all 10 VNTR loci in 480 of the 484 Y. ruckeri isolates examined, with
the four remaining isolates apparently lacking 1 to 3 loci (see Tables S1 and S2 in the
supplemental material). Amplicons were easily distinguished based on fluorescent
labeling and size (see Fig. S1 in the supplemental material). Within each of the two
respective multiplex assays developed, no overlap in size was observed between
identically labeled loci. Split peaks in electropherograms separated by a single base
pair, a common CE artifact due to incomplete nontemplated 3’ adenosine addition,
were occasionally observed despite an extended final extension period (60 min). In
such cases, the longer fragment was consistently selected for downstream analysis.

Due to the predictable nature of discrepancies identified between PCR fragment size
as called by CE and Sanger sequencing, locus-specific correctional values were calcu-
lated (see Fig. S2 in the supplemental material) and employed for improved precision
of CE-based VNTR fragment size calling. Single-base-pair deletions identified in a few
strains in the downstream flank of VNTR loci YR3168 and YR1070 did not affect the
number of predicted repeats. A total of 329 unique MLVA profiles were detected
among the 484 Y. ruckeri isolates typed.

Allelic diversity and statistical evaluation. The allelic diversity within individual
VNTR loci varied between 9 and 32 alleles (not counting missing amplicons), with
Simpson’s index of diversity (SID) values ranging from 0.64 to 0.87 (Table 1). The SID for
all 10 loci combined was >0.99, indicating the very high probability of separating
nonclonal isolates. LIAN analysis resulted in a standardized index of association (/,°) of
0.2772, which differs significantly from zero (Pyonte caro < 0.0001). This confirms
linkage disequilibrium, reflecting a low rate of recombination and the clonal nature of
the investigated population.

MLVA cluster analysis. Minimum-spanning-tree (MST) cluster analysis of MLVA
profiles, utilizing a relatively stringent cluster partitioning threshold (=4/10 noniden-
tical loci), placed 83% of the studied isolates within either of nine major clonal
complexes (CC), each comprising five or more isolates. These clonal complexes were
strongly biased toward one or more epizootiological attributes, e.g., host fish species,
geographic origin, and/or serotype (Fig. 1 and Tables 2 and S1). The remaining isolates
represented either singletons or minor clusters. While extensive allele variation was
evident in all 10 loci (Table 1), all 484 studied isolates could be linked to at least one
other isolate by three or more common VNTR alleles.

VNTR stability. Four of the six Y. ruckeri strains (representing various clonal com-
plexes) typed following 0, 10, 20, 30, and 40 culture passages revealed no changes
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FIG 1 Minimum-spanning trees based on MLVA data from 484 Y. ruckeri isolates (see Table S2 in the supplemental material). The four diagrams
are topographically identical but are colored according to different metadata, i.e., biological origin/host (a), geographic origin (b), serotype (c),
and biotype (d); details are given in the bottom left of each panel. Branch representations for declining MLVA similarity and clonal complex
(CQ) annotations (with CC 2 subdivisions marked by dotted red lines) are shown in panel a.
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within the 10 VNTR loci. A single strain acquired one additional repeat copy in YR1899
between passages 0 and 10 and subsequently two more copies in this locus between
passages 30 and 40, while another single strain acquired one additional repeat copy in
YR1070 between passages 30 and 40. MLVA typing of 19 Y. ruckeri isolates recovered
from 13 fish during a single yersiniosis outbreak in a commercial salmon farm revealed
a single extra repeat copy in YR3750 in one isolate compared to the remaining 18.
Separate MST analysis involving four collections of epizootiologically related isolates
verified farm-specific subclustering within CC 1 (Fig. 2).

Comparative resolution of MLST versus MLVA. Sequence inconsistencies were
discovered in two loci (thrA and recA) for identical strains in two previously published
MLST studies (15, 16). The sequence differences, which occurred throughout the
respective data sets, were situated in the 6 to 13 terminal base pairs (both termini) of
thrA and in the final base pair of recA (see Fig. S3 in the supplemental material). BLAST
searches of available Y. ruckeri whole-genome sequences consistently identified se-
quences in agreement with the latest study (16). To obtain uniformity, the ambiguous
sequence termini were removed prior to MLST meta-analysis in the current study,
resulting in locus sizes of 286 and 471 bp for thrA and recA, respectively, versus 303 to
305 bp (thrA) and 472 bp (recA) in previous publications (15, 16).

These changes resulted in integration of the previously published thrA allele types
(AT) 2, 5, and 6 into thrA AT 1, 1, and 4, respectively, thereby making thrA AT 2, 5, and
6 obsolete. Similarly, recA AT 5 was integrated into recA AT 1, making recA AT 5
obsolete. Consequently, sequence types (ST) 2, 12, 14, 26, 31, 32, 38, and 39 (15, 16)
were rendered obsolete, and the strains involved were integrated into ST 1,9, 7, 18, 1,
15, 22, and 3, respectively (see Table S3 in the supplemental material). One novel allele
type in each of the loci ginA (AT 11), dnaJ (AT 8), thrA (AT 7), and Y-HSP60 (AT 6) were
identified during the current study, and corresponding sequences were submitted to
NCBI GenBank. Eight novel sequence types (ST 40 to 47) were identified. Notably, no
sequence could be identified for the glnA locus (AT set to 0) within the PacBio-
generated genome of strain QMA0440 (ST 47), and a 12-bp insertion was identified in
dnalJ in strain QMAO0436 (ST 46).

Comparison of MST diagrams based on MLST and MLVA data from 134 Y. ruckeri
isolates revealed largely consistent clustering patterns and verified the considerably
higher resolution of MLVA, with the 35 MLST sequence types included discriminated
further into 123 distinct MLVA profiles (see Fig. S4 in the supplemental material).
Multilocus sequence analysis (MLSA) based on concatenation of the truncated house-
keeping gene sequences further highlighted the phylogenetic distances between the
investigated MLST sequence types (see Fig. S5 in the supplemental material).

DISCUSSION

Infectious bacterial diseases of humans, plants, and animals are commonly caused
by the emergence and spread of host-adapted, virulent endemic clones (see, e.g.,
references 23, 24, and 25). Characterization of clinical isolates to the clonal and
subclonal levels is, therefore, essential to better understand the underlying epizooti-
ology of any particular disease toward development of avoidance strategies and to aid
selection of relevant strains for vaccine development. MLVA has been successfully
deployed to describe the epidemiology/epizootiology at various scales for a number of
bacterial pathogens of plants (26), mammals (27), and fish (20-22). We have developed
a ten-locus MLVA assay for the fish pathogen Yersinia ruckeri and employed it to
characterize the population structure within a collection of 484 isolates derived from
highly diverse spatiotemporal and biological origins. Our findings support the previous
contention (2) that this bacterium has an almost pan-global endemic distribution
comprising, with the exception of some anthropogenically transported strains, geo-
graphically distinct and host-specific populations.

The MLVA is robust and internationally applicable, as proven by the detection of all
10 VNTR loci in >99% of the examined isolates. The minor variability following serial in
vitro passage and low intra-outbreak variability, together with a combined SID of >0.99,
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Farm identifier:

©®:w (33isolates; 2012-2017)

®:x (17 isolates; 2012-2016)

®:y (6isolates; 2008-2011)
1z (4 isolates; 2012-2013)

Branches/crosslinks (no.
non-identical loci):

1/10:
2/10:
>2/10: (hidden)

FIG 2 Minimum-spanning tree based on MLVA of clonal complex 1 (see Fig. 1) isolates associated with
four Atlantic salmon smolt farms (w, x, y, and z see details in the figure) in Norway which had
experienced recurrent yersiniosis outbreaks. Cross-links showing all possible connections involving
=2/10 nonidentical VNTR loci are shown (see details in the figure).

suggest that the assay combines levels of both stability and variability suitable for
epizootiological use. Largely consistent minimum-spanning-tree (MST) clustering of
MLST and MLVA data underpins the suitability of both methods for inferring the Y.
ruckeri population structure. The considerably higher level of strain differentiation
provided by MLVA relative to MLST illustrates, however, the greater utility of MLVA for
epizootiological study of “local” strains of the same MLST sequence type (see Fig. S4 in
the supplemental material). MLST, which relies on sequence variability in evolutionarily
conserved genes, may well provide a more unified picture of the overall population
structure, simply due to its lower resolution.

Internationally, yersiniosis is most economically important in rainbow trout farming,
and disease in this fish species is most commonly associated with Y. ruckeri serotype O1
strains of both biotypes 1 and 2. MLVA allocated 83% of the 81 serotype O1 isolates
from rainbow trout examined to a single large clonal complex (CC 2), with the
remaining isolates primarily occupying minor clonal complexes or appearing as single-
tons (Fig. 1a). CC 2 could be further subdivided into three main subpopulations
(denoted a, b, and ), of which CC 2a and CC 2b comprise isolates originating almost
exclusively from the United Kingdom and the United States, respectively, whereas CC
2c contains isolates primarily from continental Europe but also from Ireland, North
America, and Peru (Fig. 1b). The presence of three geographically biased subpopula-
tions within CC 2, with the “central” positioning of the U.S. cluster, is consistent with a
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situation in which CC 2 strains have spread from North America on at least two separate
occasions: once to the United Kingdom and once to continental Europe and/or South
America. The presumed direction of spread is further supported by the fact that the first
detection of CC 2b (United States) predates that of the two other CC 2 subpopulations
by 17 years or more. Due to the proximity within CC 2c of the relatively recent Peruvian
isolates (recovered in 2008) to those from continental Europe, it appears likely that they
both descend from the same North American lineage. Combined, these findings are
supportive of the reported existence of geographically confined subpopulations of
rainbow trout-associated Y. ruckeri serotype O1 in the mentioned regions (8).

Nonmotile Y. ruckeri biotype 2 strains increasingly dominate the disease situation in
rainbow trout farming in many countries, reflecting independent and parallel evolution,
presumably provoked by vaccines targeting flagellar antigens (8, 9, 28). In this regard,
the proportion of rainbow trout isolates classified in the present study as biotype 2
increases from 33% to 77% for those recovered before and after the turn of the century,
respectively. Clonal expansion of these mutants in the post-vaccination era is visualized
in Fig. 1d, in which groups of biotype 2 isolates from rainbow trout form defined
sublineages within CC 2. In the case of the geographically widely distributed CC 2c,
MLVA clustering indicates emergence of biotype 2 in continental Europe after intro-
duction of biotype 1 from North America (9) and is also consistent with an independent
biotype shift in South America. This is in contrast to the biotype 2 phenotype of the
United Kingdom-associated CC 2a, which appears to have been introduced from North
America as biotype 2 (9). If this is in fact the case, however, it is hard to explain the
occurrence of a single biotype 1 isolate, recovered in England 9 years after the first
detection of CC 2a in the country, relatively deep within this clonal complex, unless it
represents reversion from biotype 2 to biotype 1.

Two Scottish rainbow trout isolates described as serotype O8, a serotype most
commonly associated with Atlantic salmon (7), were found within CC 2a (Fig. 1¢), a
situation which could be explained by recombinational events involving the lipopoly-
saccharide (LPS) biosynthesis cascade. The importance of LPS has recently been verified
in elicitation of a protective immune response against Y. ruckeri in rainbow trout (29),
and, conceivably, vaccine-related evolutionary pressures similar to those associated
with the independent emergences of the various Y. ruckeri biotype 2 lineages may have
prompted this putative serotype shift.

Yersiniosis in farmed Atlantic salmon is a significant problem in Norway, Scotland,
Australia (Tasmania), and Chile and may be associated with various Y. ruckeri serotypes,
although serotype O1 is generally considered to be the most virulent (2, 4, 7). In
contrast to the situation with rainbow trout, most Y. ruckeri isolates from Atlantic
salmon were separated by MLVA into discrete (unlinked) clonal complexes specific to
particular geographic regions (Fig. 1a and b and Table 2). The clonal complex currently
dominating in Australian salmon farming (CC 5) includes two isolates recovered in 1959
in Victoria, Australia. This predates the import of Atlantic salmon to Tasmania between
1984 and 1986 from a landlocked population in New South Wales (established with
Canadian stock in 1965) and therefore verifies the native status of this clone in Australia
(2). Geographically biased clustering was also identified among isolates from Norwe-
gian (CC 1 and 3) (see below) and Scottish (CC 4 and 6) Atlantic salmon (Table 2). The
high degree of diversity and spatially linked clustering among clinical Y. ruckeri isolates
from Atlantic salmon supports, therefore, the previously proposed geographic ende-
mism in this bacterium (2, 7, 8). Unfortunately, too few isolates from Chilean and North
American salmon were examined to corroborate the existence/absence of salmon-
specific clones in these areas.

While Y. ruckeri serotype 02 is sporadically detected in Norway, almost all major
yersiniosis outbreaks in modern Norwegian salmon farming have been associated with
serotype O1. Knowledge of the genetic diversity of Norwegian strains is scarce, how-
ever, and very few isolates had been characterized prior to the present study. Of the
286 isolates examined from Atlantic salmon in Norway, recovered between 1985 and
2017, we found 77% to belong to CC 1 (exclusively serotype O1) and 12% to CC 3
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(exclusively serotype 02). Although CC 1 contains only Norwegian isolates, this clone
may share a relatively recent ancestry with the “Scottish” CC 4, as they belong to the
same MLST sequence type, in addition to three VNTR loci being entirely conserved
across both of these clonal complexes. This association could conceivably be explained
by geographic proximity, as may the presence of a single English isolate peripherally in
the predominantly “Norwegian” CC 3 (Fig. 1b). In contrast, the appearance of a Chilean
isolate (from 2008) relatively deep within this clonal complex is more likely to reflect
anthropogenic spread. Despite the evident existence of various serotype O1 clones in
Norway (Fig. 1b and c and Table 2), all serotype O1 isolates recovered from clinical
yersiniosis cases in Norwegian Atlantic salmon since 1995 to date belong to CC 1,
indicating the relatively high virulence of this clonal complex toward this fish species.
MLVA clustering of isolates associated with individual freshwater farms over several
years further verifies persistent colonization of these farms by individual CC 1 strains
(Fig. 2).

As with most previous investigations involving Y. ruckeri, the collection examined in
the present study is dominated by clinical isolates from diseased fish. As such, the
scrutinized material provides a poor basis for investigation of the genetic structure
within the overall population of what may well be an essentially environmental
bacterial species. The disproportionate frequency of isolation of certain genotypes from
diseased fish against a background of other genotypes does, however, provide support
for increased host specificity/virulence in particular strains. There is also increasing
evidence that avirulent strains of Y. ruckeri exist (30). In the present study, none of the
Norwegian serotype O1 isolates cultured from the egg fluid of otherwise healthy brood
stock salmon, or from biofilm within farming sites with no recorded history of yersini-
osis, fell within the disease-associated CC 1 by MLVA. Instead, such isolates appeared
entirely as singletons or formed distinct clonal complexes. In particular, CC 7 and CC 8
and 9, respectively, consist of nonclinical serotype O1 isolates recovered primarily from
two separate yersiniosis-free freshwater salmon farms (Table 2). Conceivably, clonal
expansion of host-adapted, virulent Y. ruckeri strains, from essentially environmental
and/or commensal background populations, may have occurred independently in
several salmon-producing countries and resulted in the observed geographic ende-
mism.

In conclusion, this broad population study of Yersinia ruckeri substantially expands
on the existing epizootiological history of this important fish pathogen and supports or
verifies previous notions of host specificity, geographic endemism, and anthropogenic
dissemination. Particularly, we verify by MLVA that yersiniosis in international rainbow
trout farming is dominated almost entirely by a clonal strain of Y. ruckeri serotype O1
(CC 2) which appears to have been spread on separate occasions from North America
to the United Kingdom and continental Europe, respectively. In contrast, we find that
yersiniosis in international salmon farming is dominated mainly by geographically
restricted and presumably native clones for which a recent common ancestry has not
yet been clearly established. We show that a single, exclusively Norwegian, Y. ruckeri
serotype O1 clone (CC 1) dominates the disease situation in Norwegian salmon farming.
The MLVA assay further enables separation of putatively virulent and avirulent serotype
O1 strains in Norway and indicates long-standing colonization of freshwater farms with
specific Y. ruckeri strains. The scheme thus offers an extremely sensitive epizootio-
logical tool that yields easily interpretable data. The entire procedure from agar
plate to inclusion in an MST cluster analysis may be completed in less than a
working day.

MATERIALS AND METHODS

Bacterial strains. A total of 484 Y. ruckeri isolates, including reference strains of serotypes O1, 02,
05, 06, and O7 (7, 12), covering 19 species of fish/animals or environmental sources, 19 countries
(from four continents), and 7 decades (1959 to 2017), were included in this study (see Table S1 in
the supplemental material). Stock cultures, cryopreserved at —80°C, were revived on 5% bovine
blood agar (BA) and incubated at 22°C for 1 to 2 days prior to further processing. All Norwegian
isolates were serotyped by slide agglutination as previously described (31), using antisera raised
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TABLE 3 Primer sequences, concentrations used in multiplex PCR, and sizes of amplified VNTR locus flank regions

Primer sequence (5'—3’)

Multiplex Primer concn Amplified flank
VNTR locus assay Forward? Reverse (uM) (bp)
YR2365 | 6FAM-CCTCGGAAACATAACTTATCGGAC CCTCTGAAAGAGTACATCTCAGCAT 0.2 146
YR3168 | VIC-ATCACGAATAAACTCTTGGGTGGA CCTACCGCATATTCCTGGCTAAAT 0.1 95 (94)0
YR1524 | VIC-TAATCCAGGCAGAATGGCAAAAAC AAAATGTCTGTGATGGACAGTTGC 0.1 375
YR2276 | NED-GTACGGATTGACTTGCATCCAAAA GATAAATTAATCGGCCACAAGTGA 0.1 103
YR3750 | NED-GAGACAAAGGATGCAGAGTACTGG CTGATGCAATAATGACAAAGCCCA 0.2 315
YR1070 Il 6FAM-GGTTATGTATTTTCAACAACCGCGA ~ TCCAACTCACCAATAACCCATCAA 0.2 171 (170)2
YR57 Il VIC-CTGAGCTTGTAGTGGTGTACTGAT CAGCAATGATTTGAGCTGTAGCAA 0.1 82
YR940 Il VIC-ACCACAGCATAGTGTTATCCCAAA TAAACTCAACTTGATCTGTGCCCT 0.2 305
YR1899 Il NED-ATCCCAAAACTATCCGGTGACAAT CACCAAGGTAACCCTAGGCTAATA 0.2 87
YR2794 Il NED-TTGGAGCATGAAATGAGTTTTCCG AACTCTTTGCCGTATTCGGTTTTC 0.1 419

a6FAM, VIC, and NED are 5' dye labels.
bA single-base-pair deletion was identified in the left flank of some isolates (see Results).

against Y. ruckeri serotypes O1 (NCTC 12266), 02 (NCTC 12267), and O5 (NCTC 12268). Isolates
previously serotyped in other laboratories were not re-serotyped in the present study. Biotyping of
selected isolates was conducted as previously described (32). For PCR, genomic DNA was extracted
by boiling bacterial cells from a single colony in 50 wl Milli-Q water for 7 min, followed by
centrifugation and use of the supernatant as template.

Identification of informative VNTR loci. Y. ruckeri genome assemblies retrieved from NCBI GenBank
and/or generated in-house in participating laboratories (unpublished), representing a broad range of
serotypes and spatiotemporal origins, were subjected to analysis with Tandem Repeats Finder v4 (33) in
combination with BLAST searches. Of over one hundred putatively repetitive loci identified, 10 variable
loci (Table 1), confirmed by singleplex PCR and Sanger sequencing (not shown), were selected for further
MLVA development. VNTR locus selection criteria were (i) ubiquitous occurrence in Y. ruckeri, (ii) repeat
unit size uniformity, (iii) extensive inter-strain copy number variation, and (iv) sufficiently conserved
flanking regions. While minor repeat sequence heterogeneity was accepted, 100% conservation of repeat
unit size was set as a requirement to allow precise calling of repeat numbers by CE. In accordance with
suggested guidelines (34), the selected VNTR loci were annotated according to their position (closest
kbp) within the PacBio-generated and circularized genome of Y. ruckeri strain CSF007-82 (accession no.
LN681231).

Multiplex PCR and capillary electrophoresis (CE). Two multiplex PCR assays (I and Il) (Table 3) were
established, each containing five primer pairs designed using MPprimer software (35) to provide an
appropriate intra-assay amplicon size range. Forward primers (Applied Biosystems) were 5’ labeled with
either of three fluorescent dyes (6-carboxyfluorescein [6FAM], VIC, or NED). For each assay, care was taken
to avoid amplicon size overlap between loci labeled with identical dyes.

Multiplex PCR mixtures (i.e., two per isolate tested) contained 12.5 ul 2X Multiplex PCR master mix
(Qiagen), 0.1 to 0.2 uM each appropriate primer pair (Table 3), 2 ul DNA template, and a volume of
RNase-free water amounting to a total reaction volume of 25 ul. Subsequent PCRs involved, for both
assays, (i) 5 min at 95°C (ii) 30 cycles of 0.5 min at 95°C, 1.5 min at 60°C, and 1 min at 72°C, and (iii) 60
min at 68°C, followed by cooling to 4°C indefinitely. PCR products were verified by gel electrophoresis
and then diluted 1:10 (vol/vol) in Milli-Q water. From the diluted samples, 0.5 ul was added to 9 ul Hi-Di
formamide (Applied Biosystems) and 0.5 ul GeneScan 600 LIZ dye size standard v2.0 (Applied Biosys-
tems). Samples were denatured for 3 min at 95°C prior to CE on an Avant 3500x| Genetic Analyser
(Applied Biosystems) utilizing POP-7 polymer (Applied Biosystems) and the following settings: 5-s
injections at 1.6 kV (32 V/cm) and a 32-min run time at 15 kV (300 V/cm) and 60°C.

VNTR fragment size calling and MLVA profiling. Electrophoretic peaks were identified and
size-called in GeneMapper 5 (Applied Biosystems). Differences in VNTR fragment sizes as called by CE and
Sanger sequencing were identified, a phenomenon previously attributed to biased amplicon mobility
patterns in CE machines (36, 37). These discrepancies were stable in relation to allele size, and size calls
were subjected to locus-specific correction and converted to VNTR repeat counts according to the
following formula (sizes in base pairs): VNTR repeat count = (CE size call X s + i — amplified flank
size)/VNTR repeat size, where s and i represent the slope and intersection point, respectively, for
individual VNTR loci identified by plotting accurate PCR fragment sizes (as determined by Sanger
sequencing) against corresponding fragment sizes called by CE. The line-of-best-fit equation for each
locus was identified by linear regression utilizing data from 15 to 19 strains displaying various alleles and
representative for the size spans observed (see Fig. S2 in the supplemental material). Each isolate was
thus assigned a ten-digit integer string (MLVA profile) representing the number of whole repeats
identified at each VNTR locus. Absent CE peaks were assigned a repeat count of 0.

Allelic diversity and statistical evaluation. Based on the observed allelic diversity, the discrimina-
tory capacity of the studied VNTR loci, both individually and in combination, was evaluated by calculating
SID values (38). Possible linkage disequilibrium among the loci was investigated using LIAN version 3.7
(39), employing the Monte Carlo model with 10 000 iterations. Only single representatives of each MLVA
profile were included for LIAN analysis.

MLVA cluster analysis. MLVA profiles for all 484 isolates were imported into BioNumerics v6.6
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(Applied Maths NV, Sint-Martens-Latem, Belgium), and MST cluster analysis performed with default
settings. In the resulting MST diagram, a cluster (clonal complex) partitioning threshold of =4/10
nonidentical loci was employed, and branches representing >5/10 nonidentical loci were hidden.

VNTR stability. Six Y. ruckeri isolates, representing various MLVA clonal complexes, were subjected
to 40 serial passages at 1- to 2-day intervals to assess the in vitro stability of the VNTR loci. For each
passage, single colonies were resown onto fresh BA plates and incubated at 22°C. MLVA profiles were
obtained as described above from colonies harvested after 0, 10, 20, 30, and 40 passages. To assess the
short-term in vivo stability of the VNTR loci, MLVA typing was also performed on 19 Y. ruckeri isolates
recovered from 13 Atlantic salmon sampled simultaneously during an ongoing yersiniosis outbreak in a
Norwegian freshwater facility. The longer-term environmental stability of the VNTR loci under industrial
aquaculture production conditions was assessed by MLVA typing performed on putative “house strain”
isolates associated with four freshwater production sites for Atlantic salmon smolts with a history of
recurring yersiniosis. For each site, 4 to 33 isolates, recovered over a period of 2 to 6 years, were
examined.

Comparative resolution of MLST versus MLVA. DNA sequences for the six previously published
MLST loci (15) were extracted from available Y. ruckeri genome assemblies (NCBI GenBank or unpub-
lished). Published MLST sequences (15, 16) were downloaded from www.pubmlst.org/yruckeri and NCBI
GenBank, respectively. AT and ST designations were assigned in accordance with, or as a continuation
of, previous MLST studies (15, 16). Necessary trimming of two loci (see Results) resulted in reclassification
of several previously published AT/ST profiles.

AT profiles from 134 isolates (involving 35 ST) for which both MLST and MLVA information was
available (see Table S1 in the supplemental material) were subsequently imported into BioNumerics v6.6.
The epizootiological resolution of the two methods was then compared by MST cluster analyses (default
settings) based on MLVA and MLST data, respectively. The truncated DNA sequences underlying the
modified MLST were also subjected to MLSA. As such, the concatenated gene sequences were aligned
with ClustalX (40) and used for constructing a maximum-likelihood tree in MEGA6 (41) with default
settings employed.

Accession number(s). DNA sequences corresponding to the four novel Y. ruckeri MLST allele types
identified during the current study were submitted to NCBI GenBank under accession no. MH156841 to
MH156844 (see Table S3 in the supplemental material).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
.00730-18.

SUPPLEMENTAL FILE 1, XLSX file, 0.1 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.1 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.1 MB.
SUPPLEMENTAL FILE 4, PDF file, 1.2 MB.
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