
1.  Introduction
Anthropogenic greenhouse gas emissions have increased since the preindustrial period driven by economics 
and population growth. Associated impacts have been detected throughout the climate system, and in particular 
for lake systems, influences of the observed global warming have been detected since the mid-20th century 
(IPCC AR5, 2014). Lakes are considered as sentinels of climate change (Adrian et al., 2009) and the primary 
observed physical consequences of climate change on lakes are warming surface water temperature (O’Reilly 
et al., 2015), loss of ice cover (Sharma et al., 2019, 2021), alterations in thermal stability and stratification phenol-
ogy (Kraemer et al., 2015), changes in evaporation (Gronewold & Stow, 2014; Okoniewska & Szumińska, 2020) 
and water mass budgets (Pekel et al., 2016; Smith et al., 2005). Ecosystem effects of climate change on lakes have 
also been observed. Warming water temperature leads to shifts in timing and composition of the phytoplankton 
community (Rice et al., 2015), including the development of harmful and at times toxic cyanobacterial blooms 
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responsible for the long-term changes in lake water temperature.
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(Huisman et al., 2018). Climate change effects also alters fish community size-structure, favoring smaller species 
and individuals (Jeppesen et al., 2012). Increases in lake thermal stability and duration of thermal stratification 
result in oxygen depletion in deep water (Jane et al., 2021), which can lead to an increased fish mortality (Till 
et al., 2019). Anoxic conditions at the sediment-water boundary enhance the nutrient leakage from sediments 
(North et al., 2014) and can promote an increase in the production (Vachon et al., 2019) and emission of meth-
ane (Bastviken et  al.,  2011), a powerful greenhouse gas. Warming may also have important implications for 
the ecosystem services that lakes provide, such as drinking water supply, agriculture irrigation, hydroelectricity 
production, recreation and other amenities (Rinke et al., 2019).

Lake thermal structure has a key influence on most of the processes mentioned above and it is primarily controlled 
by turbulent (sensible and latent heat fluxes) and radiative (short-wave and long-wave radiation) exchanges of 
heat between the lake surface and the atmosphere, hereafter referred to as surface heat fluxes, and wind stress 
(Imboden & Wüest, 1995). Throughflows (advective heat flux; Fenocchi et al., 2017) and sediment exchanges 
(geothermal heat flux; de la Fuente, 2014) also contribute to the lake heat budget, but their influence is usually 
minor. Surface heat fluxes are commonly determined based on direct measurements using the eddy covariance 
technique and a net radiometer (Nordbo et al., 2011) or employing bulk formulae that require lake surface temper-
ature and meteorological data (Hipsey et al., 2019; Woolway et al., 2015).

Solar radiation reaching the lake surface varies according to time of day, season, latitude, weather conditions and 
local landscape (topography) (Martin & McCutcheon, 1999). Anthropogenic aerosols also play a role affecting 
incoming solar radiation by affecting atmospheric scattering and absorption. Both declines (global dimming) 
and inclinations (brightness) in surface solar radiation have been detected worldwide (Wild, 2009). The portion 
of incoming short-wave radiation, Qsin, reflected by the lake surface is controlled by its albedo. A shortened ice 
cover period results in a higher absorption of Qsin because open water has a much lower albedo (Li et al., 2022).

The incoming long-wave radiation, Qlin, is the thermal infrared flux from the atmosphere and depends mainly 
on the atmospheric temperature, moisture, cloud cover and the concentration of the greenhouse gases (GHG) 
(Livingstone & Imboden, 1989). Long-wave radiation is also emitted from the lake (outgoing long-wave radia-
tion, Qlout) as a function of the fourth power of the absolute lake surface temperature (Imboden & Wüest, 1995). 
Rising concentrations of CO2 and other GHG since the preindustrial period have led to an increase in Qlin leading 
to a warmer air temperature (IPCC AR5, 2014). Heat losses to the atmosphere by long-wave radiation are inten-
sified due to warmer lake surface water temperature.

The latent and sensible heat fluxes, although bidirectional fluxes, are important mechanisms by which the lake 
transfers absorbed heat back to the atmosphere. The latent heat flux, Qe, is the energy lost or gained due to evapo-
ration or condensation respectively and depends on the vertical vapor pressure gradient at the air-water boundary. 
The sensible heat flux, Qh, is the transfer of heat via turbulent processes between the lake surface and the atmos-
phere and depends on the vertical temperature gradient at that boundary. Both of these turbulent heat fluxes are 
also controlled by wind and the static stability of the overlying air. Most of Qe occurs as evaporation, that is, lake 
latent-heat loss, and most of Qh results in a sensible heat-loss from the lake. Qe is often the main component of 
the turbulent heat flux (Schmid et al., 2014). Woolway et al. (2018) analyzed high-frequency data from 45 lakes 
distributed globally and found that the turbulent heat flux is higher in larger lakes and those situated at low lati-
tudes. The Bowen ratio, B, where B = Qh Qe −1, correlated significantly with latitude, being smaller at low latitude 
(Qe increased with decreasing latitudes and Qh increased with increasing latitudes).

Human-induced climate change is also affecting other essential climate variables, including wind speed and 
specific humidity. Wind speed showed a significant decreasing trend during 1980–2010 in the northern hemi-
sphere and a significant increasing trend in the southern hemisphere. However, around 2010 the wind trends 
reversed (Zeng et  al.,  2019). The decrease in wind speed in the northern hemisphere could be attributed to 
changes in atmospheric circulation, higher surface roughness (forest growth, land use changes and urbanization) 
and accelerating Arctic warming, while the increase in wind speed in the southern hemisphere is associated 
with an intensified Hadley cell (Deng et al., 2021). The specific humidity, the amount of water vapor held in 
the atmosphere, is increasing rapidly with increasing air temperature given the Clausius–Clapeyron relation-
ship. Observed global mean specific humidity has increased by 0.07 g kg −1 decade −1 for the period 1973–2002 
(Willett et al., 2007). All these changes in the essential climate variables (air temperature, incoming long-wave 
radiation, solar radiation, wind speed and humidity) have a direct impact on the individual surface heat flux 
components.
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To evaluate the impact of climate change on the lake water environment, numerous climate models have been 
coupled with one-dimensional hydrodynamical models at global and local scales (Golub et al., 2022). Previous 
studies have focused on the projected changes in lake water temperature (Ayala et al., 2020; Shatwell et al., 2019), 
lake heatwaves (Woolway, Jennings et  al.,  2021; Woolway et  al.,  2022), stratification phenology (Woolway, 
Sharma, et al., 2021), loss of ice cover (Grant et al., 2021; Sharma et al., 2021; Woolway, Denfeld, et al., 2021), 
alterations in mixing regimes (Råman Vinnå et al., 2021; Woolway & Merchant, 2019), evaporation (La Fuente 
et al., 2022; Wang et al., 2018; Zhou et al., 2021), lake heat content (Vanderkelen et al., 2020; Weinberger & 
Vetter, 2014), methane production (Jansen et al., 2022) and water management strategies (Mi et al., 2020).

Direct measurements of heat fluxes, in particular turbulent heat fluxes and long-wave radiation loss, at the lake 
surface are rare and not extensively undertaken, unlike lake water temperatures and meteorological variables, 
where high frequency monitoring is widespread in many lakes around the world. In addition, turbulent heat 
fluxes and Qlout depend on surface water temperature, which is successfully reproduced by lake hydrodynamical 
models (Bruce et al., 2018; Råman Vinnå et al., 2021), and these models are also extensively applied to explore 
the potential impact of climate change on lake thermodynamics.

Little attention, though, has been focused on the contribution of the individual surface heat flux components 
to the heat budget and in their seasonal dynamics that strongly affect all of the above-mentioned projected 
changes. Fink et  al.  (2014) investigated the modification of the individual surface heat flux components by 
climate-induced warming derived from historical observations in Lake Constance for the period 1984–2011 
and Schmid et al. (2014) estimated the projected global averaged changes at the end of the 21st century of the 
individual surface heat flux components. However, how the total heat balance will change under a future climate 
and how the seasonal dynamics of the individual flux components will evolve, have not been explored and thus 
deserve attention. Therefore, the purpose of this study was to assess the impact of climate change on (a) the total 
surface heat flux, (b) the individual surface heat flux components and (c) the seasonal heat flux dynamics in a 
monomictic, temperate lake for different emission scenarios using a one-dimensional hydrodynamic lake model 
forced by Global Climate Model (GCM) outputs from the Inter-Sectoral Impact Model Intercomparing Project 
phase 2b (ISIMIP2b). Lough Feeagh is an ice-free, wind-exposed, medium-sized, deep lake located in Ireland 
close to the Atlantic Ocean and the Gulf Stream, with a long-term monitoring program. In order to quantify the 
effect of climate change, the projected surface heat fluxes for the pre-industrial control scenario (natural climate) 
were compared with the historical scenario and three future emission scenarios (Representative Concentration 
Pathways (RCP): RCP 2.6 (low-emission scenario), 6.0 (medium-high-emission scenario) and 8.5 (high-emission 
scenario)).

2.  Materials and Methods
2.1.  Study Site

Lough Feeagh (53°56′N, 9°34′W) is a monomictic, oligotrophic and humic freshwater lake located on the west 
coast of Ireland with a surface area of 3.95 km 2, a maximum depth of 46.8 m, an average depth of 14.5 m and an 
average retention time of 172 days (Hoke et al., 2020).

Ireland's climate is defined as a temperate oceanic climate, on the Köppen climate classification system (Peel 
et al., 2007). The winters and summers are mild (January mean air temperature 2004–2017: 6.5°C, July mean air 
temperature: 14.6°C) due to the influence of the Gulf Stream. The mean annual precipitation is 1652 mm year −1 
(2005–2017) with the prevailing wind coming from the Atlantic Ocean to the south-west. Average monthly wind 
speeds are 5.0 m s −1 (Andersen et al., 2020). Lough Feeagh is ice-free all year around and, at present, the lake 
begins to stratify in April, with peaks in the Schmidt stability occurring toward the end of July, and then fully 
mixing around the end of October each year (de Eyto et al., 2016).

2.2.  Lake Model

Simstrat is a one-dimensional model for the simulation of stratification and mixing in lakes. Simulated lake 
temperature is resolved in the vertical dimension dividing the water column into a fixed number of (not necessar-
ily equally spaced) layers. The model supports multiple options for external forcing (meteorological variables and 
total surface heat flux), includes a k-ε turbulence closure scheme and deep seiche mixing (Goudsmit et al., 2002), 
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an ice and snow module (Gaudard et al., 2019), an inflow mixing module (inflow can be added at specific depths 
or with density-dependent intrusions) and constant geothermal heat flux. Simstrat has been extensively used, with 
applications covering, for instance, different lake morphometries (Perroud et al., 2009; Stepanenko et al., 2014), 
future climate scenarios (Råman Vinnå et al., 2021) and extreme weather events (Mesman et al., 2020).

2.3.  Climate Scenarios

To drive Simstrat and evaluate surface heat flux responses to different levels of warming, we use daily 
bias-corrected climate model projections from ISIMIP2b (https://www.isimip.org/), specifically projections 
from GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-RL, and MIROC5 for the pre-industrial control (PiControl) 
scenario from 1976 to 2099, historical warming from 1976 to 2005 and three future scenarios (RCP 2.6, 6.0 and 
8.5) from 2006 to 2099 for the grid cell overlying Lough Feeagh. The PiControl scenario represents a climate 
with natural variability under a stable CO2 concentration of 286 ppm (scenario without anthropogenic climate 
warming), the historical scenario is based on historical changes in atmospheric CO2 concentration and RCP 2.6, 
6.0 and 8.5 encompass a range of potential future global radiative forcing from anthropogenic greenhouse gases. 
The RCPs are labeled based on the increase in radiative forcing values relative to PiControl in the year 2099 (2.6, 
6.0, and 8.5 W m −2, respectively; van Vuuren et al., 2011). RCP 2.6 is the more stringent mitigation pathways that 
is expected to limit the mean global warming to between 0.3 and 1.7°C, RCP 6.0 is an intermediate mitigation 
pathways where global warming is projected to rise between 1.4 and 3.1°C and RCP 8.5 is the non-mitigation 
pathway in which global warming is projected to rise by 2.6–4.8°C by the late-21st century (IPCC AR5, 2014).

2.4.  Model Set-Up and Calibration

Daily climate forcing data from 2004 to 2016 were retrieved from the global gridded data set of historical climatic 
input (EWEMBI; Lange, 2019). These were the same data that were used to bias correct the ISIMIP GCM-derived 
scenarios. The variables for running the Simstrat model were wind speed (m s −1) at 10 m, air temperature (°C) 
at 2 m, the surface incoming short-wave radiation (W m −2), vapor pressure (mbar) at 2 m, the surface incoming 
long-wave radiation (W m −2) and precipitation rate (mm h −1). Vapor pressure was estimated from air pressure 
and specific humidity according to Leppäranta (2015). Following the ISIMIP Lake Sector protocol, inflows and 
outflows were not included and we assumed a fixed water level, and the sediment heat flux was set to 0 W m −2 
(Golub et al., 2022). The initial water temperature profile was derived from in situ measurements. Simstrat was 
run with a timestep of 600 s and the simulated water temperature profiles were saved every hour at 0.5 m depth 
intervals so that each vertical profile contained a total of 94 layers.

Model parameters were set to default values and three of them were calibrated (Section S1 in Supporting Infor-
mation S1). The calibrated parameters p_radin and f_wind scale the incoming long-wave radiation and the wind 
speed respectively and the parameter a_seiche determines the fraction of wind energy that is transferred to internal 
seiches. The calibration was performed using PEST (model-independent Parameter ESTimation and uncertainty 
analysis: https://pesthomepage.org/) software. For the calibration, hourly water temperatures from simulations 
forced using daily meteorological forcing data were compared with hourly average measured water temperature 
(Section S1 in Supporting Information S1). The hourly average water temperature profiles were derived from 
high-frequency water temperature measurements collected at the deepest point of the lake every 2 min for the 
period 2004–2016 at depths of 0.9, 2.5, 5, 8, 11, 14, 16, 18, 20, 22, 27, 32 and 42 m using submerged platinum 
resistance thermometers (PRTs: Labfacility PT100 1/10DIN 4 wire sensor, www.labfacility.co.uk, Bognor Regis, 
UK) (de Eyto et al., 2020).

2.5.  Heat Budget

The heat content variation in the water column, ΔUtotal, is the sum of the energy fluxes into the lake and includes 
net surface heat flux, advective heat transport and geothermal heat flux. In this study, the advective and geother-
mal heat fluxes were set to zero, so the heat content variation is computed by considering only the net surface heat 
flux Qtotal. The heat content variation in the water column ΔUtotal (J m −2) from time t − 1 to t can be quantified by:

∆𝑈𝑈total =
1

𝐴𝐴0 ∫
𝑧𝑧max

0

𝐶𝐶𝑤𝑤 ⋅ 𝜌𝜌[𝑧𝑧𝑧 𝑧𝑧] ⋅ 𝑇𝑇 [𝑧𝑧𝑧 𝑧𝑧] ⋅ 𝑑𝑑𝑑𝑑 −
1

𝐴𝐴0 ∫
𝑧𝑧max

0

𝐶𝐶𝑤𝑤 ⋅ 𝜌𝜌[𝑧𝑧𝑧 𝑧𝑧 − 1] ⋅ 𝑇𝑇 [𝑧𝑧𝑧 𝑧𝑧 − 1] ⋅ 𝑑𝑑𝑑𝑑 = ∫
𝑡𝑡

𝑡𝑡−1

𝑄𝑄total ⋅ 𝑑𝑑𝑑𝑑� (1)
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where A0 is the lake surface area (m 2), Cw is the specific heat capacity of water (Cw = 4182 J kg −1 K −1), ρ[z, t] 
and T[z, t] represent water density (kg m −3) and temperature (°C), respectively, at time t and lake depth z (m) from 
surface (z = 0 m) to bottom (z = zmax m) and dV (m 3) is the volume of each water layer, which decreases with 
depth according to the lake hypsography.

The net or total surface heat flux Qtotal (W m −2), is computed as the sum of radiative fluxes and turbulent heat 
fluxes:

𝑄𝑄total = 𝑄𝑄snet +𝑄𝑄lin +𝑄𝑄lout +𝑄𝑄𝑒𝑒 +𝑄𝑄ℎ� (2)

Each of the components in Equation 2 are positive when the lake gains energy (incoming long-wave radiation 
Qlin, net short-wave radiation Qsnet, sensible heat flux Qh or latent heat flux Qe) and negative when the lake loses 
energy (outgoing long-wave radiation Qlout, Qh or Qe).

A summary of the heat flux parameterizations for calculating Qtotal is provided in Table 1. In the Simstrat model 
35% of Qsin, the near-infrared portion of the short-wave radiation, is absorbed directly at the surface. The remain-
ing part, that is 65%, in the visible and ultraviolet portion of the solar radiation spectrum, penetrates through the 
lake water column and is absorbed according to the Beer-Lambert law:

𝑄𝑄snet [𝑧𝑧 𝑧 0] = (1 − 𝛼𝛼) ⋅ (1 − 0.35) ⋅𝑄𝑄sin ⋅ 𝑒𝑒(
−𝐾𝐾𝑑𝑑 ⋅𝑧𝑧)� (3)

where α is the water albedo (α = 0.08), Qsin is the incoming short-wave radiation (W m −2), Kd is the light extinc-
tion coefficient (Kd = 0.98 m −1). Kd was calculated from the average of monthly Secchi depth, Sd, measurements 
from 2005 to 2015 (Sd = 1.74 m; de Eyto et al., 2016) according to the relation Kd = 1.7· Sd −1.

In Simstrat (v2.1.2) the water column is divided into volumes with an area Ai+1 at the top and Ai at the bottom 
of the volume and a thickness hi,i+1, where i is the lower depth dividing two vertical volumes in the 1D model 
structure. For this study the code was amended to account for the influence of difference in area between top 
and bottom of the volume for computation of the short-wave radiation absorption in each layer (Section S2 in 
Supporting Information S1). In this amended version the short-wave radiation absorbed by each layer was calcu-
lated as:

𝑄𝑄snet,𝑖𝑖+1 ⋅ 𝐴𝐴𝑖𝑖+1 −𝑄𝑄snet,𝑖𝑖 ⋅ 𝐴𝐴𝑖𝑖

𝐴𝐴𝑖𝑖+1+𝐴𝐴𝑖𝑖

2
⋅ ℎ𝑖𝑖𝑖𝑖𝑖+1

� (4)

2.6.  Data Analysis

To assess the impacts of climate change on the surface heat budget components, the PiControl scenario from 
1976 to 2099 was compared with scenarios of the same duration that were created by combining the historical 
scenario from 1976 to 2005 and future GHG emission scenarios (RCP 2.6, 6.0 and 8.5) from 2006 to 2099. 
The surface heat fluxes (Qtotal, Qsnet, Qlin, Qlout, Qe and Qh), volume-weighted average lake temperature Tavg and 
volume-weighted average lake temperature change ∆Tavg were derived on a daily basis from the average of hourly 
simulated outputs. Volume-weighted average lake temperature Tavg was estimated from lake temperature profiles 
and the lake hypsograph curve. In order to distinguish the variations in each of the surface heat budget compo-
nents for a given season, the data were divided into four distinct temporal databases. Winter was considered to 
be from December to February, spring from March to May, summer from June to August, and autumn from 
September to November.

Analysis of long-term and seasonal trends were performed using Generalized Least Squares GLS regression 
according to Zuur et al. (2007). The effects of temporal autocorrelation were investigated using the auto-correlation 
function ACF and the partial auto-correlation function PACF. When temporal autocorrelation was detected, a 
correlation structure using an auto-regressive moving average ARMA(p,q) model for the residuals was included 
in the model. In order to find the optimal model in terms of the residual correlation structure, the model was 
applied with different values of p and q. We tried each combination of p = 0, 1, 2 and q = 0, 1, 2. The selected 
model was the one with the lowest AIC (Akaike information criterion; Akaike, 1987) and the simplest residual 
correlation structure. Normality and homogeneity assumptions of the residuals were also validated via visual 
inspection of the histogram of the residuals and the residual-fitted plot respectively. The statistical analysis was 
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carried out using R version 4.0.2 (R Core Team, 2020). Based on our sign convection, when the surface heat flux 
is positive the lake is gaining heat and if the trend is positive it means that the heat gain is increasing, however if 
the trend is negative it means that the heat gain is decreasing. When the surface heat flux is negative the lake  is 
losing heat and if the trend is positive it means that heat loss is decreasing, however if the trend is negative it 
means that heat loss is increasing.

The average contribution of Qh, Qe, Qlin, Qlout, Qsnet to Qtotal from 1976 to 2099 was defined as:

Contribution of 𝑄𝑄𝑖𝑖 to𝑄𝑄total =
|𝑄𝑄𝑖𝑖|

|𝑄𝑄ℎ| + |𝑄𝑄𝑒𝑒| + |𝑄𝑄lin| + |𝑄𝑄lout| + |𝑄𝑄snet|� (5)

where i = h, e, lin, lout, snet. Addittionaly, the average contribution of Qrad and Qtur to Qtotal were defined respec-
tively as:

Contribution of 𝑄𝑄rad to𝑄𝑄total =
|𝑄𝑄lin| + |𝑄𝑄lout| + |𝑄𝑄snet|

|𝑄𝑄ℎ| + |𝑄𝑄𝑒𝑒| + |𝑄𝑄lin| + |𝑄𝑄lout| + |𝑄𝑄snet|� (6)

Contribution of 𝑄𝑄tur to𝑄𝑄total =
|𝑄𝑄ℎ| + |𝑄𝑄𝑒𝑒|

|𝑄𝑄ℎ| + |𝑄𝑄𝑒𝑒| + |𝑄𝑄lin| + |𝑄𝑄lout| + |𝑄𝑄snet|� (7)

3.  Results
3.1.  Lake Model Performance

Simulated water temperatures revealed a good correspondence with observed water temperatures and were repro-
duced with a high level of accuracy (RMSE = 0.79°C, NSE = 0.95 and BIAS = −0.01°C; Section S1 in Support-
ing Information S1). The lake model performance was comparable to other studies in Lough Feeagh (RMSE 
ranged from 0.44 to 0.77°C, e.g., Bruce et al., 2018; Mesman et al., 2020).

Direct flux measurements at Lough Feeagh were not available to validated the simulated Qh, Qe and Qlout by 
Simstrat. Simstrat simulations of Qh, Qe and Qlout were compared with estimated Qh, Qe and Qlout derived from 
historical climate outputs (EWEMBI) and observed surface water temperature (hereafter referred to as the 
reference) over the calibrated period. Qh and Qe were estimated by the bulk aerodynamics algorithm of Zeng 
et al. (1998), which has been shown to be one of the least problematic bulk aerodynamic algorithms currently 
used by the scientific community for computing turbulent heat fluxes (Brunke et al., 2003) and the algorithms is 
available within the LakeMetabolizer package in R (Winslow et al., 2016; Woolway et al., 2015), and Qlout was 
estimated according to Stefan-Boltzmann law. Overall, our comparison suggests a reasonable agreement between 
Simstrat outputs and the alternatively modeled reference values and Simstrat reproduces the seasonal variability 
despite biases in the amplitudes (Section S3 in Supporting Information S1). Despite surface water temperature 
was simulated by Simstrat successfully (Section S1 in Supporting Information S1), difference between observed 
and simulated surface water temperature affect directly Qh and Qlout computation and indirectly Qe via saturated 
water vapor pressure calculation which is an exponential function of the surface water temperature.

3.2.  Net Surface Heat Budgets

The heat gain by Lough Feeagh over the duration of the future GHG emission scenarios from 1976 to 2099 for the 
ensemble was, on average, 0.0066 W m −2, 0.0150 W m −2 and 0.0429 W m −2 for RCP 2.6, 6.0 and 8.5 respectively 
(Figure 1a). These small imbalances in the long-term surface heat flux led to equivalent ∆Tavg increases of 0.64, 
1.16 and 2.75°C over this 124-year period (or a statistically significant increase rate of Tavg 0.05, 0.12, 0.18°C 
decade −1, respectively for RCP 2.6, 6.0 and 8.5). In contrast, under PiControl heat outputs exceeded heat inputs 
resulting in an average rate of heat loss of −0.0061 W m −2 (Figure 1a), that is, a decrease in ∆Tavg of 0.12°C. It 
can be seen that the difference between heat inputs and outputs that account for the heat gain or heat loss over the 
period of 124 years was very small in each scenario.

Long-term annual average Qtotal from 1976 to 2099 over PiControl and the future GHG emission scenarios 
showed a high inter-annual variability (Figures 1b and 1c). Lower standard deviation was found for the future 
GHG emission scenarios (1.04, 1.02 and 1.01 W m −2 for RCP 2.6, 6.0 and 8.5) than for PiControl (1.11 W m −2).
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3.3.  Turbulent Heat and Radiative Surface Fluxes

Net radiation is dominated by the net short-wave radiation budget, Qsnet, as incoming and outgoing long-wave 
fluxes, Qlin and Qlout, are large but opposite in direction, leading to a relatively small net long-wave radiation loss. 
The combined sensible, Qh, and latent, Qe, heat fluxes produced a net surface heat loss. Most of the net radiation 
is balanced by the turbulent heat loss. Thus, even though there were large changes in the individual heat flux 
components (Figure 2; Table 2) it is a small imbalance between the turbulent and radiative fluxes that leads to a 
net lake heat gain or heat loss.

The turbulent heat and radiative surface fluxes showed no significant changes under PiControl over time. 
However, for the scenarios RCP 2.6, 6.0 and 8.5 significant changes were projected for the individual heat flux 
components, primarily for Qe, Qlin and Qlout. The linear trends of the annual averages are listed in Table 2.

The annual average of Qe changed significantly (Figure  2b), the heat loss increased by 0.34, 0.44 and 
0.54 W m −2 decade −1 for RCP 2.6, 6.0 and 8.5 respectively (Table 2). This change was primarily due to a signif-
icant increase in water vapor pressure deficit, es−ea, (0.04, 0.05, 0.08 mbar decade −1 respectively for RCP 2.6, 
6.0 and 8.5). The transfer function fu (Table 1), which decreases non-linearly with wind speed, played a second-
ary role (Section S4 in Supporting Information S1). Although a significant decrease in fu was projected (−0.03, 
−0.03 and −0.06 W m −2 mbar −1 decade −1 respectively for RCP 2.6, 6.0 and 8.5), its effect was not sufficient to 
compensate for the increase in es−ea (Section S4 in Supporting Information S1). The flux of sensible heat, Qh, 
was the smallest contribution to the heat balance (Figure 2a and Table 2). The greatest sensible heat loss was 
projected for PiControl, it was predicted to be on average slightly lower for RCP 2.6, 6.0 and 8.5 (−14.66 ± 0.52, 

Figure 1.  Total surface heat flux, Qtotal, under PiControl (blue), historical (black) and future climate forcing: RCP 2.6 
(yellow), RCP 6.0 (orange) and RCP 8.5 (red). (a) Average over the period 1976 to 2099. (b) Density distribution of annual 
average. (c) Annual average from 1976 to 2099. The thin lines show the yearly averages across all GCMs and the thick lines 
show the 5-year centred moving average of the ensemble.
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−14.17 ± 0.62, −13.78 ± 0.51, −14.08 ± 0.49 W m −2 respectively for PiControl, RCP 2.6, RCP 6.0 and RCP 
8.5; Table  2), primarily as a result of a decrease in fu under future GHG emission scenarios (11.43  ±  0.21, 
11.23 ± 0.28, 11.21 ± 0.25 and 11.06 ± 0.31 W m −2 mbar −1 respectively for PiControl, RCP 2.6, RCP 6.0 and 
RCP 8.5; Section S4 in Supporting Information S1). The annual mean of Qh did not change significantly, although 
fu was projected to significantly decrease, because Tw−Ta showed a stronger effect on Qh than fu (Section S4 in 
Supporting Information S1). This resulted in the annual average Bowen ratio, B, significantly decreasing under 
GHG emission scenarios.

Regarding radiative heat fluxes, Qsnet and Qlin represent gains in lake heat (Figures 2c and 2e) and Qlout represents 
loss of lake heat (Figure 2d). Qlin was the greatest contribution of lake heat gain (Table 2) and showed the largest 
projected changes (where there was a significant increase) under future GHG emission scenarios (0.36, 1.02 

Figure 2.  Surface heat flux components: (a) Sensible heat flux, Qh, (b) latent heat flux, Qe, (c) incoming long-wave radiation, Qlin, (d) outgoing long-wave radiation, 
Qlout, (e) net short-wave radiation, Qsnet, under PiControl (blue), historical (black) and future climate forcing: RCP 2.6 (yellow), RCP 6.0 (orange) and RCP 8.5 (red). (1) 
Annual average from 1976 to 2099, the thin line shows the yearly average across all GCMs and the thick line show the 5-year centred moving average of the ensemble. 
(2) Average and standard deviation over the period 1976 to 2099.
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and 1.75 W m −2 decade −1 respectively for RCP 2.6, 6.0 and 8.5; Table 2). However, Qsnet, on average, contrib-
uted lower heat input under future GHG emissions scenarios than for PiControl (Table 2). Qlout was the greatest 
contributor to lake heat loss (Table 2) and also showed the largest significant increased rates in heat losses (0.40, 
0.87 and 1.35 W m −2 decade −1 respectively for RCP 2.6, 6.0 and 8.5). Qlin and Qlout were opposite in direction, 
leading to a net long-wave radiation loss Qlnet. The Qlnet heat loss was predicted to be on average lower for RCP 
2.6, 6.0 and 8.5 than for PiControl, with a lower Qlnet heat loss at higher RCP (−38.62 ± 1.42, −36.82 ± 1.39, 
−36.10 ± 1.50 and −35.47 ± 2.25 W m −2 respectively for PiControl, RCP 2.6, RCP 6.0 and RCP 8.5; Table 2) 
as a results of larger changes in Qlin than Qlout. Net long-wave heat loss, Qlnet, is also projected to significantly 
decrease under RCP 6.0 and 8.5 (0.17 and 0.43 W m −2 decade −1 respectively).

µ [W m −2] σ [W m −2] Rate [W m −2dec −1] p-value Contribution to Qtotal [%]

PiControl Qtotal −0.0061 1.11 – >0.05

Qh −14.6639 0.52 – >0.05 1.58

Qe −46.1768 0.92 – >0.05 5.10

Qlin 322.4108 1.73 – >0.05 38.54

Qlout −361.0334 1.07 – >0.05 43.04

Qsnet 99.4573 2.02 – >0.05 10.91

Qrad 60.8347 1.16 – >0.05 92.49

Qtur −60.8408 1.12 – >0.05 7.51

RCP 2.6 Qtotal 0.0066 1.04 – >0.05

Qh −14.1654 0.62 −0.0770 <0.05 1.51

Qe −47.3234 1.64 −0.3430 <0.05 5.17

Qlin 328.5099 2.38 0.3259 <0.001 38.84

Qlout −365.3291 2.27 −0.4014 <0.001 43.08

Qsnet 98.3146 2.71 0.4172 <0.05 10.65

Qrad 61.4954 1.99 0.4134 0.05 92.58

Qtur −61.4888 1.95 −0.4146 0.05 7.42

RCP 6.0 Qtotal 0.0150 1.02 – >0.05

Qh −13.7763 0.51 – >0.05 1.46

Qe −47.3965 1.97 −0.4427 <0.001 5.17

Qlin 330.4346 3.96 1.0212 <0.001 38.97

Qlout −366.5363 3.32 −0.8656 <0.001 43.12

Qsnet 97.2895 2.45 0.2661 <0.001 10.52

Qrad 61.1878 1.99 0.4402 <0.001 92.62

Qtur −61.1728 2.08 −0.4438 <0.001 7.38

RCP 8.5 Qtotal 0.0429 1.01 – >0.05

Qh −14.0848 0.49 – >0.05 1.49

Qe −48.0120 2.26 −0.5435 <0.001 5.20

Qlin 332.8595 6.67 1.7490 <0.001 39.04

Qlout −368.3260 5.03 −1.3460 <0.001 43.09

Qsnet 97.6062 2.64 – >0.05 10.49

Qrad 62.1397 2.37 0.5592 <0.001 92.62

Qtur −62.0968 2.41 −0.5536 <0.001 7.38

Note. The sign convention is defined in the main text.

Table 2 
Ensemble Mean, μ, Standard Deviation, σ, Trend Analysis of Annual Average Qtotal, Qh, Qe, Qlin, Qlout, Qsnet, Qrad and Qtur 
(Significance: p-Value <0.05) and the Average Contribution of Qh, Qe, Qlin, Qlout, Qsnet (Qrad, Qtur) to Qtotal From 1976 to 
2099
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In summary, for the future GHG emission scenarios there were increases in the radiative fluxes (0.41, 0.44, 
0.56 W m −2 decade −1 respectively for RCP 2.6, 6.0 and 8.5; Table 2) that were largely compensated by increas-
ing turbulent heat loss (−0.41, −0.44, −0.55 W m −2 decade −1 respectively for RCP 2.6, 6.0 and 8.5; Table 2). 
Therefore, the heat budget was in a quasi-steady state, despite large but compensating changes in the individual 
fluxes resulting in a small positive imbalance between radiative and turbulent heat fluxes leading to a significant 
increase in Tavg (0.05, 0.12, 0.18°C decade −1 respectively for RCP 2.6, 6.0 and 8.5).

3.4.  Net Seasonal Surface Heat Budgets

Lough Feeagh gains heat (Qtotal > 0) during spring and summer and loses heat (Qtotal < 0) during autumn and 
winter. The average heat gain for the ensemble in spring from 1976 to 2099 was lower under future GHG emission 
scenarios than under PiControl (54.81 ± 3.23, 52.92 ± 3.26, 52.59 ± 3.15 and 50.98 ± 4.11 W m −2 respectively 
for PiControl, RCP 2.6, RCP 6.0 and RCP 8.5; Figure  3; Table  3) and the long-term annual average spring 
heat gain significantly decreased under RCP 6.0 and 8.5 (Figure 3; Table 4) at a rate of −0.29 W m −2 decade −1 
and −0.67  W  m −2  decade −1 for RCP 6.0 and 8.5 respectively. In autumn, the 1976–2099 average heat loss 
for the ensemble was also lower under future GHG emission scenarios than under PiControl (−45.56 ± 3.44, 
−44.31 ± 3.34, −43.03 ± 3.97 and −43.19 ± 4.19 W m −2 respectively for PiControl, RCP 2.6, RCP 6.0 and RCP 
8.5; Figure 3; Table 3). The long-term annual autumnal heat loss was projected to decrease significantly under 
RCP 6.0 and 8.5 (0.51 and 0.59 W m −2 decade −1 for RCP 6.0 and 8.5; Table 4). Only small differences in Qtotal 
under PiControl and future GHG emission scenarios were projected in summer and winter and showed no signif-
icant trends. The average difference in Qtotal between RCP 8.5 and PiControl resulted in −3.83 and 3.36 W m −2 in 
spring and autumn, respectively (Figure 4). However, the average difference in Qtotal between RCP 8.5 and PiCon-
trol in winter and summer was an order of magnitude smaller than in spring and autumn (0.41 and 0.30 W m −2 in 
winter and summer, respectively; Figure 4).

The projected rates of heat gain in spring and heat loss in autumn were strongly influenced by the selected Global 
Climate Model GCM (Section S5 in Supporting Information S1). The largest average spring rate of heat gain and 
autumnal rate of heat loss was projected for HadGEM2-ES and the lowest was for GFDL-ESM2M. While there 

Figure 3.  Seasonal total surface heat flux, Qtotal: (a) Spring and (b) autumn, under PiControl (blue), historical (black) and future climate forcing: RCP 2.6 (yellow), 
RCP 6.0 (orange) and RCP 8.5 (red). (1) Annual average from 1976 to 2099, the thin line shows the yearly average across all GCMs and the thick line show the 5-year 
centred moving average of the ensemble. (2) Average and standard deviation over the period 1976 to 2099.
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was a general agreement among the models HadGEM2-ES, IPSL-CM5A-LR and MIROC5 in the direction of 
change in spring rate of heat gain and autumnal rate of heat loss under RCP 2.6, 6.0 and 8.5 relative to PiControl, 
GFDL-ESM2M gave projections that were the opposite regarding the heat trends in spring and autumn compared 
to the other GCMs.

3.5.  Seasonal Turbulent Heat and Radiative Surface Fluxes

Total surface heat flux Qtotal, as well as the turbulent and radiative fluxes, are seasonally variable (Figure 5). 
During the late-winter and early mid-spring, Lough Feeagh was gaining net radiation thus absorbing heat that 

Spring Summer Autumn Winter

µ [W m −2] σ [W m −2] µ [W m −2] σ [W m −2] µ [W m −2] σ [W m −2] µ [W m −2] σ [W m −2]

Qtotal PiControl 54.81 3.23 16.40 2.28 −46.56 3.44 −25.68 5.49

RCP 2.6 52.92 3.26 16.31 2.57 −44.31 3.34 −25.87 4.46

RCP 6.0 52.59 3.15 15.85 2.62 −43.03 3.97 −26.33 4.48

RCP 8.5 50.98 4.11 16.70 2.61 −43.19 4.19 −25.26 4.09

Qh PiControl −8.05 1.25 −26.52 0.66 −20.23 1.16 −3.71 2.08

RCP 2.6 −8.11 1.31 −25.97 0.94 −18.83 0.99 −3.60 1.68

RCP 6.0 −7.73 1.25 −25.40 0.75 −18.14 1.36 −3.68 1.80

RCP 8.5 −8.77 1.63 −25.50 0.86 −18.28 1.47 −3.62 1.48

Qe PiControl −36.32 1.79 −76.52 3.01 −50.54 1.60 −20.89 1.93

RCP 2.6 −37.18 2.19 −78.53 4.18 −51.41 1.88 −21.72 1.80

RCP 6.0 −37.36 2.49 −78.46 4.63 −50.94 2.16 −22.38 2.10

RCP 8.5 −38.21 2.94 −79.26 4.78 −52.02 2.26 −22.11 1.99

Qlin PiControl 312.35 3.03 348.99 2.64 327.35 3.03 300.58 3.50

RCP 2.6 318.15 3.02 356.34 3.26 333.74 3.69 305.43 3.57

RCP 6.0 320.03 3.34 358.26 4.94 335.60 4.97 307.47 4.31

RCP 8.5 321.86 5.70 361.69 8.24 338.22 8.02 309.27 6.30

Qlout PiControl −349.84 1.78 −396.06 2.50 −366.07 1.38 −331.64 1.22

RCP 2.6 −353.57 2.44 −401.01 3.83 −370.81 2.37 −335.41 1.86

RCP 6.0 −355.00 3.35 −401.86 4.55 −371.93 3.53 −336.85 2.90

RCP 8.5 −356.46 4.72 −404.23 6.46 −374.10 5.42 −337.99 4.26

Qsnet PiControl 136.68 4.53 166.51 6.26 62.93 1.95 29.98 0.91

RCP 2.6 133.64 4.84 165.48 6.89 63.01 1.97 29.43 1.03

RCP 6.0 132.65 4.88 163.31 6.49 62.38 1.94 29.12 1.04

RCP 8.5 132.55 5.46 164.00 6.79 62.99 2.26 29.20 1.04

Qrad PiControl 99.19 2.42 119.44 3.12 24.21 1.50 −1.08 2.20

RCP 2.6 98.21 2.85 120.81 4.63 25.94 1.89 −0.55 2.10

RCP 6.0 97.69 2.83 119.71 4.42 26.05 2.19 −0.26 1.65

RCP 8.5 97.96 3.05 121.46 5.00 27.11 2.83 0.47 2.24

Qtur PiControl −44.38 2.75 −103.04 3.34 −70.76 2.48 −24.60 3.74

RCP 2.6 −45.29 3.17 −104.50 4.86 −70.25 2.33 −25.32 3.12

RCP 6.0 −45.10 3.44 −103.86 4.98 −69.08 2.75 −26.06 3.57

RCP 8.5 −46.98 4.34 −104.76 5.10 −70.30 2.67 −25.73 3.13

Note. The sign convention is defined in the main text.

Table 3 
Seasonal Mean, μ, and Standard Deviation, σ, of Qtotal, Qh, Qe, Qlin, Qlout, Qsnet, Qrad and Qtur From 1976 to 2099 for the 
Ensemble
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resulted in a rapid increase in Tavg. Thereafter turbulent heat fluxes played a much more important role in the 
heat balance. For example, in the late-spring and early summer Qtotal leveled off while net radiation was still 
rising. Tavg still kept rising but less rapidly than earlier. The transition from net warming of Lough Feeagh to net 
cooling occurred in August and Tavg started to drop. During late-summer and early autumn, both turbulent and 
radiative fluxes contributed to a similar extent to Qtotal. As autumn progresses, the contribution of the turbulent 
flux dominated over the radiative flux. Seasonal turbulent and radiative heat fluxes also changed under future 
GHG emission scenarios relative to the PiControl scenario (Figures 4 and 5; Tables 3–4).

Spring Summer Autumn Winter

Rate [W m −2 
dec −1] p-value

Rate [W m −2 
dec −1] p-value

Rate [W m −2 
dec −1] p-value

Rate [W m −2 
dec −1] p-value

Qtotal PiControl – >0.05 – >0.05 – >0.05 – >0.05

RCP 2.6 – >0.05 – >0.05 – >0.05 – >0.05

RCP 6.0 −0.2915 <0.001 −0.1466 <0.05 0.5116 <0.001 – >0.05

RCP 8.5 −0.6661 <0.001 – >0.05 0.5877 <0.001 – >0.05

Qh PiControl – >0.05 −0.0471 <0.05 – >0.05 −0.1027 0.05

RCP 2.6 −0.1680 <0.001 −0.1407 <0.001 0.0848 <0.05 −0.0981 <0.05

RCP 6.0 −0.1647 <0.001 – >0.05 0.2453 <0.001 – >0.05

RCP 8.5 −0.3066 <0.001 – >0.05 0.2981 <0.001 −0.0880 <0.05

Qe PiControl – >0.05 – >0.05 – >0.05 −0.1069 <0.01

RCP 2.6 −0.2168 <0.01 −0.7089 <0.001 −0.2056 <0.001 – >0.05

RCP 6.0 −0.4487 <0.001 −0.8794 <0.001 −0.2289 <0.001 −0.2062 <0.001

RCP 8.5 −0.5768 <0.001 −0.9304 <0.001 −0.3219 <0.001 −0.2441 <0.001

Qlin PiControl – >0.05 – >0.05 – >0.05 – >0.05

RCP 2.6 0.2420 <0.01 0.4975 <0.001 0.4658 <0.001 0.2862 <0.01

RCP 6.0 0.7129 <0.001 1.2490 <0.001 1.1753 <0.001 0.9605 <0.001

RCP 8.5 1.3541 <0.001 1.9504 <0.001 1.9647 <0.001 1.5024 <0.001

Qlout PiControl – >0.05 – >0.05 – >0.05 – >0.05

RCP 2.6 −0.3449 <0.001 −0.6374 <0.001 −0.4138 <0.001 −0.2890 <0.01

RCP 6.0 −0.8121 <0.001 −1.0498 <0.001 −0.8687 <0.001 −0.7448 <0.001

RCP 8.5 −1.2007 <0.001 −1.6383 <0.001 −1.4285 <0.001 −1.1178 <0.001

Qsnet PiControl – >0.05 – >0.05 – >0.05 – >0.05

RCP 2.6 0.4386 <0.001 0.9516 <0.001 0.2156 <0.001 0.0838 <0.01

RCP 6.0 0.4211 <0.001 0.5438 <0.01 0.1165 <0.05 – >0.05

RCP 8.5 – >0.05 – >0.05 – >0.05 – >0.05

Qrad PiControl – >0.05 – >0.05 – >0.05 – >0.05

RCP 2.6 0.3330 <0.001 0.8264 <0.001 0.2624 <0.001 – >0.05

RCP 6.0 0.3219 <0.001 0.7527 <0.001 0.4941 <0.001 0.1858 <0.001

RCP 8.5 0.2179 <0.01 0.9917 <0.001 0.6826 <0.001 0.3277 <0.001

Qtur PiControl – >0.05 – >0.05 – >0.05 −0.2143 <0.01

RCP 2.6 −0.3860 <0.001 −0.8504 <0.001 – >0.05 −0.1540 0.05

RCP 6.0 −0.6134 <0.001 −0.8993 <0.001 – >0.05 −0.2694 <0.01

RCP 8.5 −0.8839 <0.001 −0.8705 <0.05 – >0.05 −0.3321 <0.001

Note. The sign convention is defined in the main text.

Table 4 
Trend Analysis of Seasonal Annual Qtotal, Qh, Qe, Qlin, Qlout, Qsnet, Qrad and Qtur From 1976 to 2099 for the Ensemble 
(Significance: p-Value <0.05)

 21698996, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

038355 by U
niversity O

f Stirling Sonia W
, W

iley O
nline L

ibrary on [14/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Atmospheres

AYALA ET AL.

10.1029/2022JD038355

14 of 20

The spring turbulent heat loss was projected to be larger under future GHG emission scenarios than PiControl 
because of both latent, Qe, and sensible, Qh, heat loss increase (Table 3). Qe and Qh heat losses increased signif-
icantly under future GHG emission scenarios (Table 4), and in particular the significant increase in Qh heat loss 
responded to a faster increase of lake surface water temperature than the overlying air (Section S6 in Supporting 

Figure 4.  (a) Seasonal average difference in total surface heat flux, Qtotal, incoming long-wave radiation, Qlin, net short-
wave radiation, Qsnet, sensible heat flux, Qh, latent heat flux, Qe, and outgoing long-wave radiation, Qlout, between RCP 8.5 
and PiControl. (b) Seasonal average difference in volume-weighted average lake temperature, Tavg, between RCP 8.5 and 
PiControl. The two numbers within brackets denote the seasonal average from 1976 to 2099 under PiControl and the seasonal 
percentage change between RCP 8.5 and PiControl relative to PiControl.

Figure 5.  Seasonal total surface heat flux, Qtotal, turbulent surface heat flux, Qtur, radiative surface heat flux, Qrad, and 
volume-weighted average lake temperature, Tavg, from 2070 to 2099 under PiControl (blue) and RCP 8.5 (red). The thin line 
shows the daily average across all GCMs and the thick line show the 14-day centred moving average of the ensemble. The 
shaded areas in the background denote the different seasons (spring: days of the year 60–151, summer: 152–243, autumn: 
244–334 and winter: 1–59 and 335–365).
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Information S1) and the significant increase in Qe heat loss responded to a significant increase in both es−ea 
and fu, although es−ea had a stronger effect on Qe than fu (Section S6 in Supporting Information S1). The spring 
radiative heat input was greater under future GHG emission scenarios than PiControl, primarily because of a 
significant increase in Qlin under future GHG emission scenarios (Table 4). Qsnet was projected to be lower under 
GHG emission scenarios than PiControl (Table 3) and the differences in Qsnet between RCPs and PiControl were 
projected to be the greatest in spring (Figures 4 and 5). Regarding the spring radiative heat output Qlout also 
significantly increased under future GHG emission scenarios (Table 4). These combined effects led to an overall 
reduction in the spring lake heating (Figures 4 and 5).

During the summer, each individual surface heat flux component reached its peak and showed the greatest change 
rates (Tables 3–4, Figure 5). However, the significant increase in the heat gain from the net radiative heat flux 
(0.83, 0.75 and 0.99 W m −2 decade −1 for RCP 2.6, RCP 6.0 and RCP 8.5; Table 4) was almost equivalent to abso-
lute trends in turbulent heat loss (−0.85, −0.90 and −0.87 W m −2 decade −1 respectively for RCP 2.6, 6.0 and 8.5; 
Table 4) with compensating effects, resulting in a steady Qtotal.

In autumn, the projected turbulent heat flux did not show significant changes over time for both PiControl 
and future GHG emission scenarios. Under future GHG emission scenarios the long-term trends in Qh and 
Qe were similar in magnitude and opposite in direction, canceling each other out (Table  4). Qh heat loss 
decreased significantly as a result of a significant decrease in both water-air temperature difference Tw−Ta 
and fu, but Tw−Ta had a stronger effect on Qh than fu (Section S6 in Supporting Information S1). On the other 
hand, latent heat loss Qe increased significantly in response to a significant increase in es−ea and fu and both 
showed strong effect on Qe (Section S6 in Supporting Information S1). In contrast to turbulent heat flux, 
radiative heat flux was projected to increase under future GHG emission scenarios as a result of a decreased 
Qlnet (Table 4). These combined effects led to a significant decrease in the autumnal lake cooling, being the 
projected changes in magnitude and direction of turbulent heat fluxes played an important role in determining 
Qtotal.

Lough Feeagh lost heat during the winter and a negligible long-term trend was projected for both PiControl and 
future GHG emission scenarios. Both winter Qh and Qe heat loss increased, but to a lesser extent than in other 
seasons (Tables 3–4). The winter net radiative flux was negative (heat loss) owing to Qsnet heat gain not counter-
acting the Qlnet heat loss under PiControl and future GHG emission scenarios (Table 3). However, the heat loss by 
radiative flux significantly decreased under RCP 6.0 and 8.5 (Table 4).

4.  Discussion
Understanding how lakes will respond to a changing climate will be essential for their future management. This 
includes understanding physical changes related to the energy budget of lakes. This is the first study provid-
ing a comprehensive analysis of surface heat budget and individual heat flux components under future climate 
scenarios in a temperate, deep, dystrophic lake, exemplified by Lough Feeagh. Both the annual average of net 
radiative flux, Qrad, and turbulent heat flux, Qtur, were projected to increase and decrease (Table 2), respectively, 
with almost equivalent absolute significant trends under GHG emission scenarios, leading to overall a very small 
and non-significant increase in the total heat budget, Qtotal (Table 2). In contrast to the steady state, in which the 
total heat budget would be zero and the lake temperature remain constant, this very small positive imbalance in 
the total heat budget (quasi-steady state) was sufficient to lead a significant increase in Tavg of 0.05, 0.12, 0.18°C 
decade −1 respectively for RCP 2.6, 6.0 and 8.5.

Qlin was the radiative flux with the highest contribution to the lake heat budget (Figure  2c; Table  2) and 
the annual Qlin was also the radiative flux that showed the greatest changes under future GHG emission 
scenario. Fink et  al.  (2014) also noted that Qlin was the radiative flux with the greatest significant increases 
(2.50 W m −2 decade −1) at Lake Constance. Solar radiation in CMIP5 global climate models were projected to 
increase by 0.39 Wm −2 decade −1 for the period of 2006–2100 over Europe under RCP 8.5 (Bartók et al., 2017). 
However, Qsnet in Lough Feeagh under RCP 8.5 showed non-significant change over time (Figure 2e; Table 2). 
GCMs include different schemes for the representations of atmospheric processes, aerosols and also the effect of 
aerosols on cloudiness, atmospheric chemistry, among others (Bartók et al., 2017). The non-significant change 
in Qsnet under RCP 8.5 in Lough Feeagh could be attributed to non-significant changes in cloudiness or water 
vapor content in the atmosphere. Observed Qsnet at Lake Constance from 1984 to 2011 increased at a rate of 
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2.10 W m −2 decade −1 (Fink et al., 2014), coinciding with a brightening period in Europe (3.30 W m −2 decade −1 
over 1985–2005; Wild, 2009) which is also captured in the projected Qsnet under GHG emissions scenarios.

The increasing incoming radiative fluxes induced higher surface water temperatures and the warmer surface 
emitted more long-wave radiation and more evaporation. Fink et  al.  (2014) found similar trends in heat loss 
by Qlout (−2.40 W m −2 decade −1) and Qe (−2.70 W m −2 decade −1) and the Qe contribution to the lake heat loss 
increased compared to that of Qlout. However, we found that projected heat loss rates were greater for Qlout than 
Qe (Table 2). These differences between the heat loss rates for Qlout and Qe increase inversely proportional to the 
increase in Qsnet, that is, an increase in Qsnet promotes higher Qe rates, gaining importance as a heat loss compared 
to Qlout. Consistent with Schmid et al. (2014) we found that sensible heat loss Qh is the smallest contributor of 
total surface heat flux (Figure 2a; Table 2). The relative contributions of Qh and Qe to the Bowen ratio, B, was 
found to significantly change under future GHG emission scenarios by allocating more energy to evaporation 
rather than sensible heating of the atmosphere.

The increase in heat loss is primarily driven by the increase in surface water temperature, as the greater the 
surface temperature increase, the greater the long-wave heat loss. However, for turbulent heat fluxes it is more 
complex, because Qh and Qe are dependent on the water-air temperature gradient, Tw−Ta, and water-air vapor 
pressure gradient, es−ea, respectively, and also on the atmospheric stratification and wind speed (fu, Table 1). 
Our findings support the assumptions of previous studies that variations in Qe can be largely explained by es−ea 
(Nordbo et al., 2011) or by both wind speed and es−ea (Blanken et al., 2000). Even though in Lough Feeagh the 
average of fu for the period 1976–2099 was similar in spring and autumn (Section S6 in Supporting Informa-
tion S1), in autumn both es−ea and fu had a strong effect on Qe (Section S6 in Supporting Information S1) indicat-
ing that Qe was controlled jointly by the intensity of turbulent mixing and the water-air vapor pressure gradient, 
while in spring es−ea had a stronger effect on Qe than fu did (Section S6 in Supporting Information S1), indicating 
Qe was being controlled by the water-air vapor pressure gradient.

Sediment and advective heat fluxes also contribute to the lake heat budget, but they are not covered in this study. 
The heat exchange with the sediment is more important for shallow lakes or littoral areas than for deeper lakes 
where sediments largely do not receive direct solar heating (de la Fuente, 2014) and for ice-covered lakes where 
the heat fluxes across the lake surface are limited (Schmid & Read, 2021). The advective heat flux has a larger 
effect in lakes with shorter residence times and can have a warming or cooling effect on lake water temperature, 
depending on the seasonal differences between the inflow and lake surface temperature. For example, Olsson 
et al. (2022) found that advective heat flux can be a warming flux in winter and a cooling flux in summer, and 
that the magnitude of the advective heat flux is determined by the annual water retention time, with the lower the 
advective heat flux the longer the annual water retention time.

The projected individual surface heat flux components and consequently Qtotal depended on the selected GCM. 
The model architecture and complexity differ between GCMs, as some models include more processes than 
others. This means that all GCMs provide different future projections. GFDL-ESM2M gave an opposite direction 
of change in spring rate of heat gain and autumnal rate of heat loss under RCP 2.6, 6.0 and 8.5 relative to PiCon-
trol, compared to the other GCMs (HadGEM2-ES, IPSL-CM5A-LR and MIROC5). For example, in autumn 
the turbulent heat fluxes were projected to change in opposite directions, heat loss by Qh decreased and by Qe 
increased for HadGEM2-ES, IPSL-CM5A-LR and MIROC5 resulting in a decrease in Qtotal. By contrast, for 
GFDL-ESM2M there was not projected change in Qh under future GHG emission scenarios compared to PiCon-
trol, while heat loss by Qe was projected to increase under future GHG emission scenarios resulting in an increase 
in turbulent heat loss and consequently an increase in Qtotal. Suggesting that the projected changes in magnitude 
and direction of the turbulent heat fluxes play an important role in determining Qtotal even though surface radia-
tive fluxes have a larger contribution to Qtotal. ISIMIP offers a framework for ensemble modeling, where several 
climate models are used together to obtain more robust assessment. The advantage of model ensembles is that if 
the same response is observed in several models, the result is considered certain, however, if the responses are 
different in different models, the result is considered less certain.

This study showed the counter-intuitive results that, in a warming world where lakes experience warmer water 
temperatures throughout the year and are projected to continue to warm until the end of the 21st century, there will 
be less heat entering Lough Feeagh during spring and little change in net heating over the summer compared to 
natural climate conditions where lake water temperature is not projected to increase. In addition, the reduction of 
heat loss during autumn together with little change in net heat over winter promoted warmer winter  temperatures. 
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As winter temperature have increased, lower net heat entering into the lake is needed in spring to form stratifi-
cation and subsequently increase the surface water temperatures. In addition, changes in wind forcing played an 
important role in regulating the vertical distribution of heat in the water column, and consequently in the lake 
stratification and surface water temperatures.

5.  Conclusions
In this study, we analyzed the significant changes in the surface heat fluxes under different emission scenarios in 
Lough Feeagh, an ice-free monomictic lake between the years of 1976–2099. We found a small but significant 
increase in the net radiative flux, Qrad (0.41, 0.44, 0.56 W m −2 decade −1 respectively for RCP 2.6, 6.0 and 8.5), 
formed by large changes in the individual radiative fluxes, that was largely counteracted by small but significant 
decreases in the turbulent fluxes, Qtur (−0.41, −0.44, −0.55 W m −2 decade −1 respectively for RCP 2.6, 6.0 and 
8.5). Ultimately, the combined change in the individual fluxes led to a change in the total surface heat flux, 
Qtotal, that was extraordinarily small (0.0066, 0.0150 and 0.0429 W m −2 respectively for RCP 2.6, 6.0 and 8.5), 
but sufficient to lead to significant changes in whole lake water temperature, Tavg (0.05, 0.12, 0.18°C decade −1 
respectively for RCP 2.6, 6.0 and 8.5), that were in line with changes found by other modeling studies (Ayala 
et al., 2020), and also historical observations (Moras et al., 2019). The feedbacks between the lake and atmos-
phere that affect these fluxes are complex, and this study suggests that even a small difference in an individual 
flux that affects the balance between them and the resulting total surface heat flux may lead to important changes 
in water temperature over the time scale of climate change.

On a seasonal scale, the largest change in total surface heat fluxes were in spring and autumn. Both spring heating 
and autumnal cooling significantly decreased under RCPs (spring heating: −0.29 and −0.67 W m −2 decade −1 
respectively for RCP 6.0 and 8.5 and autumnal cooling: −0.51 and −0.59 W m −2 decade −1 respectively for RCP 
6.0 and 8.5), while small differences in total surface heat flux between PiControl and RCPs were projected in 
winter and summer. This leads to the counter-intuitive results that in a warming world there will be less heat, not 
more, entering Lough Feeagh during the spring, and the decreased heat loss during autumn is largely responsible 
for the long-term changes in volume-weighted average lake temperature. Although turbulent heat fluxes were 
the smallest contribution to Qtotal, the projected changes in magnitude and direction of Qh and Qe in spring and 
autumn under future GHG emission scenarios played an important role in determining Qtotal.

Data Availability Statement
The Simstrat v2.1.2 code is available at https://github.com/Eawag-AppliedSystemAnalysis/Simstrat. EWEMBI 
daily climate forcing data for calibration purposes are provided by Lange (2019). High-frequency water temper-
ature measurements also for calibration purposes are provided by de Eyto et  al.  (2020). Daily bias-corrected 
climate model projections from ISIMIP2b are available at https://www.isimip.org/gettingstarted/data-access/. 
Future projections of surface heat budgets, derived figures and tables, and modified code in Simstrat v.2.1.2 are 
provided by Ayala et al. (2022).
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