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ABSTRACT
Diel cycle is of enormous biological importance as it imposes daily oscillation in environmental 
conditions, which temporally structures most ecosystems. Organisms developed biological 
time-keeping mechanisms – circadian clocks – that provide a significant fitness advantage over 
competitors by optimising the synchronisation of their biological activities. While circadian clocks 
are ubiquitous in Eukaryotes, they are so far only characterised in Cyanobacteria within Prokaryotes. 
However, growing evidence suggests that circadian clocks are widespread in the bacterial and 
archaeal domains. As Prokaryotes are at the heart of crucial environmental processes and are 
essential to human health, unravelling their time-keeping systems provides numerous applications 
in medical research, environmental sciences, and biotechnology. In this review, we elaborate on 
how novel circadian clocks in Prokaryotes offer research and development perspectives. We 
compare and contrast the different circadian systems in Cyanobacteria and discuss about their 
evolution and taxonomic distribution. We necessarily provide an updated phylogenetic analysis of 
bacterial and archaeal species that harbour homologs of the main cyanobacterial clock components. 
Finally, we elaborate on new potential clock-controlled microorganisms that represent opportunities 
of ecological and industrial relevance in prokaryotic groups such as anoxygenic photosynthetic 
bacteria, methanogenic archaea, methanotrophs or sulphate-reducing bacteria.
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Introduction

The Earth’s rotation around its axis causes the 24-h day 
and night cycle known as the diel cycle. This recurrent 
phenomenon induces daily fluctuations of solar radia-
tion and/or temperature, which regulate the function-
ing of most ecosystems. One of the most significant 
adaptations to the diel cycle is the emergence of circa-
dian clocks in both Eukaryotes and Prokaryotes (Saini 
et  al. 2019). Circadian clocks are endogenous molecular 
systems that entrain to environmental zeitgeber (i.e. 
external cue such as light) and allow temporal coordi-
nation of intracellular processes. These clocks follow a 
24-h period oscillation that remains in a constant con-
dition (free-running) and over a range of physiological 
temperatures (temperature-compensated) (Golden and 
Canales 2003). Although circadian clocks are ubiqui-
tous in Eukaryotes, prokaryotic circadian clocks were so 
far only characterised in Cyanobacteria (for a review 
see Johnson and Rust 2021). The cyanobacterial clock 
is based on the KaiABC proteins complex that acts as 
an oscillator that synchronises with environmental sig-
nals and subsequently controls rhythmic gene expres-
sion (Kondo 2007; Markson et  al. 2013).

Unravelling the time-keeping mechanisms of 
non-cyanobacterial species is crucial regarding the 
central role Prokaryotes play in all ecosystems. This 
fundamental knowledge could lead to the incorpora-
tion of their temporal structures in broad technological 
applications, which will undoubtedly offer great 
research and development opportunities. Over the 
past decades, a growing body of evidence suggested 
that time-controlled mechanisms are widespread in 
Prokaryotes (Schmelling et  al. 2021). Pioneer bioinfor-
matical analyses revealed that homologs of the Kai 
proteins were present across a broad range of bacterial 
and archaeal phyla (Dvornyk et  al. 2003; Loza-Correa 
et  al. 2010; Schmelling et  al. 2017). Microbial 
community-wide diel rhythms are observed in various 
biomes and are attributed to non-cyanobacterial spe-
cies (Ottesen et  al. 2014; Hörnlein et  al. 2020; Géron 
et  al. 2021). Moreover, rhythmic activities are found in 
prokaryotic species harbouring Kai protein homologs 
such as purple bacteria (Van Praag et  al. 2000; Min 
et  al. 2005; Ma et  al. 2016), non-photosynthetic bacte-
ria (Paulose et al. 2019; Sartor et al. 2019; Eelderink-Chen 
et  al. 2021) and extremophile archaea (Whitehead 
et  al. 2009; Maniscalco et  al. 2014).

In this review, we discuss the numerous applications 
of biological rhythms of Prokaryotes in research and 
development from human health to the industry. We 
present the known circadian systems in Prokaryotes, 
and we describe their properties and evolutionary 

paths. With the development of next-generation 
sequencing the number of complete, draft and 
metagenome-assembled genomes exponentially 
increased since the last phylogenetic analyses of Kai 
protein homologs (Dvornyk et  al. 2003; Loza-Correa 
et  al. 2010; Schmelling et  al. 2017). Therefore, we pro-
vide an updated analysis of the presence of Kai pro-
teins among bacterial and archaeal species, and we 
elaborate on new potentially clock-controlled candi-
dates in taxonomic groups such as anoxygenic photo-
synthetic bacteria or methanogenic archaea.

Research focus on prokaryotic time-keeping 
systems: rationales and impacts

Prokaryotes are essential to humans for numerous rea-
sons (Figure 1). As a matter of fact, microorganisms 
outnumber human cells by tenfold and are crucial in 
food degradation, nutrient absorption, or defense 
against pathogens (Venkova et  al. 2018). Prokaryotes 
also play a significant role in symbiosis with plants by 
providing nutrients as well as growth hormones (Backer 
et  al. 2018). They also degrade organic matter and con-
tribute to biogeochemical cycles (Madsen 2011). 
Moreover, prokaryotes are central in numerous bio-
technological applications (Caplice and Fitzgerald 1999; 
Demain and Sanchez 2009; Akinsemolu 2018). In that 
context, research focus on the chronobiology (i.e. the 
study of the temporal biology of organisms) of pro-
karyotes in natural and artificial environments would 
provide important translational opportunities in the 
medical, ecological, and industrial fields, which could 
promote and maintain our health and well-being.

The human clock scales with environmental 
changes and affects the behaviour including timing 
and type of food intake (Figure 1) (Matenchuk et  al. 
2020). Consequently, the gut microbiome experiences 
daily oscillations leading to taxonomic, functional, 
and spatial variations inducing local and systemic 
effects on the host (Deaver et  al. 2018; Wu et  al. 
2018; Godinho-Silva et  al. 2019; Nobs et  al. 2019; 
Saran et  al. 2020). Although it is unknown if the gut 
microbiota possesses an endogenous circadian clock, 
there is growing evidence supporting the intercon-
nection between the host’s and the microbiota’s cir-
cadian rhythms, their impact on host physiology, and 
their association with diseases such as diabetes 
(Thaiss et  al. 2014; Kaczmarek et  al. 2017; Kim et  al. 
2019; Choi et  al. 2021; Heinemann et  al. 2021). 
Furthermore, circadian rhythms of host immunity are 
interlinked to bacterial and viral infections (Curtis 
et  al. 2014; Pearson et  al. 2021). With the prevalence 
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of antibiotic-resistance bacteria threatening global 
health, food security, and development, chronother-
apy (i.e. time-specific therapy) capitalising on the cir-
cadian rhythms of both the host and the infectious 
agents could lead to a more efficient treatment strat-
egy (Pearson et  al. 2021). Similarly, plant’s physiology 
is regulated by the circadian clock, which likely gen-
erates a rhythmic environment for the root-associated 
microorganisms (i.e. the rhizobacteria). The rhizobac-
teria feed on root exudates and, in exchange, provide 
great benefits such as plant growth promotion, nutri-
ent accessibility (e.g. nitrogen fixation), or protection 
from predators and phytopathogens (Figure 1) (Gould 
et  al. 2018; Hubbard et  al. 2018; Lu et  al. 2021). In 
that context, the root-colonizing bacteria could use 
circadian programs to coordinate their metabolism 
with rhythms of the host to maximise the advantage 
of the bidirectional interaction (Asif et  al. 2019). Plant 
growth-promoting rhizobacteria are of high eco-
nomic importance and are commercialised to improve 
biomass production and quality of numerous crops 

(Saharan and Nehra 2011). Therefore, deciphering the 
time-controlled interaction between rhizobacteria 
and plants could be a promising source of valuable 
discoveries that can have immediate applications  
in the sustainable agriculture field (Maddur 
Puttaswamy 2019).

Chronobiology research focussing on anoxygenic 
photosynthetic organisms (purple and green (non)-sul-
phur bacteria), sulphate-reducing bacteria, methano-
genic Archaea, or methanotrophs also represent 
interesting applications for both fields of ecology and 
microbiology-based industries (Figure 1). Anoxygenic 
photosynthetic bacteria are often encountered in 
microbial mats where they interact with Cyanobacteria 
that possess a well-defined circadian clock 
(Prieto-Barajas et  al. 2018). As they can use light as an 
energy source, anoxygenic photosynthetic bacteria 
would greatly benefit from a time-keeping mechanism 
that would allow them to synchronise with a both 
biotic and abiotic external signals oscillating daily 
(Hörnlein et  al. 2020). Because of microbial mat 

Figure 1. S chematic representation of chronobiology-based applications of Prokaryotes. The metabolism of humans and plants is 
controlled by a circadian clock that impacts their commensal microbial communities. In return, the microbiome fluctuates in terms 
of taxonomy, functioning and localisation, which influences their host’s physiology. A better understanding on potential time-keeping 
mechanisms in the microorganisms associated with plants and animals will allow more accurate models and open new perspec-
tives on optimising these relationships. In addition, the industrial and technological fields would benefit from the integration of 
the natural rhythmic physiology of Prokaryotes into utilisation and manufacturing processes.
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communities displaying a highly versatile metabolism 
that allows them to use a broad range of substrate, 
there is considerable interest in industrial uses of mats, 
especially for water treatment and for cleaning up pol-
lution (Abed et al. 2020; George et al. 2020). Deciphering 
the response to diel changes in methanogenic archaeal, 
methanotrophic bacterial and sulphate reducing bacte-
rial communities is crucial as they are deeply involved 
in methane and sulphur cycles. Methane is the second 
most important greenhouse gas on Earth and metha-
nogenic archaea produce about 70% through the 
methanogenesis process (Conrad 2009). Therefore, 
time-specific models of these microorganisms in their 
natural (e.g. microbial mats) or artificial environments 
(e.g. wastewater treatment plants) could provide 
insights to better understand their ecological functions 
and allow optimisation of resource management (Wang 
et  al. 2017; Enzmann et  al. 2018). Finally, Prokaryotes 
are widely used in biocompounds production, biore-
mediation, or treatment of organic and industrial 
wastes (Figure 1) (Abdel-Aziz et  al. 2017; Alizadeh-Sani 
et  al. 2018; Kallscheuer et  al. 2019). More insights into 
their rhythmic physiologies would allow the integra-
tion of their temporal programs into industrial pro-
cesses, which could induce metabolic adjustments and 
lead to improved qualitative and quantitative produc-
tion (Sartor et  al. 2019).

The circadian systems in Prokaryotes: the 
clock versus the hourglass

Prior to mid-1980, Prokaryotes were thought to have 
neither the resource nor the need to possess circadian 
systems. As many bacteria can divide several times 
over a 24h-cycle, it was believed that cellular functions 
would not be coupled to a biological clock. This 
dogma, known as the “circadian-infradian” rule, was 
refuted in 1986 when Huang and colleagues discov-
ered circadian rhythmicity of nitrogen fixation and 
amino acid uptake in the cyanobacteria Synechococcus 
sp. RF-1 (Huang et  al. 1990; Chen et  al. 1991). 
Subsequently, Synechococcus elongatus PCC 7942 
emerged as the model organism for studying the 
mechanism of the clock using luciferase reporter assay 
(Kondo et  al. 1993). The cyanobacterial circadian clock 
uses a three-protein KaiABC system that forms a core 
oscillator that determines diel patterns of gene expres-
sion involved in cell division, and metabolic switches 
(Figure 2) (Mori et al. 1996; Dong et al. 2010; Pattanayek 
et  al. 2014; Puszynska and O’Shea 2017). In contrast to 
the circadian clockwork in Eukaryotes, which is based 
on a series of interlocking transcriptional-translational 
feedback loops, the cyanobacterial circadian clock is 

simpler and mainly relies on the KaiC phosphorylation 
cycle (Figure 2).

Throughout the course of day and night, KaiC, the 
central clock component, synchronises with environ-
mental signals and undergoes a phosphorylation and 
dephosphorylation cycle (Figure 2) (Nishiwaki et  al. 
2000, 2004; Nishiwaki and Kondo 2012). At dawn, 
unphosphorylated KaiC has a loose and unstacked 
structure, exposing A-Loops where KaiA can bind as the 
morning progresses (Kim et  al. 2008). Throughout the 
day, KaiA stimulates KaiC autokinase activity and thus, 
threonine and serine become phosphorylated. By dusk, 
both threonine and serine residues of KaiC are fully 
phosphorylated and KaiC becomes stiff and stacked, 
which hides the binding site for KaiA and exposes a 
B-Loop that constitutes a binding site for KaiB. KaiB 
undergoes a fold-switching between its free versus 
KaiC-bound forms (Figure 2). In its free state, KaiB oligo-
merizes to constitute a tetramer, while in its KaiC-bound 
form, KaiB is in a fold-switched state which results in 
major structural reorganisation (Chang et  al. 2015). As 
the night progresses, KaiA can no longer bind to KaiC 
and get sequestered by KaiB, subsequently activating 
the KaiC autophosphatase (Kitayama et  al. 2003; Chang 
et  al. 2012; Tseng et  al. 2014). The dephosphorylated 
threonine and serine residues induce KaiC to return to 
its unphosphorylated state with exposed A-loops 
(Nishiwaki and Kondo 2012). The Kai oscillator interacts 
with circadian output components that subsequently 
controls physiological processes, such as photosynthe-
sis, glycogen metabolism, and cell division. In S. elonga-
tus, these output components include the histidine 
kinase SasA, its cognate response regulator RpaA, and 
the phosphatase CikA (Iwasaki et  al. 2000; Takai et  al. 
2006). During the day, SasA binds to the phosphory-
lated KaiC protein, induces its autophosphorylation and 
transfers its phosphate group to RpaA, which induces 
phosphorylated RpaA to accumulate (Iwasaki et  al. 
2000; Takai et  al. 2006). At dusk, KaiB competes with 
SasA for binding with KaiC and, as the night progresses, 
KaiB sequesters KaiA and attracts CikA (Tseng et  al. 
2014). CikA binds to the KaiBC, thus forming a complex 
that acts as a phosphatase that dephosphorylates RpaA 
(Chang et  al. 2015). By the end of the night, the RpaA 
phosphorylation level is very low. Therefore, the interac-
tion of SasA and CikA with the Kai oscillator creates a 
phosphorylation cycle of RpaA that peaks at dusk 
(Markson et  al. 2013). In its phosphorylated form, RpaA 
acts as a transcription factor that activates the tran-
scription of KaiBC genes and Class I genes and represses 
Class II genes (Markson et  al. 2013). On the other hand, 
non-phosphorylated RpaA activates Class II genes  
and represses Class I genes. RpaB inhibits RpaA 
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phosphorylation and represses KaiBC and Class I genes 
(Kappell and Waasbergen 2007; Espinosa et  al. 2015). 
Remarkably, self-sustainable temperature-compensated 
circadian oscillations of KaiC phosphorylation can be 
reconstituted in vitro by supplying ATP to the three 
purified Kai proteins in a test tube (Nakajima et  al. 
2005). Although, KaiC phosphorylation cycle persists in 
absence of transcription and translation, the transcrip-
tion and translation feedback loop increases the robust-
ness of the cyanobacterial clock (Johnson et  al. 2008).

Interestingly, the KaiABC clock mechanism of S. 
elongatus PCC 7942 is not generalised in Cyanobacteria. 
Indeed, the globally distributed marine Prochlorococcus 
harbours a simplified clock mechanism that lacks KaiA 
and where KaiC compensates with an enhanced 

autophosphorylation activity (Figure 2) (Axmann et  al. 
2009). In addition, Prochlorococcus marinus MED4 is 
missing the output component CikA. The clock depends 
on the KaiBC complex formation, which allows SasA to 
bind with KaiB and induces RpaA phosphorylation 
(Axmann et  al. 2009). Phosphorylated RpaA binds to 
the KaiBC promoter and regulates its transcription, 
which controls the clock expression. Although the 
reduced KaiBC-system in Prochlorococcus provides 
genome-wide expression rhythms (Zinser et  al. 2009), 
it differs from the circadian clock of S. elongatus in that 
it cannot maintain oscillation in the absence of exter-
nal signals (Holtzendorff et  al. 2008). Therefore, the 
Prochlorococcus clock rather works as an hourglass, 
requiring daily signals to reset the cycle (Mullineaux 

Figure 2.  Circadian clocks in Cyanobacteria. (a) Schematic representation of the two circadian clock systems in the Synechococcus 
elongatus PCC 7942 and Prochlorococcus marinus MED4 models. The phosphorylation/dephosphorylation cycle of KaiC is repre-
sented with the different key components of the output pathway that subsequently control the gene expression. The proteins KaiA 
and CikA, labelled in grey, are missing from the Prochlorococcus clock model. (b) Difference between the stability of oscillation 
provided by a free-running clock in S. elongatus and an hourglass-like timer in P. marinus in the absence of light/dark cycle.



6 A. GÉRON ET AL.

and Stanewsky 2009). Prochlorococcus could benefit 
from the reduced KaiBC-system in its habitat – the 
near-equatorial oceans – where a free-running clock 
may not be essential because of the high regularity of 
diel conditions (Axmann et  al. 2009). In contrast, 
Synechococcus elongatus is found at higher longitude, 
where the seasonality and environment can often dis-
turb the regularity of the signals which could make a 
clock system with stable rhythm indispensable. This 
hypothesis is reinforced by recent numerical simula-
tions using a stochastic modelling approach that 
showed that an hourglass-like system outperforms a 
free-running clock in small organisms evolving in sta-
ble environment, which is the case of Prochlorococcus 
that is smaller by an order of magnitude than 
Synechococcus (Chew et  al. 2018). The evolution of 
clock systems in Cyanobacteria could expand our per-
spective away from the specific free-running clock sys-
tem of Synechococcus elongatus and lead us to focus 
more on environmentally driven time-keeping systems 
in Prokaryotes (Chew et  al. 2018).

Evolution and distribution of the Kai proteins

Computational analyses helped to unravel the origins 
and the evolutionary paths of the Kai proteins within 
Prokaryotes (Dvornyk et  al. 2003; Loza-Correa et  al. 
2010; Schmelling et  al. 2017). Using the Kai protein 
sequences from Synechococcus elongatus PCC 7942 as 
a template for sequence alignment-based discovery, 
bioinformatical analyses revealed that the Kai proteins 
are not restricted to Cyanobacteria but instead are 
rather widespread in Prokaryotes. From an evolutionary 
perspective, KaiC is the oldest Kai protein, and its 
homologs are found in both archaea and bacteria 
(Figure 3). Dvornyk and co-workers suggested that the 
predecessor of KaiC (pKaiC) was present in the Last 
Universal Common Ancestor (LUCA) about 3800 million 
years ago (Mya) (Dvornyk et  al. 2003). During the next 
300 Mya, pKaiC duplicated and subsequently fusion to 
form a double-domain structure that is essential for 
the functioning of the circadian oscillation. The origin 
of KaiB is estimated between ~ 3500 and 2320 Mya, 
which coincides to the beginning of “the age of 
Cyanobacteria.” When Cyanobacteria started to produce 
oxygen and thus replaced the reducing geochemical 
environment on Earth, biological clocks could have 
stated significant adaptative advantages as they pro-
vide anticipative control on a wide variety of vital met-
abolic cycles (Dvornyk et  al. 2003). KaiA, however, the 
youngest evolutionarily component of the free-running 
cyanobacterial pacemaker, occurs in Cyanobacteria 
about 1000 Mya.

In this review, we used a bioinformatic approach to 
search for all the prokaryotic KaiA, KaiB and KaiC pro-
tein sequences and update the list of archaeal and 
bacterial species harbouring Kai homologs. In combi-
nation with the increasing number of sequence data, 
reaching more than 200,000 bacterial and archaeal 
complete or draft genomes in 2020 (Zhang et al. 2020), 
we identified Kai protein homologs in 186 archaeal 
and 2824 bacterial species/strains among the protein 
sequences available on UniProt in December 2020 
(Table 1). Briefly, we retrieved all known KaiA, KaiB and 
KaiC protein sequences from UniProt, which resulted in 
114, 695 and 1531 protein sequences, respectively. 
Then, we performed sequence clustering with CD-HIT 
v. 4.8.1 (Fu et  al. 2012) for KaiA, KaiB and KaiC 
sequences (cutoff = 70%) obtaining 31, 105, and 420 
protein sequence clusters, respectively. We determined 
the most representative sequences for all clusters using 
Diamond v. 2.0.4 (Buchfink et  al. 2015) (coverage > 
80%, e-value < 1e-5) and subsequently queried them 
against the entire UniProt database. We obtained 375, 
166,266 and 90,852 sequences. After the removal of 
duplicate sequences, an InterProScan Pfam search v. 
5.47–82.0 was performed on all non-redundant KaiA, 
KaiB and KaiC protein homolog sequences. Only the 
protein sequences containing the kai functional pro-
tein family patterns (KaiA: PF07688, KaiB: PF07689, 
KaiC: PF06745) and registered as a circadian clock com-
ponent (protein name) were kept for downstream anal-
ysis. This resulted in 374 KaiA, 1,127 KaiB and 4,282 
KaiC protein homolog sequences, distributed across 
374, 1,127, and 2,825 unique species, respectively.

Although Kai protein homologs are present in a 
broad diversity of prokaryotic phyla, they are not dis-
tributed equally (Table 1). KaiC, the most essential and 
the oldest of the three Kai proteins is found in its 
functional double-domain version in 184 and 2621 
archaea and bacteria species, respectively. KaiB is 
observed in 24 archaeal and 1103 bacterial species. 
KaiA is almost exclusively present in Cyanobacteria 
(373 species), and in one representative of 
Planctomycetes and Acidobacteria. Interestingly, KaiBC 
is represented in 22 and 677 species of archaea and 
bacteria, respectively (Figure 3). In Archaea, KaiBC car-
riers are almost exclusively Euryarchaeota, while in 
bacteria, they are distributed across 21 phyla which 
included both photosynthetic and non-photosynthetic 
microorganisms. Given the fact that a functional KaiBC 
timer exist in Prochlorococcus, it could be speculated 
that similar time-keeping mechanisms may be wide-
spread in Prokaryotes. While KaiABC was thought to 
be exclusively present in Cyanobacteria, the fact that 
KaiA homologs were detected in Planctomycetes and 
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Actinobacteria worth further analyses. Sequence simi-
larity analysis using Clustal 2.1 revealed that both 
sequences share almost 70% of similarity but only 
about 40% with the S. elongatus version of KaiA. These 
findings suggest that new KaiABC-like clock oscillator 
might exist beyond Cyanobacteria.

Towards the discovery of new prokaryotic 
clock systems

Over the past decades, studies revealed diel rhythmic 
activities beyond the well-studied Cyanobacteria among 

other prokaryotes such as extremophilic archaea, anox-
ygenic photosynthetic and heterotrophic bacteria. 
Here, we summarise the key findings and, based on 
our updated bioinformatical analyses of the screening 
of the Kai proteins, we open new perspectives on pro-
karyotic time-keeping mechanisms. These candidates 
include anoxygenic photosynthetic bacteria, methano-
trophic bacteria, methanogen archaea, sulphate- 
reducing bacteria, and diverse plant- and animal- 
associated bacteria (Figure 4).

We identify a total of 69 species of anoxygenic 
photosynthetic bacteria that possess KaiBC homolog 
proteins (Figure 4). Community-wide diel rhythms in 

Figure 3. S chematic view of the distribution of Kai protein homologs in Prokaryotes. (a) Kai evolutionary events were adapted 
from Dvornyk et  al. (2003). (b) Tree branches and Kai evolutionary paths are not on scale and do not reflect the evolution of kai 
genes in Prokaryotes but illustrate the distribution of current Kai protein homologs carriers in Archaea and Bacteria. The number 
of unique species carrying KaiC homologs alone or with KaiB and/or KaiA are represented for archaea, and bacteria. For clarity 
purpose, bacterial phyla were not display with the exception of Cyanobacteria.
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anoxygenic photosynthetic bacterial communities 
were reported in numerous environmental studies and 
showed diel patterns in metabolic activity, diversity, or 
spatio-temporal distribution (Van Gemerden et  al. 
1985; Garcia-Pichel et  al. 1994; Fourçans et  al. 2006; 
Fecskeová et  al. 2019; Piwosz et  al. 2020). Though little 
experimental evidence at species level is available, diel 
rhythmic activity was observed in three anoxygenic 
photosynthetic purple bacteria: Rhodobacter sphaeroi-
des (Min et  al. 2005), Rhodospirillum rubrum (Van Praag 
et  al. 2000), and Rhodopseudomonas palustris (Ma 
et  al. 2016). In a 24 h-cyclic environment, 
Rhodopseudomonas exhibits KaiC-dependent fitness 
enhancement in rhythmic environments but not under 
constant conditions (Ma et  al. 2016). Although the 
rhythms evidenced in these purple bacteria do not 
strictly meet all the criteria of a bona fide circadian 
clock, it was suggested that Rhodopseudomonas palus-
tris could harbour an ancestral endogenous circadian 
program, based on a KaiBC oscillator, that would 
include some of the canonical properties of the circa-
dian clocks (Ma et  al. 2016). We suggest further inves-
tigation based on our bioinformatic analysis in the 
purple-sulphur bacteria Chromatiaceae, the purple 

non-sulphur bacteria Comamonadaceae, and the green 
non-sulphur phototrophic Chloroflexi families, as they 
include several species harbouring the KaiBC protein 
homologs and were previously associated with diel 
dynamics in their natural environment (Van Gemerden 
et  al. 1985; Klatt et  al. 2013; Shahraki et  al. 2021).

The circadian cycle was previously investigated in 
extremophilic archaea and revealed rhythmic activity 
and a potential clock mechanism based on the Kai 
proteins. For instance, the halophilic genus 
Halobacterium exhibit light-dark entrained daily tran-
scription but not sustained oscillations under constant 
conditions (Whitehead et  al. 2009). It was hypothesised 
that simpler timing system solely driven by KaiC could 
exist in the halophilic Haloferax volcanii (Maniscalco 
et  al. 2014). Moreover, phosphorylation assays with 
KaiC homologs of the hyperthermophilic Thermococcus 
litoralis and Pyrococcus horikoshii have shown a con-
served kinase activity (Schmelling et  al. 2017). Here, we 
significantly broadened the list of potential 
clock-controlled archaea as we evidenced KaiBC homo-
log proteins in 22 species of methanogen archaea and 
two capable of denitrifying anaerobic methane oxida-
tion (DAMO) (Figure 4). We also observed eighteen 
sulphate-reducing bacteria species/strains carrying 
KaiBC homolog proteins (Figure 4). Methanogenic 
archaea and sulphate reducing bacteria are worthy of 
attention as they were previously associated with diel 
rhythmic activity in their natural environment, where 
they play an important role in methane and sulphur 
cycles (Jørgensen 1994; Steppe and Paerl 2002; 
Fourçans et  al. 2006; Louyakis et  al. 2017). An environ-
mental metatranscriptomic study revealed that metha-
nogenesis transcripts from methylotrophic methanogen 
archaea exhibited diel oscillations in thrombolite 
(Louyakis et  al. 2017). In addition, diurnal oscillations 
of methane production were reported in diverse wet-
lands such as fens, mire, or peat bog where they are 
often associated with sulphate reducing bacteria 
(Mikkelä et  al. 1995; Henneberger et  al. 2017).

Deciphering how prokaryotes and eukaryotes are 
temporally embedded is crucial in the transition 
towards more holistic and sustainable medical and 
agricultural models. In this review, we evidenced 29 
plant growth-promoting rhizobacteria that harbour 
KaiBC protein homologs (Figure 4). These bacteria were 
mainly represented by the genera Bradyrhizobium and 
Rhizobium. Both are essential to leguminous plants as 
they form nodules on their root hair and perform 
nitrogen fixation, which further promote plant devel-
opment (Sessitsch et  al. 2002). The circadian clock was 
shown to alter up to 30% of the plant transcriptome 
including diel carbon fluxes (Michael et  al. 2008). 

Table 1. T axonomic distribution of KaiA, KaiB, and KaiC protein 
homologs in Archaea and Bacteria at phylum level.

KaiA KaiB KaiC

Archaea
Euryarchaeota 23 160
Crenarchaeota 2
Thaumarchaeota 1
Unclassified/Candidatus 1 21
Bacteria
Abditibacteriota 1
Acidobacteria 8 21
Actinobacteria 1 42 67
Aquificae 2
Armatimonadetes 1 3
Bacteroidetes 209 214
Calditrichaeota 3 2
Chlamydiae 1
Chlorobi 2 2
Chloroflexi 17 23
Cyanobacteria 373 427 450
Deinococcus-Thermus 1
Elusimicrobia 4 2
Firmicutes 4 37
Gemmatimonadetes 3 5
Ignavibacteriae 1 11
Lentisphaerae 2 2
Nitrospinae 2 1
Nitrospirae 8 9
Planctomycetes 1 31 66
Proteobacteria 297 1666
Spirochaetes 4 3
Synergistetes 1
Thermodesulfobacteria 1
Verrucomicrobia 17 24
Unclassified/Candidatus 18 29

The numbers represent the unique species where at least one copy of 
one homolog was observed. For KaiC, only the protein homologs with 
at least two KaiC functional domains were considered.
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Consequently, the plant diel rhythmicity influences the 
rhizosphere community structure and function (Staley 
et  al. 2017; Hubbard et  al. 2018). Unravelling how rhi-
zobacteria anticipate diel variations promoted by plant 
physiology would be of agroecological interest as the 
plant fitness and biomass strongly rely on optimal 
plant/rhizobacteria bidirectional interactions 
(Pérez-Jaramillo et  al. 2016; Hubbard et  al. 2018). 
Although there is so far no evidence of rhythmic activ-
ity of rhizobacteria, the soil bacteria Bacillus subtilis 
was shown to display temperature-compensated 
free-running ~ 24h oscillations upon release to con-
stant dark and temperature conditions (Eelderink-Chen 
et  al. 2021). Interestingly, this bacterial species does 
not harbour any Kai protein homologs. Similarly, the 
gastrointestinal bacterium Klebsiella aerogenes dis-
played an endogenously generated, temperature- 
compensated circadian rhythm in swarming motility 
(Paulose et  al. 2019). Thus, it remains essential to 

elucidate if the other prokaryotes associated with ani-
mal and plants displayed circadian rhythms would rely 
on the Kai-based system. Alternatively, it is worth not-
ing that other molecules are strong candidates for cir-
cadian pacemaker: peroxiredoxin proteins are found in 
almost all organisms and have circadian rhythms of 
their redox state persisting even in the absence of 
clock rhythmicity in photosynthetic organisms such as 
Cyanobacteria (Edgar et  al. 2012).

Conclusion

Life experiences diel cycles since its earliest stages 
and time-keeping mechanisms emerged as one of 
the most outstanding adaptations to these perpetual 
environmental fluctuations. Although only few bac-
terial species are known to possess an effective 
molecular circadian clock, evidence of widespread 
prokaryotic timing system accumulates. These new 

Figure 4. T axonomic distribution of KaiBC carriers at family level: (a) anoxygenic photosynthetic green and purple bacteria (S: 
sulphur bacteria, NS: non-sulphur bacteria), (b) methanotrophic bacteria and methanotroph archaea, (c) sulphate reducing bacteria, 
(d) plant-growth promoting bacteria (PGPRs). The numbers represent the unique species where KaiB and KaiC homologs were 
observed.
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clocks might share the canonical properties of circa-
dian clock or rather work differently depending on 
the evolutionary path, the internal properties of the 
microorganisms, or the specificities of their environ-
ment. Prokaryotes are often embedded in complex 
communities and mutually dependent on 
well-defined clock-controlled organisms. Therefore, 
future chronobiology studies should carefully design 
their experiments when using new clock candidates 
as growth conditions likely shape the time-keeping 
mechanisms.
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