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Complex mineral structures are produced by many microalgal

species. Pioneering work on diatom silica has demonstrated

the potential of such structures in nanotechnology. The

calcified scales of coccolithophores (coccoliths) have received

less attention, but the large diversity of architectures make

coccoliths attractive as parts for nano-devices. Currently

coccolith calcite can be modified by the incorporation of metal

ions or adsorption of enzymes to the surface, but genetic

modification of coccolithophores may permit the production of

coccoliths with customized architectures and surface

properties. Further work on the laboratory cultivation of diverse

species, the physiochemical properties of coccoliths and on

genetic tools for coccolithophores will be necessary to realize

the full potential of coccoliths in nanotechnology.
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Introduction
Unicellular algae have been much lauded as environmen-

tally friendly production systems for organic molecules

including lipids for use in biofuels, therapeutic proteins

and bioactive small molecules [1]. In contrast, much less

attention has been paid to the biotechnological potential

of inorganic minerals produced by algae. This is surprising

as intricate mineralized structures with complex 3D ar-

chitectures and nanoscale patterns are prominent features

of many groups within the Ochrophyta (Figure 1). For

instance, members of the Synurophyceae, Chrysophyceae,

and the Palmales produce silica scales, while the Dictyo-

chophyceae (Silicoflagellates) and Bacillariophyceae (dia-

toms) produce complex silica (SiO2) skeletons [2]. Within

the Haptophyta, coccolithophorid algae produce intricate

scales made of calcite (CaCO3) called coccoliths [3��].
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Diatom silica and coccolithophore calcite are available in

abundance in diatomite and chalk deposits respectively

and so have found a range of uses including silica supports

for catalysis and calcite filler in paint formulations. The

use of algal biominerals in nanotechnology however is a

much more recent development. Work in this field has

focused on diatom silica, which has a large surface area

and is readily functionalized, leading to potential applica-

tions as an enzyme immobilisation substrate, as opto-

electronic components and drug delivery vehicles. Some

excellent reviews have been published summarising the

work on diatom silica, to which we refer the reader for

further information [4–8].

The large diversity of coccolith architectures found in

nature (Figure 2), and the fact that synthetic minerals of

similar complexity cannot yet be reproducibly fabricated

at this scale, makes them attractive for various applica-

tions in nanotechnology. A key advantage of at least some

coccolithophore species is that coccoliths are not essential

for cell growth and survival in culture, as is evidenced by

the many strains that have lost the ability to calcify [3��,9].
Thus, the bioengineer wishing to manipulate coccolith

form will be less constrained than when working with

diatom silica which appears to be essential for cell sur-

vival. The flexibility of the calcification machinery is well

illustrated by members of the genus Scyphosphaera which

produce two distinct coccolith morphologies on the same

cell (Figure 2d) [10,11].

This review will focus on the potential of coccolitho-

phores as a source of mineralized materials for nanotech-

nology. After a brief summary of the process of cocco-

lithogenesis we will discuss the properties of coccoliths

which make them suitable as components in nano-devices

and micro-devices. We will then outline methods by which

coccoliths could be modified and functionalized and

discuss the practicalities of coccolith production before

highlighting the challenges and opportunities ahead.

Coccolithogenesis
There are two main types of coccolith. Heterococcoliths

are produced by diploid cells, and are made of calcite

crystals with complex shapes (Figure 2h, inset). The

calcite crystals nucleate intracellularly on an organic

baseplate within a specialised vesicle, in which they

develop to their final morphologies before being secreted

to the cell surface and incorporated in the shell of cocco-

liths surrounding the cells, called the coccosphere [10].

The coccoliths are loosely connected to the cell surface
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Figure 1
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Schematic showing the phylogenetic relationships of phytoplanktonic (colored) and other eukaryotic taxa (black). Phytoplankton groups producing

silica based biominerals are colored in orange and those producing calcium carbonate in violet. The Haptophytes include calcifying species

(coccolithophores), a silicifying species (*) [12], and non-mineralizing species. The phylogenetic tree was adapted from [13] with permission.
and are probably held together by sticky macromolecules

and, in some species, through interlocking of the cocco-

liths [14,15]. In many species it has been found that

coccoliths are coated with an acidic polysaccharide which

may be involved in calcium delivery [16,17] or crystal

growth and morphogenesis [18] and which partially pro-

tects the coccoliths from dissolution [19].

The second type of coccolith are produced by the haploid

phase of some, but not all, coccolithophore species and

are known as holococcoliths. The crystals comprising

holococcoliths are typically smaller than those in hetero-

coccoliths and have simple shapes (Figure 2c). They

appear to be formed extracellularly, but within an outer

organic layer [20]. For both holo- and heterococcoliths,

the molecular detail of how crystal nucleation and growth

is so tightly controlled remains elusive.

Coccoliths as parts for micro-devices and
nano-devices
Devices constructed on sub-micron scales are expected to

be a transforming technology in a wide range of fields,

from environmental sensing to advanced electronics,

medical diagnostics and drug delivery. In the last decade

substantial progress has been made in the development of
Current Opinion in Biotechnology 2018, 49:57–63 
nanoacuators, which can power the movement of objects

at this scale [21–23]. However, inexpensive and flexible

methods to generate parts of micro-devices and nano-

devices in a high throughput manner are still lacking. For

example, the fabrication of nanopores is often carried out

by expensive and time-consuming focused ion beam

milling [24].

One field in which coccoliths have clear potential is

nanofluidics. When nanoscale pores and channels interact

with a fluid, physical phenomena which do not apply at

the microscale become relevant. For example, the surface

charge of a pore can govern the transport of selected ions

and asymmetric pore geometries and surface charges can

lead to a net flow of certain ions in one direction (ion

current rectification) [24]. Coccoliths with hollow funnel

and tubular shapes such as those of Discosphaera tubifera
(Figure 2g) and Rhabdosphaera clavigera [25] seem to be

particularly relevant to this area, as do coccoliths that have

nanoscale pores or slits such as those of Pontosphaera
japonica, Michaelsarsia elegans or the holococcoliths of

Calyptrolithophora papilifera (for pore sizes and coccolith

dimensions see [3��,11,26,27]) (Figure 2d, c, e). The high

pore density of the latter may also allow efficient encap-

sulation of selected molecules by suitable control of pore
www.sciencedirect.com



Coccoliths for nanotechnology Skeffington and Scheffel 59

Figure 2
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Electron micrographs showing the coccoliths of the extant coccolithophores (a) Calcidiscus leptoporus subsp. leptoporus, (b) Pontosphaera

japonica, (c) Calyptrolithophora papilifera, (d) Scyphosphaera porosa, (e) Michaelsarsia elegans, (f) Umbilicosphaera sibogae, (g) Discosphaera

tubifera, (h) Pleurochrysis carterae, and (i) Emiliania huxleyi. Panel c shows holococcoliths whereas the other panels show heterococcoliths. Inset

in c shows the hexagonal array packing of the simple-shaped crystallites in these holococcoliths. S. porosa (d) produces dimorphic coccospheres

with vase-like ‘lapodoliths’ (L) and oval casserole-like body coccoliths (*). Inset in g shows the narrow end of the trumpet-like spine. The spine is

hollow. Inset in h shows high-magnification image of the complex-shaped calcite crystals these coccoliths are composed of (reused from [37] with

permission). Images a–g are a courtesy of Jeremy Young, University College London, London, UK, and adapted from http://www.mikrotax.org/

Nannotax3/. Scale bars: 1 mm.
chemistry. The fact that coccolith calcite can be stable,

even in solutions highly undersaturated with respect to

calcite [19], combined with the inducible dissolution of

the calcite by modulation of pH, could be utilised in drug

delivery strategies.

The micro-scale features of coccoliths may also have

applications. For example the one to two micron diameter

eyelets of Umbilicosphaera sibogae [3��] could be used for

filtration if arrayed in a suitable support, while the cable-

reel type coccoliths of species such as Emiliania huxleyi
could conceivably be used to house low-nanoscale fibers,

such as the chitin fibrils produced by diatoms [28],

allowing them to be reeled out when required. Entire

coccospheres may also have applications as support struc-

tures within larger devices, since the coccospheres of

E. huxleyi have been shown to have an excellent strength

to weight ratio and damage tolerance [29].

Coccoliths have potential in applications relying on

manipulation of the properties of light. Calcite itself is

birefringent and can be used as a polarizer. Other optical

properties of coccoliths may emerge from their nano and

micro-scale structures. For example it is conceivable that
www.sciencedirect.com 
the somewhat lens shaped coccoliths of Calcidiscus lepto-
porus (Figure 2a) may focus light. The tight control that

coccolithophores display over of the crystallographic axes

of calcite [30��] is an advantage in that the optical prop-

erties of coccoliths can be expected to be reproducible

between individual coccoliths. Since arrays of nanopores

in diatom silica have been previously shown to effec-

tively focus a laser beam and to have photon trapping

properties [31,32], it is possible that coccoliths with

nanopore and slit patterns, such as those of M. elegans,
Scyphosphaera porosa and P. japonica (Figure 2e, d, b),

may have similar properties. However, the best studied

optical property of coccoliths is light-scattering. In one

study, E. huxleyi coccolith orientations were controlled in

a strong magnetic field [33] and thereby demonstrated to

have a high degree of light scattering anisotropy. Coc-

colith morphology and calcification state have also been

shown to modulate their scattering and birefringent

properties, in both experimental [34,35�] and theoretical

[36] studies.

Modifying and functionalizing coccoliths
The range of potential applications of coccoliths could be

vastly expanded by looking beyond the natural diversity
Current Opinion in Biotechnology 2018, 49:57–63
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of coccoliths. Our understanding of the pathways and

mechanisms of coccolith synthesis is becoming increas-

ingly sophisticated [16,38�,39�], and genetic tools [40�]
along with genomic and transcriptomic sequences [41,42]

are beginning to become available for some coccolitho-

phores, so we are approaching the stage where the

manipulation of coccolith morphology and the design

of custom architectures is imaginable.

A good understanding of the calcification process is a

prerequisite for the manipulation of coccolith shapes via

targeted genetic modification, but untargeted mutagene-

sis approaches may also allow us to alter coccolith

morphologies with substantially less knowledge of the

process. Marsh and co-workers have successfully isolated

chemically mutagenized clones of Pleurochrysis carterae
which produce coccoliths which are less mineralized than

those of wildtype cells [18]. One challenge for mutagen-

esis approaches is that screening for strains with altered

morphologies using electron microscopy is very laborious.

A further challenge is that heterococcolith-producing
Figure 3

(a)

1

2

Strategies for the functionalization of coccoliths. (a) In vivo functionalization

of the growth medium, cations (Mx+) and anions (Nx�) of interest may becom

used for producing Zn-doped and Sr-doped coccolith calcite [38�,45�]. Trac

calcite [44,46]. A similar approach is likely to work with cations transported 

rare earth metals (Lnx+), if non-toxic concentrations are used. After uptake i

coccolith vesicle or first into a storage compartment, such as the recently d

calcite formation [39�], and from there into the coccolith vesicle [38�]. (2) Ge

incorporation of proteins, e.g. enzymes, into coccoliths. Macromolecules ha

destined for coccolith incorporation may be delivered into the coccolith ves

associated with coccolith calcite. (b) In vitro functionalization of coccoliths. 

enzymes or antibodies could be either (3) covalently attached using establis

coccolith surface. The latter approach has already been used for the immob

free replicas of coccoliths may be produced by depositing other materials o

material may either react with the calcite to a new mineral phase or form a 

dissolution of the CaCO3 [52–54].
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cells are diploid and the likelihood that both copies of

a gene are simultaneously mutagenized is very small [43].

The absence of reliable methods to induce meiosis and

syngamy in coccolithophores preclues the use of classical

genetic techniques to generate homozygous strains. Holo-

coccolith morphology may be more susceptible to muta-

genesis approaches as holococcolith-producing cells are

haploid.

The modification of coccoliths, with the aim of modulat-

ing their properties, could be carried out in vivo or in vitro
(Figure 3). The most straightforward method of in vivo
modification is the incorporation of metal ions supplied

via the growth medium into coccoliths. The calcium

transport pathway from the external media to coccolith

vesicles is to some extent leaky to other ions, meaning

that Sr, Ba, B, and Zn present in the media can also be

incorporated into coccolith calcite [44,45�,46], which may

then affect the properties of the coccoliths. The incorpo-

ration of lanthanides, some of which have a similar ionic

radius to Ca2+, into the lattice of inorganic calcite has been
(b)

Current Opinion in Biotechnology

3

5

4

 of coccoliths. (1) Through manipulation of the elemental composition

e incorporated into coccolith calcite. This approach was successfully

es of barium and borate can be also incorporated into coccolith

through membranes by the same transport proteins as Ca2+, such as

nto the cell, the ions may either be transported directly into the

iscovered compartment that serves as calcium reservoir in coccolith

netic manipulation of coccolithophores is expected to allow the

ve been found occluded within coccolith calcite [55,56]. The proteins

icle together with the acidic polysaccharides known to be tightly

Taking advantage of the acidic polysaccharide coat of coccoliths,

hed crosslinking approaches, or (4) electrostatically adsorbed to the

ilisation of uricase and glucose oxidase on coccoliths [49]. (5) CaCO3

nto their surface by vapor or liquid phase techniques. The deposited

non-reactive layer that retains the shape of the coccolith after

www.sciencedirect.com
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demonstrated [47] so it may be possible to endow cocco-

liths with useful luminescent properties if lanthanides are

provided to coccolithophores and toxicity is not severe.

Coccoliths have high specific surface areas (19 m2 g�1 in

E. huxleyi [48]) for adsorption or attachment of other

molecules. For example, enzyme immobilisation to coc-

coliths or specific sites on coccoliths may also broaden the

range of their nanotechnological application. The charged

nature of calcite surfaces and the coccolith associated

polysaccharides mean that some enzymes will adsorb

electrostatically to coccoliths. This could be achieved

in vivo, via expression of a transgene whose product is

targeted to the coccolith vesicle, or in vitro by incubation

of the coccolith with the protein of interest. The former

approach may result in concomitant modulation of crystal

morphology, whereas the latter should not. One study

found that uricase and glucose oxidase could be adsorbed

to coccolith calcite to a greater degree than onto synthetic

calcite of the same mass [49], a fact that the authors

attributed the higher specific surface area of the coccolith

calcite. The use of peptide tags that have high affinity to

the coccolith associated polysaccharide or to particular

calcite facets may allow targeted and high affinity attach-

ment of enzymes to coccolith calcite.

Calcite has properties that may be undesirable for many

applications, such as dissolution at low pH, instability at

high temperatures and brittleness. Thus it would be

useful to be able to ‘convert’ coccolith calcite to other

minerals with different properties. This type of process

has been achieved with diatom silica, which has been

chemically converted to silicon/MgO composites that

maintain the structure of the diatom cell wall [50��].
Analogous approaches may be possible with coccoliths

since the chemical conversion of calcium carbonate to

CaTiO3, a promising material in microwave communica-

tion technologies, has been accomplished [51]. However,

it remains to be seen if coccolith morphologies could be

preserved through such processes. The potential of solid

state reactions in which a metal oxide is deposited on the

calcite surface and reacts with the calcite [52] should be

further explored. Another approach would be to use

coccoliths as sacrificial templates, whereby a new material

is deposited on the calcite before the calcite is dissolved,

leaving a new material with a morphology dependent on

the template. This approach has already been used with

calcium carbonate rods to produce hollow tubes of titania

[53] or silica [54].

Coccolith production for nanotechnology
Rates of coccolith production vary between species, but

can be as fast as one coccolith cell�1 hour�1 [57]. Cell

densities in laboratory cultures can easily reach more than

1 � 106 cells ml�1, so a relatively small culture volume

can be used to produce millions of individual coccolith-

based parts for nanotechnology per day.
www.sciencedirect.com 
Methods that allow coccoliths to be removed without

disrupting the cells will much simplify coccolith harvest-

ing and purification. Indeed, a continuous coccolith har-

vesting system has been developed for P. carterae, in

which optimised bubbling of the culture causes coccoliths

to detach from the cell surface which then sediment

through a nylon mesh too fine for the cells to pass through

[15]. This system has the added advantage that it stimu-

lates P. carterae cells to make more coccoliths, since this

species otherwise stops making coccoliths when its cocco-

sphere is complete [58]. Alternatives to bubbling for

coccolith removal include osmotic shock, which induces

Pleurochrysis species to shed their coccospheres [9,16]. If

an application were to require significant quantities of

coccoliths, then cheap, large scale culture systems would

be required. P. carterae has been successfully grown in

open outdoor raceway ponds, with calcium carbonate

yields of 5.5 tonnes ha�1 year�1 [59].

Challenges and perspectives
The potential of coccoliths in advanced applications is

clear, but the challenges remain substantial. To make use

of the natural diversity in coccolith morphology, cultiva-

tion systems must be developed for more species, as

presently only a limited number of species can be grown

to good densities in the laboratory [60]. In some cases this

may require more knowledge of biotic interactions in the

oceans and the development of co-culture systems with

other organisms. Further characterisation of the proper-

ties of coccoliths of different species will also be necessary

in order to present a ‘tool box’ of well understood cocco-

lith parts to nanotechnologists. In particular, detailed

studies on the mechanical and physiochemical properties

of coccoliths are currently lacking for almost all species,

with E. huxleyi being the only exception [29,48].

The development of methods for the orientation-specific

assembly of coccoliths into arrays may also lead to broader

range of applications. An example for the extension of the

application range is given by microlenses which in arrays

are used in directional displays and signal-routing con-

nectors [61]. Finally, to realise the full potential of coc-

coliths in nanotechnology robust methods for the genetic

manipulation of coccolithophores must be developed.

This will allow the in vivo exploration of hypotheses

relating to the pathways and mechanisms of calcification

and enable the synthesis of the first ‘custom coccoliths’.
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