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A B S T R A C T   

A reliable evaluation of biomass is a vital prerequisite for realizing the international goal of “emission peak and 
carbon neutrality”. It is critical to estimate the components of forest biomass, for ecosystem management. 
Additionally, working on components we may solve the saturation problems in AGB estimation using remote 
sensing features. In our previous works we proposed GA-SVR (Genetic algorithms and support vector regression) 
algorithm with polarimetric SAR (Synthetic Aperture Rader) to retrieve total forest Above Ground Biomass (AGB) 
estimation in our previous works, however, the potential of GA-SVR algorithm applied in component AGB 
estimation especially using combination of multi-frequency polarimetric SAR features deserves further explo
ration. In this study, we use quad-polarimetric SAR data at C- and L- bands, extracting the backscatter coefficients 
and polarimetric features derived from four polarization decomposition methods (Yamaguchi 3-component 
decomposition, Freeman 2-component decomposition, H/A/alpha decomposition, and TSVM decomposition) 
as the input to the GA-SVR for forest component AGB estimation. The effectiveness of 66 polarimetric features 
derived from C-, L-band at each test site was evaluated for forest component AGB prediction at two test sites. The 
outcomes demonstrated that the GA-SVR attained high estimation accuracy according to the values of coefficient 
of determination R2, root mean square error, relative root mean square error, mean deviation, mean absolute 
deviation, mean percentage error, and mean absolute percentage error. The highest attained values of them were 
0.77, 1.01 Mg/ha, 23.02%, − 0.07 Mg/ha, 0.71 Mg/ha, 0.15%, and 18.42%, respectively. The study reconfirmed 
the robustness of GA-SVR algorithm and effectiveness of polarimetric SAR features extracted from four 
decomposition methods for forest total and AGB estimation. It also revealed that the capability of combining C- 
band L-band SAR polarimetric features for improving forest total and component AGB relies on the difference of 
forest structures.   

1. Introduction 

Forest biomass is a crucial measure for determining how well forests 
can absorb carbon dioxide and identify potential carbon sinks. It is a 
crucial indicator of carbon sequestration as well (Hayashi et al., 2019). 
Moreover, knowledge of the biomass distribution at each component of 
the forest, such as dry wood, bark, branches, and leaves AGBs (Above 
Ground Biomass), is also significant for assessing the productivity of 
forest ecosystems and improving refinement of forest resource surveys, 

which in turn improve the efficiency of forest planning and management 
(Lambert et al., 2005; Tsui et al., 2012). Meanwhile, Global carbon sink 
monitoring is the key to achieve the goals of peak carbon emissions and 
carbon neutrality (‘Double Carbon’), and obtaining high-precision esti
mations of forest total and component AGB play a critical role to achieve 
the ‘Double Carbon’ goals. 

Remote sensing (RS) technology provides the capability to capture 
the distribution, structure, and dynamics of forest resources on the 
ground at various geographical scales quickly, precisely, and timely, 
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offering a strong scientific foundation for forest AGB monitoring (Astola 
et al., 2019; Gao et al., 2018; Zhao et al., 2016). RS is acknowledged as 
the only tool that can provide global spatially explicit estimates of forest 
AGB. Avitabile et al., (2016) proposed an approach to fuse maps with 
potential for combing individual AGB maps into a global map, such as 
GEO-CARBON map. However, this approach is insufficiently con
strained in regions where in situ or other reference datasets are 
unavailable. 

As different sensors ‘see’ different part of the forest, RS datasets 
involved in forest AGB retrieval include optical (multispectral, hyper
spectral, etc.) data (Brovkina et al., 2017; Gibbs et al., 2007), synthetic 
aperture radar (SAR) data (Cartus and Santoro, 2019; Englhart et al., 
2011; Hayashi et al., 2019), and light detection and ranging (LiDAR) 
data (Banskota et al., 2011; Tsui et al., 2012). Optical RS datasets are 
well suited to acquire forest top horizontal information like canopy 
cover, community type, etc. However, it suffers from an inability to 
penetrate through layers of vegetation to capture the vertical informa
tion of the forest. Meanwhile, accurate forest AGB retrieval depends on 
the availability of measures that capture both horizontal and vertical 
forest structure. Forest AGB retrieval using optical datasets have been 
demonstrated to saturated at relatively low AGB densities (Kellndorfer 
et al., 2004; Lu et al., 2016; Duncanson et al., 2022). LiDAR measures 
forest structure both in the horizontal dimension and vertical dimension 
and the Forest stand AGB derived from LiDAR has an accuracy similar to, 
or even better than ground measured values. However, the small area 
covered by airborne LiDAR sensor is a significant hindrance for large 
scale forest AGB inventories (Balzter et al.2007; Lu et al.,2016). 
Spaceborne LiDAR – ICESat GLAS-2 or GEDI is now available for 
regional- to global-scale applications, but it is impossible for direct wall- 
to-wall AGB mapping due to the spatially discrete characteristics (Lu 
et al.,2016; Xi et al.,2022; Duncanson et al.,2022). Moreover, both 
passive optical datasets or active Lidar datasets suffers dependence on 
weather conditions (not available during cloudy or rainy weather). 

In comparison, synthetic aperture radar (SAR) sensor with all- 
weather and wall-to-wall monitoring capability has been demon
strated great potential for forest AGB retrieval. SAR backscatter signal 
(Santoro et al., 2006; Santoro et al., 2009; Sandberg et al.,2011), 
polarimetric information via polarimetric SAR (PolSAR) technology 
(Garestier et al.,2009; Chowdhury et al.,2013), interferometric coher
ence and phase via interferometric SAR (InSAR) (Santoro et al., 2002), 
polarimetric interferometric SAR (PoInSAR) (Cloude and Papatha
nassiou, 1998, 2003; Cloude, 2009; Liao et al.,2019), and coherence 
tomography and polarization coherence tomography (TomoSAR) tech
nologies (Tebaldini, 2010; Tebaldini and Rocca, 2011; Yue et al., 2011; 
Blomberg et al.,2018; Cazcarra-Bes et al.,2017) were involved in forest 
AGB or forest height estimation. The effect of wavelength-dependent 
penetration depth into the forest scene is known to be large, and SAR 
sensors operating at long-wavelength like P-band have been proved to 
be more sensitive to forest AGB than at higher frequencies (X-, C-, S- and 
L-bands). Additionally, acquisitions displayed high temporal coherence 
between passes separated by several weeks and then allowing the use of 
InSAR, Pol-InSAR, and TomoSAR to estimate forest AGB by repeat- 
InSAR datasets. However, P-band SAR datasets are only available with 
airborne acquisition currently and limit their application in regional- 
and global-scale application. The urgent need for accurate forest AGB 
retrieval and the lack of any current space systems operating at P-band 
propelled the BIOMASS mission proposed by the European Space 
Agency (ESA) (Sandberg et al., 2011; Le Toan et al., 2011; Quegan et al., 
2019). Unfortunately, the BIOMASS mission will only acquire data over 
tropical and subtropical regions due to the International Telecommu
nication Union-Radiocommunications restrictions over North America 
and Europe. However, L-band spaceborne SAR data, having different 
sensitivities for forest structure and forest AGB lower than 100 Mg/ha 
(Yu and Saatchi, 2016) will have a new mission with freely available 
data, known as NASA-ISRO SAR (NISAR) is scheduled to be launched in 
2023 and works together with BIOMASS for global forest AGB mapping 

(Rosen et al., 2016; Yu and Saatchi, 2016). 
Although the SAR backscatter of C-, and X-band is limited to retrieval 

higher AGB values, several previous researches determined that the SAR 
signals operated at higher frequencies has higher AGB estimation ac
curacy with lower variance at low forest AGB area than that estimated 
by lower frequencies (Englhart et al., 2011; Ji et al., 2021; Zeng 
et al.,2022). They also demonstrated the potential of combining L-band 
with X-/C-band to improve forest AGB estimation accuracy (Englhart 
et al., 2011; Cartus et al., 2019) Meanwhile, Polarimetric SAR data at 
various frequencies was found to have a significant potential for 
assessing forest AGB because of its sensitivity to the geometric charac
teristics, shape, and direction of the scattering objects (Chowdhury 
et al., 2013; Le Toan et al., 1992; Luckman et al., 1997). Quad polari
metric SAR datasets comprising of HH, HV, VH, and VV polarization 
channels express the polarization state changes in the received micro
wave caused mainly by the forest scatters’ structures (Chowdhury et al., 
2013). The characterization of quad polarimetric images revealed their 
potential for improving forest AGB assessment. Forest AGB estimation 
has been significantly improved by using polarimetric coherence and 
polarimetric phase computed from quad polarimetric SAR data. Several 
polarimetric decomposition features have been proved having high 
correlation with forest height, forest stem volume, and forest AGB as 
well (Chowdhury et al., 2013; Ji et al., 2021; Zeng et al., 2022). 

Despite the fact that the work listed above demonstrated a huge 
potential of polarimetric features to encapsulate forest biophysical pa
rameters, fewer papers have yet looked into the use of a combination of 
C- and L-band polarimetric features to estimate forest AGB, particularly 
for component AGB (Ji et al., 2021; Tsui et al., 2012; Zeng et al., 2022). 
Noticeably, previous studies mostly considered polarimetric decompo
sition features extracted from Freeman-Durden 3 components decom
position, H/A/alpha decomposition, and Yamaguchi 4 components 
decomposition theories (Kobayashi et al., 2012; Chowdhury et al., 
2013). Despite the advancements made in forest AGB study utilizing 
these polarimetric features, less attention was been paid to polarimetric 
features extracted from other decompositions, such as arget scattering 
vector model (TSVM) (Chowdhury et al., 2013; Omar et al., 2017; Zeng 
et al., 2022). The combination of X- and L- band for AGB estimation in 
Kalimatan also confirmed the joint use of two frequencies SAR data 
resulting in estimation accuracy improvement (Englhart et al., 2011). 
The studies of Zeng et al. (2022) and Wei et al. (2020) explored the 
potential of polarimetric features extracted from Freeman-Durden 2 
components decomposition (Freeman2), Yamaguchi 3 components 
decomposition (Yamaguchi3), and TSVM for total or component AGB 
estimation. These features were found to outperform traditional polar
imetric features especially for canopy AGB retrieval. Since each fre
quency and polarization channel sense different aspects of forest 
structure, the use of multi-frequency polarimetric SAR allows us to 
monitor the dynamics of forest resources from multiple dimensions, 
raising the saturation point for the inversion of forest AGB. 

Designing a proper algorithm to create AGB estimation models is just 
as important in the task of forest AGB modeling as choosing the right RS 
data. In recent decades, nonparametric models like support vector 
regression (SVR), k-nearest neighbor (KNN), and random forest (RF) 
have been acknowledged and used often in forest AGB estimation 
(Englhart et al., 2011; Gao et al., 2018; Lu, 2006;). Among them, SVR 
became an important approach for both low and high forest AGB 
inversion, thanks to the capability of producing relatively high estima
tion accuracy by dealing with a relatively small training sample to solve 
both linear and nonlinear problems. Despite the SVR good performance 
of SVR, the accuracy of its estimation is greatly influenced by the opti
mization of the model’s input RS data and its model parameters (Santi 
et al., 2020; Gao et al., 2018; Ji et al., 2021). Ji et al. (2021) suggested a 
GA-SVR algorithm, which simultaneously optimizes the incoming RS 
features and model parameters, as a new solution for forest biomass 
estimation. It was reported that forest AGB retrieval accuracy could be 
improved when combining C-, L- band SAR data (Ji et al.,2021). 
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It is well known that forest AGB estimation is tree-species dependent, 
site-dependent, and forest structure-dependent, which also relates with 
saturation problems hindering the AGB retrieval. Polarimetric features, 
considering the structure characterizations like direction and shape of 

the scatterers in forest scenes may have the potential to select the 
characterizations which can reflect the different scattering mechanisms. 
This can be achieved by a suitable inversion algorithm for feature 
optimization and applied in forest component AGB estimation. The 

Table 1 
The Information of the Acquired SAR data.  

Test site Band Date Angle of incidence (◦) Range (m) Azimuth (m) Mode Sensor 

Yiliang C- 2018–05-18  39.1  2.248  5.120 QPSI GF-3 
L- 2016–04-22  33.9  2.86  3.21 HBQ PALSAR-2/ ALOS-2 

Genhe C- 2013–08-20  37.4  4.96  4.73 FQP RADARSAT-2 
L- 2014–08-29  36.52  2.86  2.64 HBQ PALSAR-2/ ALOS-2  

Fig. 1. Overview of the test sites.  

Fig. 2. SAR Images and filed collected samples of Yiliang test site, R = T22 = |Shh + Svv|
2 , G = T33 = |Shv|

2, and B = T11 = |Shh − Svv|
2, in the image are el

ements derived from the polarization coherence matrix T, respectively. 
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result from each component in forest scene can help researchers un
derstand the signal coming for polarimetric features. Considering the 
potential of GA-SVR applied in component forest AGB at different test 
sites with different AGB levels is not fully explored, This study has the 
following objectives: 1) To find the optimal forest total and component 
AGB prediction performance using polarimetric features extracted from 
H/A/alpha decomposition, Freeman2, Yamaguchi3, and TSVM at C-, L- 
band; 2) To examine the potential of GA-SVR algorithm under the di
versity of SAR data and test sites with different dominant tree species; 3) 
To test whether combination of C-, L- band SAR data can be used to 
improve forest total and component AGB estimation accuracy and 
saturation point. 

2. Test sites and data sets 

In this study we used data from two forest locations representing two 
important forest ecosystems: the boreal and subtropical with two very 
distinct dominating tree species and topographic features. Square sam
ple plots were inventoried for two test sites for building the model and 
validating the results. Table 1 lists the C- and L- bands polarimetric SAR 
datasets available at each test site. 

2.1. Yiliang test site 

Yiliang test site is located in the Xiaoshao branch (24◦39′~24◦54′N; 
103◦02′~103◦12′ E, Fig. 1 (a) of the Garden Forestry Farm in Yiliang 
County, Kunming City, Yunnan Province, Southwest of China. It repre
sents typical subtropical forest system in southwest of China. It is an 
ancient woodland with an average AGB of 60 Mg/ha and maximum AGB 
less than 200 Mg/ha. Coniferous tree species such as Huashan pines 
(Pinus armandii Franch) and Yunnan pines (Pinus yunnanensis) are 
dominant in the forest. Yiliang County has a subtropical-plateau 
mountain monsoon climate at low latitudes with average annual tem
peratures around 16.3℃ and average annual precipitation of 912.2 mm. 
The slope in the test site ranges from 0◦ to 30◦ and with an elevation 
ranging from 1300 to 2500 m above mean sea level. 

A scene of C- band Gaofen-3 (GF-3) quad-polarimetric image with 
Stripmap-1 mode and a scene of L-band full polarimetric ALOS-2 PAL
SAR-2 (Advanced Land Observing Satellite, Phase Array type L-band 
Synthetic Aperture Radar) data were collected at Yiliang test site for 
total and component forest AGB inversion. Fig. 2 (a) shows the GF-3 
Pauli RGB image of the May 2018 acquisition. In Fig. 2 (b), ALOS-2 
PALSAR-2 Pauli RGB acquired in April 2016 is shown and in Fig. 2 (c) 
the associate collected sample plot distribution is shown with Google 
Earth images as background. The coverage of Xiaoshao branch is indi
cated by the black boundary in Fig. 1 (c). Fig. 3 (a) shows the 

Fig. 3. The total and component forest AGB values (Mg/ha) of two test sites.  

Fig. 4. SAR Images and filed collected samples of Genhe test site.  
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distribution of total and component AGB values for Yiliang test site. 

2.2. Genhe test site 

Genhe Test site is located in the Genhe City and within the Genhe 
national scientific field observing station for forest ecosystem (50◦20′- 
52◦30′N; 120◦12-122◦55′E, Fig. 1 (b)). Genhe is located in the northeast 
of Hulunbuir League, Northeast of China. It is covered with a boreal 
forest with dominated coniferous tree species of Xing’an larch (Larix 
gmelinii) and white birch (Betula platyphylla). It is an ancient woodland 
with a mean forest AGB of 78 Mg/ha, maximum forest AGB is less than 
300 Mg/ha. The region has a cold temperate continental monsoon 
climate with an average annual temperature of − 5.4 ◦C and 450～500 
mm of annual precipitation. The elevation here ranges from 810 m to 
1116 m beyond mean sea level with more than 80% areas are with a 
15◦slope and a height difference less than 300 m. 

For this site, a scene of C- band Radarsat-2 image, a stripmap full 
polarimetric data obtained with a 37.4◦ incidence angle from a 
descending orbit in August 2013, and a scene of L-band ALOS-2 PAL
SAR-2 image, a High-Sensitive full polarimetric data obtained with a 
36.52◦ incidence angle from a descending orbit in August 2014, have 
been investigated. Fig. 4 (a) shows the Radarsat-2 Pauli RGB image. In 
Fig. 4 (b), ALOS-2 PALSAR-2 Pauli RGB is shown and in Fig. 4 (c) the 
associate 30 collected sample plots are shown with Google Earth images 
as background with yellow points. The area of Genhe station is indicated 
by the black boundary in Fig. 4 (c). 

A total of 30 30 m × 30 m square sample plots were investigated in 
2012. Zeng et al. (2022) provided thorough descriptions of these plots as 
well as plot measurements. Differential GPS was used to position and 
identify each plot. Diameter at breast height (DBH) that larger than 5 
cm, height, and species information were recorded. Fig. 3 (b) shows the 
distribution of total and component AGB values for Genhe test site. In 
this study, the time intervals between the field campaigns and SAR data 
acquisitions at two test sites were considered through the growth con
ditions of dominated tree species. The AGB changes resulted from the 
time intervals were compensated by growth pattern models of the cor
responding tree species introduced in Li et al. (1984), Zhang et al. 
(2008), and Wang et al. (2016). 

3. Methodology 

3.1. Measurement of field total and component forest AGB 

AGB, which was named as “above-stump woody biomass” by forest 
resources assessment in 2000, is firstly defined as the mass of the woody 
part (stem, bark, branches, twigs) of trees, alive or dead, shrubs and 
bushes, excluding stumps and roots (Köhl et al., 2006). According to the 
definition of AGB from FAO, in this study, the forest components AGB 
included trunk (corresponding to stem), bark, branches, and leaves 
(corresponding to twigs). The direct assessment the AGB of a tree is done 
by a destructive process. However, as the assessment is destructive this 
method cannot be used for monitoring tree growth by permanent as
sessments. One alternative is to derive AGB functions with tree attri
butes such as diameters and tree height or crown attributes, moisture 
content, and wood density as independent predictors of AGB. Related 
researches began since 1990, previous studies developed distinguished 
allometric equations for AGB assessment of different tree species (Van 
and Akça, 2007). In order to determine AGB of each component of the 
entire tree, Valentine et al. (1984) compared randomized branch sam
pling (RBS) with the closely related importance sampling (IS) to obtain 
component AGB estimates of individual trees. Then several models had 
been proposed and used to estimate the forest AGB components and the 
total tree AGB from the tree characteristics. Many of these models are 
based on the assumed allometric relation between AGB and the tree or 
component characteristic. For example, Landis et al. (1975) regressed 
stem, bark, branch, and leaf biomass, as well as the total AGB. Mitchell 

et al. (1981) developed regression equations with stem, branch, and 
foliage biomass of conifers as target variables and DBH as predictor. 

The allometric equations for components AGB assessment of indi
vidual trees were developed and organized as a national standard in 
recent years in China (eq.1 and eq.2) (SFAC, 2014, 2016a, 2016b). They 
were applied in our field measurement for total and component forest 
AGB calculation at two test sites involved in this study. In the two test 
sites, the total AGB of each plot was calculated by sum of AGB of each 
individual tree (MA), the AGB of each individual tree was calculated by 
diameter at breast height (DBH) and tree height (H) based on allometric 
equations according to tree species (eq. (1)). The AGBs of stem, bark, 
branch, and leaf of each individual tree was calculated by eq. (2) with 
different values for g1,g2, and g3 according to tree species and different 
values for g according to the parts of each individual tree (g = 1 for 
stem,g = g1 for bark,g = g2 for branch, and g = g3 for leaf). Each 
component AGB of each plot were calculated by the sum of corre
sponding component AGB of each individual tree in the plot. The 
collected 15 sample plots distributed in Xiaoshao branch are shown in 
Fig. 2 (c) as yellow points. The total and component forest AGB values of 
the 15 plots are given in Fig. 3 (a). 

MA = aDBHbHc (1) 

Where a = 0.070231, b = 2.10329, and c = 0.41120 for Pinus 
yunnanensis, a = 0.06848, b = 2.01549, and c = 0.59145 for Larix 
gmelinii, and a = 0.06807, b = 2.10850, and c = 0.52019 for 
Betula platyphylla. 

M =
g

1 + g1 + g2 + g3
× MA (2)  

where g1 = 1.50018DBH− 0.27008H− 0.57857,g2 = 1.93610DBH0.61425 

Table 2 
Accuracies of allometry model used in this study.  

AGB R2 MPE/% 

Total AGB 
(MA, kg) 

Pinus yunnanensis:0.9485 
Larix gmelinii:0.9690 
Betula platyphylla:0.9550 

Pinus yunnanensis:6.30 
Larix gmelinii:3.80 
Betula platyphylla:4.46 

Stem AGB 
(MS, kg) 

Pinus yunnanensis:0.9494 
Larix gmelinii:0.9701 
Betula platyphylla:0.9545 

Pinus yunnanensis:5.71 
Larix gmelinii:3.99 
Betula platyphylla:4.60 

Bark AGB 
(MB, kg) 

Pinus yunnanensis:0.8724 
Larix gmelinii:0.8817 
Betula platyphylla:0.8678 

Pinus yunnanensis:8.08 
Larix gmelinii:6.98 
Betula platyphylla:8.35 

Branch AGB 
(MBr, kg) 

Pinus yunnanensis:0.8395 
Larix gmelinii:0.8513 
Betula platyphylla:0.9545 

Pinus yunnanensis:9.29 
Larix gmelinii:9.94 
Betula platyphylla:8.93 

Leaf AGB 
(ML, kg) 

Pinus yunnanensis:0.6540 
Larix gmelinii:0.7439 
Betula platyphylla:0.6311 

Pinus yunnanensis:13.98 
Larix gmelinii:10.08 
Betula platyphylla:14.49  

Table 3 
Biomass information table in two study areas /(Mg/ha).  

Test site Biomass Maximum 
value 

Minimum 
value 

Mean 
value 

Mid- 
value 

Yiliang Test 
site 

Total 
AGB  

98.40  17.60  46.62  43.16 

Stem AGB  54.92  9.43  26.16  25.13 
Bark AGB  10.50  2.02  4.93  4.22 
Branch 
AGB  

23.63  4.32  11.14  10.12 

Leaf AGB  9.34  1.83  4.39  3.70 
Genhe Test 

site 
Total 
AGB  

173.70  13.80  64.91  53.17 

Stem AGB  111.57  9.04  41.58  33.70 
Bark AGB  16.56  1.24  6.33  4.83 
Branch 
AGB  

38.18  2.61  13.90  10.50 

Leaf AGB  7.38  0.56  3.01  2.40  
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H− 1.36341, g3 = 2.37294DBH0.43806H− 1.54081 for Pinus yunnanensis, g1 =

0.36742DBH0.19257H− 1.36274,g2 = 2.30634DBH0.72188H− 1.54081, g3 =

1.57804DBH0.19257H− 1.6274 for Larix gmelinii, g1 = 0.53498DBH0.09004 

H− 0.46520, g2 = 1.05167DBH0.66925H− 1.04662, g3 = 0.61793DBH0.17097 

H− 0.88182 g3 = 0.61793DBH0.17097H-0.88182 for Betula platyphylla, 
respectively. 

Note that, the uncertainty of each allometric equation for each 
component may result in uncertainties in forest component AGB esti
mation results. Table 2 represents the allometric model-accuracies 
applied in this study, where R-squared (R2) is the determination coef
ficient of the allometric growth model, and Maximum Permissible Error 
(MPE, %) is the maximum permissible error of the model. Table 3 
summarized the statistical information of the field total and component 
AGBs calculated using allometric equations from (1) to (3) at the two 
test sites. 

3.2. SAR data processing and feature extraction 

The preprocessing of the acquired SAR images includes calibration, 
multi-look, and terrain correction. The calibration functions of GF-3 and 
ALOS-2 PALSAR-2 were provided by Ji et al. (2021), while for Radarsat- 
2 data, readers are referred to Zhang et al. (2018, 2017). Multi-looked 
factors with 4 × 2, 3 × 3, and 2 × 2 were applied for GF-3, ALOS-2 
PALSAR-2, and Radarsat-2 data at range and azimuth direction, 
respectively. A target pixel size around 10 m was adopted for later 
terrain correction. The digital elevation model (DEM) utilized for terrain 
correction is SRTM. The terrain correction in this study includes three 
steps like polarization orientation angle (POA) changes correction, 
effective scattering area (ESA) changes correction, and angular variation 
effect (AVE) correction (Zhao et al., 2017). POA correction performed 

trough the compensation of covariance matrix (C) with matrix V 
through eq. (3):  

where SHH,SVV, and SHV are elements of scattering matrix S. ESA 
correction is through the CPOAc matrix by CESAc = CPOAc⋅cosφ 
computed, it is compensated by projection angle φ which is generated 
during geocoding procedure using the geocoding lookup tables between 

SAR and 30 m SRTM DEM coordinate systems. AVE correction is per
formed at last by eq. (2) through CESAc and correction coefficient matrix 
K: 
where σ is the uncorrected backscattering coefficient;k(n) is the 
correction coefficient; θloc is the local incidence angle;θref is the refer
ence incidence angle;n is the correction factor determined by minimum 

correlation between σθloc and θloc through function ρ( ). 
The backscattering coefficient of a SAR image can reflect vegetation 

information and correlate with forest AGB if it is not saturated (Lal et al., 
2021). Therefore, the back-scattering coefficients of HH, VV, HV and VH 
polarization channels are used in this study. In order to extract infor

mation, three incoherent target decomposition methods namely Yama
guchi 3-component decomposition, Freeman 2-component 
decomposition, and H/A/alpha decomposition were applied in this 
paper. In addition, decompositions are able to also extract coherent 
components can be used for AGB estimation (Zhang et al., 2015), 
therefore the TSVM coherent objective decomposition method was 
included. In this paper, 29 polarimetric characteristics (Table 4) and 

four backscatter coefficients were obtained and utilized. 

3.3. Retrieval model via GA-SVR algorithm 

Ji et al. (2021) originally applied the theory of GA-SVR for forest 
AGB inversion. SVR provides the benefit of employing limited training 

Table 4 
The extracted polarimetric features from acquired SAR data.  

Decomposition 
Methods 

Features 

Yamaguchi 3- 
component 

Yamaguchi3 volume scattering component (VSC) (Y3_Vol); 
Yamaguchi3 surface scattering component (SSC) (Y3_Odd); 
Yamaguchi3 dihedral scattering component (DSC) 
(Y3_Dbl); 

Freeman 2 
component 

Freeman2 VSV (F2_Vol); 
Freeman2 SSV (F2_Grd); 

H/A/alpha Scattering angle (Alpha); 
Anisotropy (Anisotropy); 
Entropy (Entropy); 
Single Reflectance Eigenvalue Relative Difference (SERD); 
Relative Difference in Secondary Reflectance Eigenvalues 
(DERD) 
Shannon Entropy (SE); 
Strength component of Shannon’s entropy (SEi); 
The angular component of the polarization of the Shannon 
entropy (SEp); 
Radar Vegetation Index (RVI); 

TSVM 4 symmetric scattering parameters (T_alpha_s, T_alpha_s1, 
T_alpha_s2, T_alpha_s3); 
4 target phase angle parameters (T_phi_s; T_phi_s1, T_phi_s2, 
T_phi_s3); 
4 target azimuth parameters (T_psi, T_psi1, T_psi2, T_psi3); 
4 elliptical azimuth parameters (T_tau_m, T_tau_m1, 
T_tau_m2, T_tau_m3)  

CPOAc = VCVT

V =
1
2

⎡
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samples to generate relatively high inversion accuracy and to address 
both nonlinear and linear issues. As a reason, it has grown more well- 
known and effective in forest AGB estimation (Bian, 2021; Geng, 
2017; Gleason and Im, 2012). However, the selection of appropriate 
model parameters for the SVR is complicated limiting its usefulness. In 
recent year, GAs has been used for determining optimal SVR parameters 
showing improved performance (Haddadi et al., 2011; Whitley, 1994). 
In addition to SVR inversion model with its optimal GA-selected model 
parameters, identifying optimal polarimetric features is also a key for 
forest AGB estimation. GA-SVR algorithm used in this manuscript is able 
to optimize the input SAR features and SVR model hyperparameters 
simultaneously. Since identifying the optimal SAR features and selecting 
the SVR model hyperparameters are performed simultaneously, the 
chromosome of GA is designed by considering both SAR features and 
SVR model parameters. To design the chromosome of GA suitable for 
this study, in Fig. 5, SVR model parameters、SAR features are combined 
together as the input of GA-SVR models. The GA-SVR algorithms were 
used for the forest total and component AGB estimation. The flowchart 
of GA-SVR algorithms applied in this study are shown as Fig. 5. 

The main steps of the GA-SVR algorithm include population initial
ization, fitness calculation, iteration and output of estimation results. 
During the population initialization, the chromosome of GA was con
structed as shown in Fig. 6. 35 people were selected as the original 

population size. Following population initialization, a conventional SVR 
procedure is carried out utilizing the input training dataset, with the 

fitness function defined as fitness =

(

1 −

∑K×m
i=1

error
K×m /AGBmean

)

*100. It is 

conducted using a m repeated K-fold cross validation, error represents an 
error metric such as root mean squared error (RMSE),AGBmean is the 
mean value of field measured forest total and component AGBs. When 
the fitness function value meets the end constraint, the optimal features 
and model parameters become output and the cycle is stopped. If not, 
the next generation solution is generated using the mutation, crossover 
and selection operations set up in the process in Fig. 5, and the loop is 
stopped when the maximum number of iterations (200) is reached, 
outputting the best configuration of the inverse model. The output of the 
GA-SVR is the optimal SVR model hyperparameters, SAR features, and 
prediction data set. 

3.4. Model validation 

The model output validation is based on fieldwork recorded plot 
information and their corresponding SAR features predicted results 
using GA-SVR model. In this study, the leave one out cross validation 
(LOOCV) is used since the small samples in two test sites, LOOCV is a 
special example of K-fold cross validation is used for model training and 

Fig. 5. Flowchart of the total and component AGB estimation via GA-SVR.  

Fig. 6. Design of the chromosome.  
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Table 5 
Preferred set of GA parameters for each component of AGB estimation.  

Test site Biomass Preferred parameters Ratio 

Yiliang Total biomass Y3_Dbl (C), HH (C), HV (C), SE (C), Y3_Vol (C), T_alpha_s1 (C), T_tau_m1 (C) 

Trunk biomass Y3_Dbl (C), HH (C), HV (C), VV (C), SE (C), Y3_Vol (C), T_alpha_s1 (C) 

Bark biomass Y3_Vol (C), Y3_Dbl (C), HV (C), HH (C), SE (C), RVI (C), T_alpha_s1 (C) 

Branch biomass HV (C), HH (C), Y3_Vol (C), Y3_Dbl (C), SE (C), RVI (C), T_alpha_s1 (C) 

Leaf biomass HV (C), Y3_Vol (C), Y3_Dbl (C), SE (C), RVI (C), SERD (C), DERD (C) 

Genhe Total biomass Y3_Vol (C), T_tau_m2 (C), DERD (L), HH (C), HV (L), HV (C), SE (C), Y3_Dbl (C) 

Trunk biomass T_tau_m2 (C), HH (C), HV (L), HH (L), SE (C), T_alpha_s1 (C), Y3_Vol (C), Y3_Dbl (L) 

Bark biomass Y3_Vol (C), DERD (L), HV (L), HV (C), Y3_Dbl (C), SE (C), T_alpha_s1 (C) 

Branch biomass Y3_Vol (C), HV (L), VV (L), Y3_Dbl (C), SE (C), RVI (C), T_alpha_s1 (L) 

Leaf biomass Y3_Vol (C), DERD (L), HV (L), HV (C), Y3_Dbl (C), SE (C), T_psi_s1 (C) 
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validation. This method consists of dividing the initial dataset into K =
15 subsets for Yiliang test site and K = 30 subsets for Genhe test site and 
select K-1 to train the metamodel. The estimation error is then deter
mined from the subset that is not utilized in the training process (Vali
dation data). This procedure is repeated K times, each time with a 
different subset. The last RMSE value is derived by the mean of the K 
validated sample errors. Two methods were used for forest total and 
component AGB estimation validation. The first is to use 7 quantitative 
indices including the coefficient of determination R2 (Eq (3), RMSE (Mg/ 
ha, Eq (4), relative root mean square error (rRMSE, %, Eq (5), mean 
deviation (ME, Mg/ha, Eq (6)), mean absolute deviation (MAE, Mg/ha, 
Eq (7), mean percentage error (M%E, %, Eq (8), and mean absolute 
percentage error (MA%E, %, Eq (9) of the predicted results against the 
calculated AGB values through the field investigated plots (Wei et al. 
2020). The second method uses scatterplots of the model estimated re
sults and the real AGB values collected through the field campaign. The 
R2 number, which varies from 0 to 1, shows the model’s correctness; the 
closer it is to 1, the more accurate the model is, and vice versa; ME and M 
%E represent the sum and percentage of the difference between the 
predicted and measured values, through these two indicators, the 
overall underestimation of the model are qualified; RMSE and MAE are 
to access the discrepancy amid the anticipated and measured values, the 
smaller of these two indicators, the more accurate the model is; The 
smaller the values of these two indicators, the less the model deviates, 
rRMSE and MA%E show the percentage deviation and the degree of 
divergence between the anticipated and measured values. 

R2 = 1 −
∑n

i=1(Yi − yi)
2

∑n
i=1(Yi − ȳ)2 (5)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Yi − yi)

2

√

(6)  

rRMSE =
RMSE

ȳ
× 100% (7)  

ME =
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i=1

(
Yi − yi

n

)

(8)  

MAE =
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i=1

⃒
⃒
⃒
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Yi − yi

n

⃒
⃒
⃒
⃒ (9)  

M\% E = E =
1
n
∑n

i=1

(
Yi − yi

Yi

)

× 100% (10)  

MA\% E = E =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Yi − yi

Yi

⃒
⃒
⃒
⃒× 100% (11) 

In the above equations,Yi,yi and ȳ are the measured AGB of the i-th 
sample plot, the predicted AGB of the i-th sample plot, and the measured 
mean AGB, respectively, n is the sample plot numbers. 

3.5. Forest total and component AGB inversion by GA-SVR 

Since a SAR image pixel may be composed of multiple branches, 
leaves, barks, and trunks, it is difficult to justify which SAR features 
would be sensitive only to a particular forest component AGB, moreover, 
the sensitivity also affected by the penetration capability of microwave 
at different frequencies and the canopy density of the observed forest 
areas as well. In order to find the optimal features for forest total and 
component AGB estimation, regression models and machine learning 

methods were applied for feature optimization (Kasischke et al., 1995; 
Tsui et al., 2012; Zeng et al., 2022; Zhang et al., 2022). In this study, the 
developed machine learning method GA-SVR was utilized for both SAR 
feature optimization and model inversion. For total forest AGB and each 
component AGB inversion, all of the extracted SAR features were input 
in GA-SVR algorithms and the optimized SAR features and SVR model 
parameters were determined simultaneously for each single estimation 
procedure. With the procedure, optimized SAR features which per
formed better for branches, leaves, barks, and trunks AGB or forest total 
AGB estimation were selected and applied for their AGB estimations 
with the simultaneously optimized SVR parameters. Then the results 
were validated by the leave-one-out cross-validation method and 
described by equations from (5) to (11). In this study, five different GA- 
SVR algorithms were trained and validated for total, branches, leaves, 
barks, and trunks AGB estimation, respectively. With the performance of 
each GA-SVR algorithm, the optimal and more sensitive SAR features to 
different component AGB and total AGB were determined. 

4. Retrieval results 

Due to the statistical nature inherent to the suggested GA-SVR 
method, the inversion procedure was performed ten times for select
ing the best polarimetric features and SVR model parameters and to 
estimate forest total and component AGB. The inversion operation was 
repeated several times in an effort to lessen randomization and enhance 
the stability of the inversion findings. In this study, the polarimetric 
features and SVR model parameters selected in best optimization pro
cedure were kept and recorded. To compare the performance of GA-SVR, 
SVR algorithms were applied in forest total and component AGB esti
mation and their results were compared with GA-SVR estimated results 
according to 7 quantitative indices and scatter plots introduced in sec
tion 3.3. 

4.1. Optimal predictive polarimetric SAR features 

The feature selection showed distinct discrepancies at the two test 
sites when it comes to the relationship between polarimetric backscat
tering and models for estimating forest AGB variables. These differences 
are likely due to the diverse tree species that caused the various scat
tering processes. Since these differences were large it was evident that 
two models were needed and therefore the results reported here 
considered thus the best predictive polarimetric features dependent on 
test site, wavelength, and the levels of AGB. In the future, having a much 
larger dataset and including geographical location may reveal a solu
tion, but for the moment, the model still needs to be training on some 
forest with common characteristics and it cannot be exported to type of 
forests that have not been seen before during training. 

Table 3 showed the optimal predictive polarimetric SAR features 
selected by GA algorithm at C- and L- band in Yiliang and Genhe test 
sites for forest total and component AGB retrievals. The best predictive 
features in two test sites combined both backscattering coefficients at 
various polarimetric channels with a number of polarimetric decom
position parameters and their derived parameters. However, all the 
decomposition parameter extracted from Freeman-Durden decomposi
tion methods did not occur in Table 3. This is because Yamaguchi 4 is 
showing very similar features with Freeman-Durden. Note that in 
Yiliang test site, C- band polarimetric SAR features provide better pre
dictor for all forest AGB variables since all of the selected SAR features 
come from C- band. While a few polarimetric features from L- band were 
selected as best predictive features for forest AGB retrievals in Genhe test 
site. The phenomena might be caused by the distinct forest structure, 

Note: (C) and (L) in the table indicate that the parameter was acquired from C-band or L-band data, respectively; 
.  
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such as the varying average AGB levels at two test sites. The average 
forest AGB at Yiliang is lower than that at Genhe, meanwhile, individual 
trees are younger and the forest are thinner which make C- band showed 
better response to the forest AGB changes at Yiliang test site. Even in 
Genhe site, which has the higher average AGB level of 78 Mg/ha, the 
selected dominant polarimetric SAR features are from C- band as well. 

The backscatter coefficients almost at each polarization channel 
were selected as optimal predictors for forest total and component AGB 
retrievals. Note that HV channel is shown as the only one optimal 
backscatter coefficient for leaf AGB estimation at both test sites. This 
finding confirmss the sensitivity of the HV channel to volume scattering, 
which is characteristic of forest canopies especially for leaf scattering. 
While for branches in forest canopies, HH at C- band is an optimal 
predictor at Yiliang test site and VV at L- band is at Genhe test site which 
show the dominant vertical or horizontal polarization scattering in 
branches. TSVM_alpha_s1 extracted from TSVM decomposition method 
in Table 3 represents an optimal predictor for almost all components and 
total AGB as well. It is the same to Yam3_Dbl and Yam3_Vol extracted 
from the Yamaguchi decomposition. 

The ratio of the selected four types of polarimetric features by GA are 
shown in Table 5. The distribution of the four types of polarimetric 
features in the pie charts also revealed the distinguished scattering 
mechanisms at two test sites especially for total AGB and trunk AGB. 
Total AGB at Yiliang test site, has no optimal feature types, while at 
Genhe test site backscattering coefficients show as dominant in selected 
features. Differently than total AGB, the ratio of selected optimal feature 
ratios is similar for trunk AGB retrieval at the two test sites. 

4.2. Forest total AGB retrieval 

The GA-SVR algorithm used in this paper was implemented using the 

Python. The specific parameters of the algorithm used in the study were 
set as follows: for GA procedure, the selection method is tournament 
selection with an initial population size of 35; the maximum number of 
iterations is 200; the crossover method was single-point crossover with a 
crossover occurrence probability of 0.85; and the variation method is 
multi-point random variation with a variation occurrence probability of 
0.25. The searching range of penalty (c) for SVR model parameter is set 
as 50, 100, 150, 200, 500, 1000, 1500, and 2000, respectively. While the 
values for width of Gaussian kernel function (γ) are 0.015, 0.02, 0.05, 
0.1, 0.15, 0.2, 0.5, and 1.0, respectively.m = 1 is set in the fitness 
function for two test sites, while K = 15 is set for the Yiliang test site and 
K = 30 is set for the Genhe test site. With the iteration, the optimized 
two hyperparameters for SVR are summarized in Table 6 for forest total 
AGB estimating in the two test sites using GA-SVR algorithm (Table 7). 

Performances of GA-SVR model for total AGB retrieval at Yiliang and 
Genhe test sites are presented in Table 6. Table 6 shows the R2, RMSE, 
rRMSE, ME, MAE, M%E, and MA%E for two test sites. Scatterplots of 
observed and predicted forest total AGB for the two test sites are pre
sented in Fig. 7 (a) and (b). According to quantitative parameters, GA- 
SVR models show better performance at the Yiliang test site compared 
to the Genhe test site. It has higher R2 values with 0.679 compared R2 =

0.639 for Genhe test site. The RMSE values for two test sites are 14.43 
Mg/ha and 25.01 Mg/ha, respectively. The rRMSE which describes 
random effects are 30.96% for Yiliang and 38.53% for Genhe. The ME 
and M%E show that there is a slight overall overestimation at Yiliang 
and some underestimation at Genhe. The scatterplots of Fig. 7 confirmed 
the results, the relationships between measured and predicted values in 
both test sites showed in Fig. 7 (a) and 7(b) are close to the 1:1 line, 
especially for points with ground measured AGB less than 80 Mg/ha in 
Fig. 7 (a) and points with AGB less than 100 Mg/ha in Fig. 7 (b). The 
scatterplots in Fig. 7 showed an obvious saturation for total forest AGB at 
two test sites, however, since only few plots showed the phenomenon of 
saturation, this needs further exploration in the future with more ground 
measurements. 

To compare the reliability of the GA-SVR model in the two studies, 
we used the SVR model to estimate the forest total AGB in the two test 
sites. The SVR model is completed by the GridSearchCV function in the 
Sklearn Python library. The non-linear kernel function grid search 

Table 6 
Optimal hyperparameters selected for the GA-SVR algorithm at two test sites.  

Study area Penalty factor (c) Width of Gaussian kernel function (γ) 

Yiliang 200  0.015 
Genhe 150  0.015  

Table 7 
Results of the estimated forest total AGB via GA-SVR.  

Study 
area 

R2 RMSE 
(Mg/ha) 

rRMSE 
(%) 

ME 
(Mg/ 
ha) 

MAE 
(Mg/ 
ha) 

M%E 
(%) 

MA% 
E 
(%) 

Yiliang  0.679  14.43  30.96  0.23  12.32  0.50  26.43 
Genhe  0.639  25.01  38.53  − 1.99  19.79  − 3.06  30.48  

Fig. 7. Scatterplots of field measured versus GA-SVR estimated forest AGB.  

Table 8 
Results of the estimated forest total AGB via SVR.  

Study 
area 

R2 RMSE 
(Mg/ha) 

rRMSE 
(%) 

ME 
(Mg/ 
ha) 

MAE 
(Mg/ 
ha) 

M%E 
(%) 

MA% 
E 
(%) 

Yiliang  0.679  14.58  31.27  0.85 12.45  1.78  26.71 
Genhe  0.635  25.23  38.86  − 1.75 20  − 2.7  30.81  
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optimization method is used for the SVR models, the results of SVR- 
retrieved total forest AGB were shown in Table 8 and Fig. 8. 

In the Yiliang test site, although the coefficients of determination R2 

are the same for GA-SVR and SVR models, the error between the 
measured and predicted values using the GA-SVR model decreased when 
compared to SVR model. For instance, the values of ME and M%E, they 
were reduced 0.62 Mg/ha and 1.28%, respectively. In the Genhe test 
site, both ME and M%E were higher for GA-SVR model than the values 
acquired by SVR model. With the comparison of scatterplots using GA- 
SVR and SVR model at the two test sites, we found a slightly improve
ment of underestimation for the AGB predicted values when using GA- 
SVR model, especially when AGB levels at the Genhe test location are 
above 120 Mg/ha. 

4.3. Forest component AGB retrieval 

The optimized model parameters are presented in Table 9, the 
adjusted R2, RMSE, rRMSE, ME, MAE, M%E, and MA%E for each model 
of two test sites are presented in Table 10. 

GA-SVR model showed good performance for forest component AGB 
retrieval at both test sites with all R2 values above 0.5. For the two test 

sites higher accuracy occurred for forest canopy AGB (branch compo
nent and leaf component) with respect to trunk AGB. For canopy AGB 
retrieval, all of the R2 values were larger than 0.7 at Yiliang and higher 
than 0.6 at Genhe. While the R2 values for trunk AGB at the Yiliang and 
Genhe test sites were 0.638 and 0.597, respectively. The rRMSE values 
in Table 8 and Table 5 also confirmed the decreased estimation accuracy 
for trunk component AGB than other components and total AGB. The 
values of ME and M%E of the Yiliang test site revealed overestimation of 
trunk component AGB with ME = 0.37 Mg/ha and M%E = 1.05%. While 
for other component AGB, slight underestimations were shown as well 
with ME values varying from − 0.07 Mg/ha to − 0.14 Mg/ha. In the 
Genhe test site, the underestimation phenomenon showed on all of the 
total and component AGB estimations with ME values varying from 
− 0.15 Mg/ha to − 1.99 Mg/ha and M%E values ranging from − 1.43% to 
− 3.94%. 

Fig. 9 shows the retrieved forest components AGB using GA-SVR and 
optimal polarimetric features against ground measured plots. Each 
scatterplot displayed an agreement line (1:1 line) which represents the 
case when the predicted and field-collected values for the forest 
component AGB were identical. The estimated dynamic ranges for each 
component forest AGB at the Yiliang test site were are similar to the 
dynamic rangs of the field data. However, at Genhe, the dynamic range 
for the estimated trunk component is around 70 Mg/ha which is 
decreased compared with the 100 Mg/ha of the field collected data. The 
decreased dynamic range may result from the saturation of C- and L- 
band for trunk backscattering. Note that the estimated dynamic AGB 
ranges for other components at Genhe were similar to the corresponding 
measurements. 

To better comprehend the efficacy of the GA-SVR approach, we also 
retrieved each component AGB using the SVR technique. The results for 
the SVR algorithm are detailed in Table 11 and Fig. 10. According to 
Table 11 and Fig. 10, the retrieval of forest components AGB is similar 
for SVR with GA-SVR but the GA-SVR outperforms SVR according to 7 
quantitative parameters, namely R2, RMSE, rRMSE, ME, MAE, M%E, 

Fig. 8. Scatterplots of field measured versus SVR estimated forest AGB.  

Table 9 
The optimal hyperparameters selected for GA-SVR in two test sites.  

Study area Biomass Penalty factor (c) Width of Gaussian kernel function (γ) 

Yiliang Trunk 2000  0.015 
Bark 200  0.02 
Branch 1000  0.015 
Leaf 1000  0.015 

Genhe Trunk 2000  0.015 
Bark 1500  0.015 
Branch 1000  0.015 
Leaf 2000  0.015  

Table 10 
Results of the estimated forest component AGBs via GA-SVR.  

Study site Biomass R2 RMSE (Mg/ha) rRMSE 
(%) 

ME 
(Mg/ha) 

MAE 
(Mg/ha) 

M%E 
(%) 

MA%E 
(%) 

Yiliang Trunk  0.638  8.55  32.67  0.27  6.72  1.05  25.7 
Bark  0.727  1.27  25.72  − 0.1  0.97  − 2.11  19.6 
Branch  0.749  2.86  25.68  − 0.14  1.98  − 1.26  17.74 
Leaf  0.77  1.01  23.02  − 0.07  0.81  − 1.66  18.42 

Genhe Trunk  0.587  16.26  39.1  − 0.6  13.14  − 1.43  31.61 
Bark  0.669  2.19  34.52  − 0.15  1.78  − 2.39  28.13 
Branch  0.653  5.06  36.43  − 0.25  1.83  − 3.94  28.38 
Leaf  0.647  2.21  34.96  0.01  0.71  0.15  28.97  
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and MA%E shown in Table 10. Moreover, SVR also showed better per
formance in Yiliang than Genhe, both for total and components AGB 
estimation. These results also reveal the higheraccuracy for canopy (leaf 
and branch) components compared to trunks with the lowest R2 values 
(for Yiliang R2 = 0.621 and for Genhe R2 = 0.585) and highest rRMSE 
values (rRMSE = 33.66% for Yiliang and rRMSE = 38.33% for Genhe) in 
the two test sites. The scatterplot patterns in Fig. 10 displayed scattering 
modes that were comparable to those in Fig. 9, where a slight saturation 
phenomenon for trunk component AGB retrieval is present. 

4.4. Exportability of models between the two test sites 

In order to further explore the exportability of the proposed GA-SVR 
algorithm, the models were run for retrieval over the other tests site. 
Table 12 summarized the results. For the two test sites, a model con
structed in Yiliang test site performed retrieval on Genhe test site 
(Validation test I)showing lower accuracy compared with models con
structed in Genhe while validated over Yiliang (Validation test II). The 

exception is for leaf AGB estimation, where the better accuracy may 
result from the better sensitivity of C-band features to leaves. In section 
4.1, we can see most of the polarimetric SAR features selected for total 
and component AGB estimation in the Yiliang test site are features from 
C-band SAR data. Other reason may be related to sample sizes. In 
Validation test I, only 15 samples in Yiliang are used for model- 
construction and training while 30 samples are used for validation. In 
Validation test II, 30 samples in Genhe are used for model-construction 
and training while 15 samples are used for validation. Moreover, the low 
cross-validation results with more rRMSE values greater than 50% in the 
two test sites may result in the difference of the selected optimized SAR 
polarimetric features in the two test sites. Only C-band features were 
selected in Yiliang test site while C- and L-band features were all 
involved in Genhe for total and component AGB estimations. 

To further exploring the robustness of GA-SVR algorithm and its 
cross-site applicability, global forest AGB product derived from Global 
Ecosystem Dynamics Investigation (GEDI) (NASA, 2022) and China’ 
forest AGB product derived by Aerospace Information Research Institute 

Fig. 9. Scatterplots of field measured versus GA-SVR estimated forest component AGBs.  

Table 11 
Results of the estimated forest component AGBs via SVR.  

Study area Biomass R2 RMSE 
(Mg/ha) 

rRMSE (%) ME 
(Mg/ha) 

MAE 
(Mg/ha) 

M%E 
(%) 

MA%E 
(%) 

Yiliang Trunk  0.621  8.81  33.66  0.48  7.04  1.84  26.91 
Bark  0.625  1.49  30.33  − 0.28  1.17  − 5.68  23.77 
Branch  0.697  3.05  26.11  0.3  2.44  2.51  20.93 
Leaf  0.712  1.14  25.91  0.14  0.9  3.24  20.54 

Genhe Trunk  0.585  16.29  39.18  − 0.48  13.25  − 1.14  31.86 
Bark  0.609  2.42  38.3  − 0.04  1.97  − 0.62  31.09 
Branch  0.62  5.33  38.33  − 0.17  4.2  − 1.24  30.25 
Leaf  0.638  2.32  36.71  0.26  1.94  4.04  30.64  
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Fig. 10. Scatterplots of field measured versus SVR estimated forest component AGBs.  

Table 12 
The results of the two study areas were cross-verified.  

Model Building Model 
Validation 

AGB R2 RMSE 
(Mg/ha) 

rRMSE 
/ % 

ME 
(Mg/ha) 

MAE 
(Mg/ha) 

M%E 
(%) 

MA%E 
(%) 

Yiliang Genhe Total  0.117  46.64  71.85  − 26.29  32.90  − 40.49  50.68 
Stem  0.189  30.27  72.82  − 19.70  23.09  − 47.39  55.54 
Bark  0.201  3.04  61.72  1.70  2.66  34.65  53.98 
Branch  0.153  6.61  59.4  2.76  5.70  24.74  51.20 
Leaf  0.118  2.29  50.23  − 0.94  1.70  − 21.51  38.84 

Genhe Yiliang Total  0.180  22.40  48.05  1.02  19.07  2.19  40.90 
Stem  0.201  13.96  53.35  3.76  10.70  14.38  40.91 
Bark  0.149  2.60  52.87  1.71  2.27  23.77  46.14 
Branch  0.183  5.41  48.61  1.52  4.36  13.71  39.15 
Leaf  0.129  2.51  57.24  − 1.56  1.81  − 35.78  41.63  

Fig. 11. AGB point Distributions at two test sites from GEDI and AIRI products.  
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(AIRI) (Yan et al., 2021) were applied in the two test sites for cross- 
validation. The resolution of AGB product from GEDI is 1 km, whereas 
that from AIRI is 30 m. Since only total AGBs are available of these 
products, here only total AGBs are used for model performance explo
ration and cross validation. For the GEDI AGB products at two test sites, 
all of the points in the two test sites are selected for model training and 
validation. Since the huge points of AIRI AGB product in the two test 
sites, 100 points at each test site were randomly selected and applied for 
GA-SVR model training and validation. Fig. 11 displays the spatial dis
tributions of the points at two test sites with two AGB products. Table 13 
summarized the performance of GA-SVR algorithms at two test sites and 
their cross-validation results. 

The results from GEDI AGB products revealed a worse accuracy 
compared with that derived with AIRI product. It may result from the 
less range of AGB values in GEDI product. Since the coarse resolution 
and only 3 different AGB values at Genhe and two values at Yiliang, even 
there are more points located at two test sites, they are not enough to 
support GV-SVR for learning and training. In contrast, GA-SVR per
formed better using the AIRI AGB product. The RMSE values (19.18 Mg/ 
ha and 25.18 Mg/ha) and rRMSE values (19.24% and 20.06%) with two- 
test validation even lower than that the models that were trained and 
validated at same test sites (14.58 Mg/ha and 31.27% for Yiliang; 25.23 
Mg/ha and 38.86% for Genhe). The values of ME, MAE, M%E, and M% 
AE also revealed the transferable capability of GA-SVR especially with 
enough samples utilized for learning and training. 

5. Discussion 

5.1. Optimal selected polarimetric features 

The GA algorithm in this study selected Yamaguchi3, TSVM de
compositions, and backscattering coefficients as optimal input features 
for the retrievals of forest total and components AGB. Li et al. (2018) 
used the Bootstrap technique to select variables related to forest AGB in 
the Pangu forestry field of the Tahe Forestry Bureau in the northern 
foothills of the llghuli Mountains in the central Daxinganling. The nine 
optimal subsets selected included two TSVM polarization decomposition 
parameters indicating that the latter are sensitive to forest AGB, as 
confirmed in our study. Additionally several other authors showed that 
backscatter coefficients and Yamaguchi decomposition parameters were 
correlated to forest AGB (Golshani et al., 2019; Song and Fan, 2011; Wei 
et al., 2020; Zeng et al., 2022). Pan et al. (2020) used the KNN-SFS 
method to optimize the characteristic parameters of GF-3 PolSAR 
data, and their optimization results included the backscatter coefficients 
and various polarization decomposition parameters. Li et al. (2020)used 
random forest and KNN-FIFS methods to optimize the parameters of C- 
band SAR data in Genhe, and also found the backscatter coefficients and 
Yamaguchi decomposition correlated well with the forest AGB. In their 
study, the highest R2 values between selected parameters and forest total 
AGB was 0.63. 

Several selected optimal SAR polarimetric features used in a GA-SVR 
algorithm improved the correlation with total and component forest 
AGB in the two test sites compared with our previous studies (Zeng et al., 
2022). The backscattering coefficient of the HV channel from C-band 
shows better performance in both test sites for forest total and compo
nent AGB estimation, on the other hand, the features extracted from L- 

band were only selected as optimal features in the Genhe test site. 
Additionally, the sensitivities of HV backscattering coefficients at C- and 
L-band to Loblolly pine forests were reported in the study of Kasischke 
et al., (1995). Volume scattering components (Y3_vol) and Shannon 
entropy (SE) extracted from C-band polarimetric SAR image were 
selected as optimal features both in two test sites for almost all of the 
component and total AGB retrievals. They also correlated well with total 
and component AGBs in the two test sites with all R values higher than 
0.83 in Yiliang and 0.55 in Genhe. (Zeng et al., 2022). At Yiliang, the 
double-bounce component in C-band was useful for retrieving bark, 
branch and leave components AGB. This suggest that at Yiliang the 
double-bounce scattering mechanism at C-band may occurred between 
elements in the canopy, but not between the trunk and ground. At 
Genhe, the double-bounce component was selected at L-band for 
retrieving trunk AGB. This reveals the existence of expected double- 
bounce scattering between trunk and ground at L-band in Genhe. The 
good performance of polarimetric features extracted from the Yama
guchi decomposition corroborated its potential for describing forest 
vertical structure information (Cui et al.,2012). Only T_alpha_s1ex
tracted from C-band were selected as optimal SAR features for forest 
total and component AGB estimation in the Yiliang. The results differed 
with the correlation analysis between SAR features and forest AGBs in 
Zeng et al., (2022), in which T_alpha_s1correlated lower compared with 
other features extracted by the TSVM decomposition. 

5.2. Performance of GA-SVR algorithms 

The GA-SVR algorithm were proposed and applied in forest AGB 
inversion by Ji et al. in 2021 for feature and model parameter optimi
zation simultaneously. In their study, the performance of this algorithm 
was compared with the GA-SVR without SVR model parameter optimi
zation but with feature optimization (GA + Default SVR) and GA-SVR 
with feature optimization using GA and SVR model parameter optimi
zation using Grid searching (GA + Grid SVR). The outcomes demon
strated that GA-SVR utilized in this paper, which optimizes both 
characteristics and model parameters simultaneously, performs better 
than the other two GA-SVR algorithms. Here the GA-SVR were applied 
for forest total and component forest AGB estimation to explore its po
tential in component forest AGB estimations, and to assess how well it 
performs in comparison to the SVR algorithm. Few studies have inves
tigated the retrieval of forest components AGB utilizing RS (Gao et al., 
2018; Zhang et al., 2022). Comparison for different inversion algo
rithms, is really difficult when they are applied to diverse forests, using 
distinct RS data, and under various environment conditions. The good 
performance of GA-SVR in forest total AGB had been described in our 
previous study with better performance in Yiliang with C- band optimal 
polarimetric features compared to Genhe. Total and component forest 
AGB estimation using regression models revealed that adding C- and L- 
band SAR backscatter coefficients improved the inversion results where 
rRMSE values were improved about 6.5% for stem component and 
17.9% for canopy component, respectively (Tsui et al., 2012). The total 
and component forest AGB in the Yiliang and Genhe test sites were 
inverted using the multiple linear stepwise regression method by Zeng 
et al. (2022), using the same SAR data as in this research. The results 
showed lower estimation accuracy, with R2 ranges between 0.562 and 
0.637 at Yiliang and 0.461 to 0.573 at Genhe. The findings of this study 

Table 13 
The results of the two study areas were cross-verified using GEDI and AIRI products.  

Data Model Building Model 
Validation 

R2 RMSE(Mg/ha) rRMSE 
/ % 

ME 
(Mg/ha) 

MAE 
(Mg/ha) 

M%E 
(%) 

MA%E 
(%) 

GEDI Yiliang Genhe  0.15  74.83 122  − 21.35  32.51  − 1.11  1.69 
Genhe Yiliang  0.29  90.60 102  − 9.35  66.30  − 0.11  0.75 

30 m 
AGB 

Yiliang Genhe  0.47  19.18 19.24  − 2.58  13.97  − 0.03  0.14 
Genhe Yiliang  0.29  25.18 20.06  − 3.11  20.08  − 0.02  0.16  
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demonstrated the potential of GA-SVR used for component forest AGB 
inversion. 

In order to test the robustness and transferability of GA-SVR algo
rithm optimizing RS feature and model parameter simultaneously, it was 
applied to the two test sites for AGB estimation with GEDI and AIRI AGB 
products as field measurements. Since the small AGB ranges of GEDI 
AGB product, the RMSE and rRMSE values are large. However, when 
AIRI AGB product with 100 points including large AGB ranges were 
applied in GA-SVR algorithms for two test site AGB estimation and their 
cross-validation as well, they acquired better performance even greater 
than that trained and validated in the same test site. Since Yiliang and 
Genhe represented quite different forest ecosystem and topography 
conditions, the results revealed the transferability of GA-SVR both for 
spatial and ecosystem. Note that, for the two test sites, a model con
structed in Yiliang performed retrieval on Genhe(Validation test I) 
shows higher accuracy compared with models constructed in Genhe 
while validated over Yiliang (Validation test II). Considering the same 
samples (100) were selected in both test sites, the better performance at 
Validation test I may result from the large variation of topography in 
Yiliang, which made the learning and training procedure more repre
sentative and comprehensive. However, since only the SRTM DEM 
datasets were available for terrain correction the impact of topography 
remained after RTC correction was not considered in this study and the 
reason and the caused uncertainties need further explored in future 
when precise DEM is available. 

5.3. Variability across test sites 

Overall, the Genhe test site shows poor results than the Yiliang test 
site. It is unclear if this reflects different forest structure or particularities 
of topography of the two test sites. Yiliang has the most significant 
topographic variation compared to Genhe but the detailed terrain effects 
were corrected in this study using a three-step correction method (Zhao 
et al., 2017). Yunnan pines were the selected dominant tree species in 
Yiliang with lower forest AGB interval and average AGB values than 
Genhe. Despite the differences in GA-SVR performance between the two 
test sites, the rRMSE values obtained in this study were generally com
parable between the two sites. For instance, the total forest AGB esti
mation results obtained by Cartus and Santoro with rRMSE values 
ranges from 19% to 45% (Cartus and Santoro, 2019), while in our study, 
they are 30.96% and 38.53%, respectively. Moreover, the component 
AGB especially for branch and leaf components estimation in this study 
all demonstrated no obvious saturation phenomenon. 

The results of GA-SVR were further compared at the two 

experimental sites (Fig. 12). Fig. 12 confirmed that GA-SVR performed 
better for component forest AGB than the results of total AGB. For GA- 
SVR, the estimation accuracies of bark, branch and leaf AGB were 
higher than that of total AGB in both test sites. They revealed the esti
mation of component AGB may compensate the saturation problem 
occurred in total forest AGB estimation using SAR polarimetric features 
and GA-SVR algorithms. 

6. Conclusions 

The results presented and analyzed in this paper indicates that using 
the GA-SVR algorithm for total and component forest AGB estimation 
with C-, L-band polarimetric features including H/A/alpha, Freeman2, 
Yamaguchi3, and TSVM decompositions can provide reliable estimates. 
The best performance was obtained by using C- band features as model 
input on leaf and branch component AGB at Yiliang. While next better 
performance was obtained by using combination of C- and L-band fea
tures as input on leaf and branch component AGB estimation at Genhe. 
Above results confirmed the robustness of GA-SVR on component AGB 
estimation but they also suggested that the improvements that can be 
achieved depend on characteristics of the forest test site. Therefore, the 
models developed in a test site do not be expected to work in another test 
site where the forest structure is different. In the future we will inves
tigate methodologies that can help exportability of models. Several 
features derived from the four decomposition methods were sensitive to 
forest total and component AGB. Polarimetric SAR features accompa
nied to GA-SVR offer a viable means for forest total and component AGB 
retrieval. With the availability of increased number of polarimetric SAR 
data at different frequencies, more frequency combination and polari
metric features need be further involved and explored in forest total and 
component AGB estimation. 
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