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Abstract
Let � ⊂ R

n be non-empty, open and proper. This paper is concerned with Wbp(�),
the space of p-integrableBorelmeasures on� equippedwith the partial transportation
metric introduced by Figalli and Gigli that allows the creation and destruction of mass
on ∂�. Alternatively, we show thatWbp(�) is isometric to a subset of Borel measures
with the ordinary Wasserstein distance, on the one point completion of � equipped
with the shortcut metric

δ(x, y) = min{‖x − y‖, dist(x, ∂�) + dist(y, ∂�)}.

In this article we construct bi-Lipschitz embeddings of the set of unordered m-tuples
in Wbp(�) into Hilbert space. This generalises Almgren’s bi-Lipschitz embedding
theorem to the setting of optimal partial transport.

1 Introduction

A striking variety of problems in geometry, analysis, combinatorics and a vast
number of applications can be neatly formulated in terms of measures and their com-
parison using transportation metrics. The prototypical transportation metric is the
p-Wasserstein distance [2]. This is defined between two Borel measures of the same
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total mass on a metric space (X , d) by

Wp(μ, ν) = inf
γ

(∫
X×X

d(x, y)p dγ (x, y)

) 1
p

, (1)

where p ≥ 1 and the infimum is taken over all measures γ on X × X with coordi-
nate projections π1γ = μ and π2γ = ν. The resulting metric space of p-integrable
probability measures equipped with Wp is denoted by Wp(X) (see Definition 2.1).

A drawback of the Wasserstein distance is the requirement that the compared mea-
sures must have the same total mass. Recently emerging theories of optimal partial
transport pertain to the transportation of measures without a mass constraint [8, 16,
20]. This article concerns the following formulation due to Figalli and Gigli [11].

Let � be an open non-empty proper subset of X . For measures μ and ν on �, one
definesWbp(μ, ν) as in (1), but the infimum is taken over measures γ on�×�with

π1γ |� = μ and π2γ |� = ν.

The resulting metric space of p-integrable measures, equipped with Wbp, will be
denoted by Wbp(X) (see Definition 3.1).

The key property ofWbp is that ∂� can be used to destroy or createmass, at a cost of
transporting it to or from ∂�. This allowsmeasures of different total masses to be com-
pared and hence one can construct a metric space consisting of all measures, instead
of restricting to probability measures. Understanding the interplay between trans-
portation metrics and ∂� is motivated by solving evolution equations with Dirichlet
boundary conditions from gradient flows [11, 21]. The metric Wbp has found further
applications such as obtaining new comparison principles for viscosity solutions [13].

A natural approach to study a metric space is to embed it into a well known space,
such as aEuclidean orBanach space, as this allows themetric space to inherit geometric
properties of the ambient space.Recall that thedistortionof an injectivemap f between
two metric spaces is Lip( f ) · Lip( f −1), where Lip( f ) is the Lipschitz constant of f ;
f is bi-Lipschitz if it has finite distortion. Since bi-Lipschitz embeddings preserve
relative distances, they are central to analysis and metric geometry [18] and have
applications to algorithm design [14].

Due to the prominence of the Wasserstein spaces in various areas of mathematics,
their embeddability has attracted much attention. The non-embeddability (into L1) of
W1 over various discrete metric spaces [5] such as the planar grid [19] and Hamming
cube [15] is known, as is the non-embeddability of Wp(R

3) for p ≥ 1 [4]. The
interest in bi-Lipschitz embeddings of the Wasserstein spaces dates back to the work
of Almgren [1, 9], forming the foundations of his celebrated partial regularity theorem
for areaminimising currents. Almgren proved that, for anym ∈ N, the set of unordered
m-tuples of points in R

n ,

Am(Rn) =
{

m∑
i=1

[[xi ]] : xi ∈ R
n ∀1 ≤ i ≤ m

}
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equipped withW2, bi-Lipschitz embeds into some Euclidean space (see Theorem 2.3).
Here and throughout, [[x]] will denote the Dirac mass at x .

In this article we generalise Almgren’s embedding to Wb2(�).

Theorem 1.1 For n ∈ N, let � ⊂ R
n be non-empty, open and proper. The space

(Bm(�),Wb2)of unordered tuples of atmostm points bi-Lipschitz embeds intoHilbert
space. The distortion of our embedding is at most cmn+5/2, for some constant c ≥ 1.

In general, Wbp(�) is not a doubling metric space and hence cannot be bi-Lipschitz
embedded into any Euclidean space, see Lemma 3.8. Therefore Hilbert space1

becomes the natural target for an embedding. Note that, since we are not constrained
to comparing measures of the same total mass, in Theorem 1.1 we consider unordered
tuples of at most m-points.

To prove Theorem 1.1, we first show, for � ⊂ X , that Wbp(�) isometrically
embeds into the ordinary p-Wasserstein space of measures on (�∗, δ), where �∗ is
the one point completion of � equipped with the shortcut metric

δ(x, y) = min{‖x − y‖, dist(x, ∂�) + dist(y, ∂�)}

for every x, y ∈ � (see Lemma 3.3). This embedding maps Bm(�) toAm(�∗) and
so, in order to prove Theorem 1.1, it remains to construct a bi-Lipschitz embedding
of Am(�∗) into Hilbert space.

We do this, for � ⊂ R
n , by considering a Whitney decomposition C of � into

cubes. This decomposition is chosen such that, inside any cube Q ∈ C, the shortcut
metric equals the Euclidean metric and consequently

Am(Q, δ) = Am(Q, ‖ ‖). (2)

In particular, Almgren’s theorem gives an embedding of each Am(Q) into some
Euclidean space. Despite the fact that any measure can be written as a sum of mea-
sures supported on cubes in C, the construction of the required bi-Lipschitz embedding
of Am(�∗) cannot be obtained simply by restricting to cubes. Indeed, Wp may not
even be defined between the restriction of two measures to a cube; even when it is,
simple examples show that the optimal transport of the restricted measures may be
incomparable to the optimal transport of the original measures.

Our approach uses (2) as the starting point to determine the optimal transport
of measures between different cubes, see Sect. 4. From this analysis we construct
a bi-Lipschitz embedding of Am(�∗) into the �2-sum of infinitely many copies of
Am(Rn+1), see Theorem 4.12. The proof of Theorem 1.1 is concluded in Sect. 5 by
applying Almgren’s embedding to each term of the �2-sum.

We mention an application of Theorem 1.1 to persistence homology. The space of
persistence barcodes can be viewed as ∪mBm(U ) for

U = {(x, y) ∈ R
2 : y > x},

1 We adopt the standard convention that Hilbert space is the unique complete and separable infinite dimen-
sional inner product space, up to isometric isomorphism.
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see [10]. Theorem 1.1 shows that the space of persistence barcodes with at most m-
points can be bi-Lipschitz embedded into Hilbert space. This answers questions raised
by Carrière and Bauer [6]. Prior to our results, it was known that Bm(U ) coarsely
embeds into Hilbert space [17]. In fact, Theorem 1.1 applies to the generalised per-
sistence barcodes introduced in [7] whenever the ambient space is Euclidean. Our
theorem also holds when Bm(�) is equipped with any Wp for p ≥ 1; due to the
equivalence of norms on R

m , these metrics are all bi-Lipschitz equivalent.
Finally, we mention that the distortion of any embedding of Bm(�) into Hilbert

space, for � ⊂ R
n , must necessarily converge to ∞ as m does, see Remark 5.3.

2 Wasserstein distance and Almgren’s embedding

Let (X , d) be a complete and separable metric space. We write M(X) for the set of
Borel measures on X and P(X) for the set of Borel probability measures on X . The
Wasserstein space is defined as follows [2, 3].

Definition 2.1 For μ, ν ∈ M(X) and p ∈ [1,∞) define

Wp(μ, ν) = inf
γ

(∫
X×X

d(x, y)p dγ (x, y)

) 1
p

,

where the infimum is taken over all couplings γ ∈ M(X × X) with coordinate
projections π1γ = μ and π2γ = ν. Note that Wp(μ, ν) < ∞ only if μ(X) = ν(X)

as otherwise there does not exist a γ as in Definition 2.1.
Let Pp(X) be those μ ∈ P(X) with

∫
X
d(x, x0)

p dμ(x) < ∞

for some (equivalently all) x0 ∈ X . Then Wp defines a metric on Pp(X). Analogous
statements hold for the case p = ∞, where the L p integral is replaced by an essential
supremum. We write Wp(X) for the set Pp(X) equipped with Wp.

Definition 2.2 For m ∈ N, define the space of unordered m-tuples

Am(X) =
{

m∑
i=1

[[xi ]] : xi ∈ X ∀1 ≤ i ≤ m

}
,

equipped with W2. Note that, on Am(X), W2 equals

W2(p, q) = min
σ∈
m

√√√√ m∑
i=1

d(pi , qσ(i))2,

where p = ∑m
i=1[[pi ]] and q = ∑m

i=1[[qi ]].
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A fundamental step in Almgren’s study of area minimising currents was the fol-
lowing bi-Lipschitz embedding.

Theorem 2.3 (Almgren, Theorem 2.1 [9]) For every m ∈ N there exists an N ∈ N

and a bi-Lipschitz embedding ξ : Am(Rn) → R
N . By inspecting the proof one sees

that ξ(0) = 0 and, for all p, q ∈ Am(Rn),

W2(p, q)

cmn+1 ≤ ‖ξ(p) − ξ(q)‖ ≤ W2(p, q)

for a constant c ≥ 1.

3 Optimal partial transport and the shortcut metric

The transportation metric Wb introduced by Figalli and Gigli [11] is defined between
two Borel measures. Originally defined for open and bounded � ⊂ R

n , we state the
natural generalisation ofWb to complete and separablemetric spaces (X , d) (the proof
of the triangle inequality is identical).

Definition 3.1 Let � ⊂ X be proper and non-empty. For μ, ν ∈ M(�) and p ∈
[1,∞) define

Wbp(μ, ν) = inf
γ

(∫
X×X

d(x, y)p dγ (x, y)

) 1
p

,

where the infimum is taken over all couplings γ ∈ M(X × X) with π1γ |� = μ and
π2γ |� = ν. Then Wbp defines a metric on

Mbp(�) := {μ ∈ M(�) : Wbp(μ, 0) < ∞}.

Analogous statements hold for the case p = ∞, where the L p integral is replaced by
an essential supremum.

WewriteWbp(�) for the setMbp(�) equippedwithWbp.We also writeWb1p(�)

for the set of μ ∈ Mbp(�) with μ(�) ≤ 1, equipped with Wbp.

The first step in our proof of Theorem 1.1 is to show an equivalence between
Wb1p(�) and Wp(�

∗), for �∗ the shortcut metric space, defined as the one point
completion of � via its complement.

Definition 3.2 For � ⊂ X non-empty and proper, let �∗ = � ∪ {∂}. For x, y ∈ �

define

δ(x, y) = min{‖x − y‖, dist(x, X\�) + dist(y, X\�)}

and δ(x, ∂) = dist(x, X\�). Then δ defines a metric on �∗.
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Profeta and Sturm [21, Remark 1.9] mention that Wb11(�) isometrically embeds
intoW1(�

∗), and give an example showing that their embedding is not an isometry for
p > 1. We show that there exists an isometric embedding of Wb1p(�) into 2Wp(�

∗)
for any p ≥ 1. Here we write 2Wp(�

∗) for the space of measures with total mass
equal to 2.

Lemma 3.3 Let X be a separable metric space and � ⊂ X be non-empty and proper.
For any p ≥ 1, the map

Wb1p(�) → 2Wp(�
∗)

ι(μ) = μ + (2 − μ(�))[[∂]],

is an isometric embedding.

Proof Given a coupling for μ, ν we use it to construct a coupling for ι(μ), ι(ν) and
vice versa.

First let μ, ν ∈ Wb1p(�) and suppose that γ ∈ M(X × X) is a coupling for μ and
ν in Wbp(�). Let π∂(x) = ∂ for all x ∈ X and define γ ′ ∈ M(�∗ × �∗) as

γ ′ = γ |�×� + (π∂ × id)#γ |X\�×� + (id×π∂)#γ |�×X\�
+ (2 − [γ (� × �) + γ (X\� × �) + γ (� × X\�)])[[(∂, ∂)]].

For notational convenience, we let κ denote the coefficient of [[(∂, ∂)]] in this expres-
sion. Then

π1γ
′ = π1(γ |�×�) + γ (X\� × �)[[∂]] + π1(γ |�×X\�) + κ[[∂]]
= π1(γ |�×�) + π1(γ |�×X\�) + (2 − [γ (� × �) + γ (� × X\�)])[[∂]]
= π1(γ |�×X ) + (2 − γ (� × X))[[∂]]
= μ + (2 − μ(X))[[∂]] = ι(μ).

Similarly, by symmetry, π2γ
′ = ι(ν). Thus γ ′ is a coupling of ι(μ) and ι(ν) in

Wp(�
∗). Moreover,

∫
δ(x, y)p dγ ′(x, y) =

∫
�×�

δ(x, y)p dγ (x, y) +
∫
X\�×�

δ(∂, y)p dγ (x, y)

+
∫

�×X\�
δ(x, ∂)pdγ (x, y) + κδ(∂, ∂)p

≤
∫

�×�

d(x, y)p dγ (x, y) +
∫
X\�×�

d(x, y)p dγ (x, y)

+
∫

�×X\�
d(x, y)p dγ (x, y)

=
∫

d(x, y)p dγ (x, y). (3)
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Therefore,

Wp(ι(μ), ι(ν)) ≤ Wbp(μ, ν).

Conversely, let γ be a coupling for ι(μ) and ι(ν) inWp(�
∗). Define the closed set

E = {(x, y) ∈ � × � : δ(x, y) = d(x, y)}.

Fix ε > 0 and for each x ∈ �, let c(x) ∈ X\� with

d(x, c(x)) ≤ (1 + ε) dist(x, X\�).

Since X is separable, c may be chosen to be a Borel function with countable image.
Let c1 = (id×c) ◦ π1 and c2 = (c × id) ◦ π2 and define

γ ′ = γ |E + (c1)#γ |(�×�∗)\E + (c2)#γ |(�∗×�)\E ∈ M(X × X). (4)

Note that, since π1((c1)#γ ) is supported on X\�, its restriction to � equals 0. There-
fore,

(π1γ
′)|� = (π1γ |E )|� + (π1γ |(�×�∗)\E )|� + 0 = (π1γ )|� = μ.

Similarly, by symmetry, (π2γ
′)|� = ν. Hence γ is a coupling forμ and ν inWbp(�).

Now, for any (x, y) ∈ (� × �)\E ,

d(x, c(x))p + d(c(y), y)p ≤ (1 + ε)p(δ(x, ∂)p + δ(∂, y)p) ≤ (1 + ε)pδ(x, y)p.

Therefore,

∫
X×X

d(x, y)p dγ ′(x, y) =
∫
E
d(x, y)p dγ (x, y) +

∫
(�×�∗)\E

d(x, c(x))p dγ (x, y)

+
∫

(�∗×�)\E
d(c(y), y)p dγ (x, y)

≤
∫
E
d(x, y)p dγ (x, y)

+
∫

(�∗×�∗)\E
(1 + ε)pδ(x, y)p dγ (x, y)

≤ (1 + ε)p
∫

�∗×�∗
δ(x, y)p dγ (x, y). (5)

Since ε > 0 is arbitrary, this shows that

Wp(ι(μ), ι(ν)) ≥ Wbp(μ, ν).

��

123



D. Bate, A. L. Garcia Pulido

Remark 3.4 After the first version of this article appeared, we were made aware that
the statement of Lemma 3.3, for the case � = U as defined in our introduction,
appears in the work of Divol and Lacombe [10, Proposition 3.15]. Note that our proof
does not rely on the existence of unique closest points in ∂�, whilst the one in [10]
does. However, a flaw in their argument makes the proof incorrect even for the case
of � = U .

Central to their proof is the definition of a measure π̃ ′ and the claim that it is a
coupling of μ̃ and ν̃ in Wp(�

∗) (using the variables of [10, Lemma 3.17]). Using
this they derive [10, Equation (3.8)] from which the proof is concluded. However,
examples such as [21, Remark 1.9] show this equation to be false. Moreover, this
equation would imply that δ = d in �. These contradictions originate in the fact that
π̃ ′ is not a coupling of μ̃ and ν̃, which can be verified by comparing the total measure
of π̃ ′ to that of μ̃, ν̃ or π̃ .

Since the map
2Wp(�

∗) → Wp(�
∗)

μ �→ μ/2

has distortion 21/p, we obtain the following corollary.

Corollary 3.5 Let X be a separable metric space and� ⊂ X be non-empty and proper.
Then Wb1p(�) bi-Lipschitz embeds into Wp(�

∗) with distortion 2.

The same proof as the one for Lemma 3.3 shows that the full space Wbp(�)

isometrically embeds intoM(�∗).

Lemma 3.6 Let X be a separable metric space and � ⊂ X non-empty and proper.
For any p ≥ 1,

Wbp(�) → (M(�∗),Wp)

ι′(μ) = μ + ∞ · [[∂]]

is an isometric embedding.

Remark 3.7 For any μ ∈ Mbp(�),

Wp(ι
′(μ),∞ · [[∂]]) = Wbp(μ, 0) < ∞.

Therefore, the triangle inequality for Wp implies that Wp is indeed a metric on the
image of ι′.

Proof (Proof of Lemma 3.6) If μ, ν ∈ Mbp(�) then

γ ′ = γ |�×� + (π∂ × id)#γ |X\�×� + (id×π∂)#γ |�×X\� + ∞ · [[(∂, ∂)]]

defines a coupling of ι′(μ) and ι′(ν). The calculation in (3) shows that

Wp(ι
′(μ), ι′(ν)) ≤ Wbp(μ, ν).
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Conversely, if μ, ν ∈ Mbp(�), then γ ′ as defined in (4) is a coupling for μ, ν and
(5) shows that

Wp(ι
′(μ), ι′(ν)) ≥ Wbp(μ, ν).

��

3.1 The shortcut metric space is not doubling

A metric space X is doubling if there exists N ∈ N such that each ball B ⊂ X is
covered by N balls of half the radius of B.

Lemma 3.8 For n ≥ 2, let � ⊂ R
n be non-empty and open such that � is a proper

subset of Rn. Then for any N ∈ N and any sufficiently small ε > 0, there exist
y1, . . . , yN ∈ � with δ(yi , y j ) = ε for each i �= j . In particular, �∗ is not doubling.

Proof Let x /∈ � and y ∈ �. For N ∈ N, let y1, . . . , yN ∈ � lie on the circle centred
on x of radius ‖x − y‖ (such points exist since � is open). For each 1 ≤ i ≤ N , let l ′i
be the line segment connecting yi to x and let li be the connected component of l ′i ∩�

containing yi . Since x /∈ �, there exists η > 0 such that

inf{‖z − z′‖ : z ∈ li , z′ ∈ l j , i �= j} > η.

Now, dist(·, ∂�) is continuous on each li and converges to 0 as one travels along li
towards ∂�. Therefore, for each sufficiently small ε > 0 and each 1 ≤ i ≤ N , there
exists zi ∈ li with dist(zi , ∂�) = ε/2. In particular, if ε < η, then δ(zi , z j ) = ε for
each 1 ≤ i �= j ≤ N .

Finally, we see that yi ∈ B(y1, ε) for each 1 ≤ j ≤ N , but we require at least N
balls of radius ε/4 to cover B(y1, ε). Since N ∈ N is arbitrary,�∗ cannot be doubling.

��

Remark 3.9 Lemma 3.8 is sharp in the following sense. If � = (−1, 1) ⊂ R, then �∗
is bi-Lipschitz equivalent to a Euclidean circle. For any n ∈ N, if � = R

n\{0}, then
�∗ is isometric to Rn . In both of these cases, the conclusion of Lemma 3.8 fails.

Note that each Euclidean space is doubling and that the doubling property is pre-
served under taking subsets and bi-Lipschitz images. Therefore, if a metric space is
bi-Lipschitz embeddable into some Euclidean space, it must necessarily be doubling.

Corollary 3.10 For n ≥ 2 let � ⊂ R
n be non-empty and open such that � is a proper

subset of Rn. Then �∗ is not bi-Lipschitz embeddable into any Euclidean space.
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3.2 The space of unordered tuples of at mostm points

Definition 3.11 Let X be a metric space, � ⊂ X non-empty and proper and m ∈ N.
Define the space of unordered tuples of at most m points as

Bm(�) =
m⋃

k=1

Ak(�),

with the metric inherited from Wb2(�).

This space is naturally identified with a subset of Am(�∗).

Corollary 3.12 Let m ∈ N. For any separable metric space X and non-empty and
proper � ⊂ X, Bm(�) isometrically embeds into Am(�∗) via the map

k∑
i=1

[[xi ]] �→
k∑

i=1

[[xi ]] + (2m − k)[[∂]].

Proof Embed Bm(X) intoWb1p(X) by μ �→ μ/m, apply Lemma 3.3, and then embed
into Am(�∗) by μ �→ mμ. ��

4 A bi-Lipschitz description ofAm(Ä∗) in terms ofAm(R
n+1)

To construct the bi-Lipschitz embedding from Theorem 1.1, it would be natural to
adapt the techniques from the proof of Theorem 2.3 to our setting. However, the proof
of Theorem 2.3 strictly depends on both, the linear structure of Rn (in particular the
existence of projections), and the compactness of the unit ball. Although � ⊂ R

n as
a set, δ bears no relationship to the linear structure of Rn and this fact prohibits the
direct use of Almgren’s techniques. On the other hand, whilst it is possible to find
a bi-Lipschitz embedding of �∗ into �2 to gain a linear structure, this comes at the
expense of compactness of the unit ball. Thus it is not possible to modify Almgren’s
proof to our setting.

In order to prove Theorem 1.1 we will use a Whitney decomposition C of � into
cubes

� =
⋃
Q∈C

Q

(see Proposition 4.2) such that, within each Q, δ is given by ‖ · ‖. Consequently,
Am(Q, δ) = Am(Q, ‖ · ‖). Theorem 2.3 then gives a bi-Lipschitz embedding of each
Am(Q, δ) intoRN and it would be favourable to use these embeddings as “coordinate
projections" to construct a global embedding intoHilbert space.Of course, the union of
theAm(Q) does not coverAm(�∗) and therefore we cannot simply define coordinate
projections by taking restrictions to each Q. Nevertheless, the fact that Am(Q, δ) =
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Am(Q, ‖·‖) enables us to construct amapφ∗
Q : Am(�∗) → Am(Rn+1)which, roughly

speaking, acts as a smooth projection to Am(Q).
The main result of this section shows that the φ∗

Q can be combined to define a
bi-Lipschitz embedding of Am(�∗) into the following metric space.

Definition 4.1 Let C be a countable set and define

T :=
∑
Q∈C

Am(Rn+1)

to be the �2-sum of copies of Am(Rn+1). That is, T consists of sequences

∑
Q∈C

aQ

of elements of Am(Rn+1) for which

∑
Q∈C

W 2
2 (aQ, 0) < ∞,

where 0 = ∑m
i=1[[0]], equipped with the metric

√∑
Q∈C

W 2
2 (aQ, a′

Q).

Once we have an embedding into T , we will show that it is possible to find an
embedding into �2. Indeed, in Sect. 5, we apply Theorem2.3 to each term in the
definition of T to obtain a bi-Lipschitz embedding of T into �2.

4.1 AWhitney decomposition ofÄ

To construct the embedding into T , we will use a Whitney decomposition of �. For
a cube Q ⊂ R

n , let l(Q) denote the side length of Q.

Proposition 4.2 (Appendix J [12]) Let� ⊂ R
n be non-empty, open and proper. There

exists a family of closed cubes C such that

1. ∪C = � and the elements of C have disjoint interiors.
2.

√
nl(Q) ≤ dist(Q, ∂�) ≤ 4

√
nl(Q) for all Q ∈ C.

3. If Q, Q′ ∈ C and Q ∩ Q′ �= ∅ then

1

4
≤ l(Q)

l(Q′)
≤ 4.

We say that Q, Q′ are neighbours.
4. Each Q ∈ C has at most 12n neighbours.
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A Whitney decomposition of � estimates which quantity attains the minimum in
the definition of δ.

Lemma 4.3 Let C be a Whitney decomposition of � ⊂ R
n, Q, Q′ ∈ C and x ∈ Q and

y ∈ Q′. Then
√
nl(Q) ≤ dist(x, ∂�) ≤ 5

√
nl(Q). (6)

If Q, Q′ are neighbours then

δ(x, y) = ‖x − y‖. (7)

If Q, Q′ are not neighbours then

l(Q) + l(Q′)
8

≤ δ(x, y) ≤ 5
√
n(l(Q) + l(Q′)). (8)

Proof The first inequality in (6) is implied by
√
nl(Q) ≤ dist(Q, ∂�). The second

follows from the triangle inequality:

dist(x, ∂�) ≤ dist(Q, ∂�) + diam(Q) ≤ 4
√
nl(Q) + √

nl(Q).

Now suppose Q, Q′ are neighbours and let z ∈ Q ∩ Q′. Then by (6),

dist(x, ∂�) + dist(y, ∂�) ≥ √
n(l(Q) + l(Q′))

≥ ‖x − z‖ + ‖z − y‖ ≥ ‖x − y‖,

giving (7).On the other hand, suppose that Q, Q′ are not neighbours and l(Q) ≥ l(Q′).
Then ‖x − y‖ ≥ l(Q′′) for Q′′ a neighbour of Q. In particular

‖x − y‖ ≥ l(Q′′) ≥ l(Q)

4
≥ l(Q) + l(Q′)

8
,

giving the first inequality in (8). The second inequality follows from (6). ��
For the remainder of the paper we fix m ∈ N, � ⊂ R

n non-empty, open and
proper and C a Whitney decomposition of � as in Proposition 4.2. We also fix T as
in Definition 4.1.

4.2 Constructing a coordinate system

To construct a bi-Lipschitz embedding of Am(�∗) into T , we define projections

φ∗
Q : Am(�∗) → Am(Rn+1)

that serve as a coordinate system for Am(�∗). The embedding into T will then be
defined as the �2-sum of the φ∗

Q (see Definition 4.6).
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We begin with the construction of a function φQ that approximates the identity
within a given Q ∈ C, is supported on the neighbours of Q, and maintains bi-Lipschitz
boundswith δ. For Q ∈ C and r > 0,wewrite B(Q, r) for the closed r -neighbourhood
of Q.

Lemma 4.4 For each Q ∈ C there exists a map

φQ : � → R
n+1

such that

1. φQ is 9
√
n + 1-Lipschitz;

2. φQ(x) = 0 for all x /∈ B(Q, l(Q)/4). In particular, φQ is supported on the
neighbours of Q;

3. ‖φQ‖∞ ≤ √
n + 1l(Q);

4. For all x, y ∈ B(Q, l(Q)/8),

‖φQ(x) − φQ(y)‖ = ‖x − y‖;

5. The extension of φQ to �∗, defined by φQ(∂) = 0, is 9
√
n + 1-Lipschitz with

respect to δ;
6. If x ∈ B(Q, l(Q)/8) and y ∈ �∗, then

‖φQ(x) − φQ(y)‖ ≥ min

{‖x − y‖
2
√
n

, l(Q)

}
.

Proof Fix Q ∈ C and let c be the centre of Q. For each x ∈ �, let

η(x) = max

{
1 − dist

(
x, B

(
Q,

l(Q)

8

))
8

l(Q)
, 0

}
.

That is, η is an 8/l(Q)-Lipschitz function with ‖η‖∞ = 1 that equals 1 on
B(Q, l(Q)/8) and 0 on �\B(Q, l(Q)/4). We also set

ϕ(x) = (x − c, l(Q)) ∈ R
n+1,

a 1-Lipschitz function satisfying ‖ϕ(x)‖ ≤ √
n + 1l(Q) for all x in the support of η.

Define φQ = ηϕ. Since φQ is a product of Lipschitz functions, the Lipschitz
constant of φQ is bounded above by

Lipϕ‖η‖∞ + sup{‖ϕ(x)‖ : x ∈ spt η}Lip η ≤ 1 + √
n + 1l(Q)

8

l(Q)
≤ 9

√
n + 1.

This demonstrates item 1. Items 2 to 4 are immediate.
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To see item 5, first let x ∈ �∗ be such that φQ(x) �= 0. Then by item 2, x ∈ Q′ for
Q′ a neighbour of Q, so that l(Q′) ≥ l(Q)/4. Therefore, by item 3,

‖φQ(x)‖ ≤ √
n + 1 l(Q)

≤ 4
√
n + 1 l(Q′)

≤ 8 dist(x, ∂�),

using Eq. (6) for the final inequality. Thus

‖φQ(x)‖ ≤ 8 dist(x, ∂�)

holds for any x ∈ �∗ (including x = ∂). Therefore, by the triangle inequality, for any
x, y ∈ �∗,

‖φQ(x) − φQ(y)‖ ≤ 8 (dist(x, ∂�) + dist(y, ∂�)) .

Combining this inequality with item 1 shows that φQ is 9
√
n + 1-Lipschitz with

respect to δ on �∗.
Finally, to see item 6, first suppose that y /∈ B(Q, l(Q)/4). Then by item 2,

‖φQ(x) − φQ(y)‖ = ‖ϕ(x)‖ ≥ l(Q),

so that item 6 holds in this case.
In the case y ∈ B(Q, l(Q)/4) we will show that

‖φQ(x) − φQ(y)‖ ≥ ‖x − y‖
2
√
n

, (9)

completing the proof of item 6. To this end, note that

‖y − c‖ ≤ √
n
l(Q)

2
+ l(Q)

4
≤ √

nl(Q).

Therefore, by considering the first component of φQ , we see that

‖φQ(x) − φQ(y)‖ ≥ ‖(x − c) − η(y)(y − c)‖
≥ ‖x − y‖ − (1 − η(y))‖y − c‖
≥ ‖x − y‖ − √

n(1 − η(y))l(Q).

Thus, if

√
n(1 − η(y))l(Q) ≤ ‖x − y‖

2
, (10)
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then (9) holds. On the other hand, if (10) does not hold, then by considering the final
component of φ, we have

‖φQ(x) − φQ(y)‖ ≥ (1 − η(y))l(Q) ≥ ‖x − y‖
2
√
n

,

giving (9). ��
The pushforwards under each φQ define our coordinate projections on Am(�).

Definition 4.5 For every Q ∈ C, define φ∗
Q to be the pushforward under φQ . That is,

φ∗
Q : Am(�∗) → Am(Rn+1)

m∑
i=1

[[pi ]] �→
m∑
i=1

[[φQ(pi )]].

Recall the construction of T from Definition 4.1.

Definition 4.6 Define the embedding φ∗ by

Am(�∗) → T
φ∗ =

∑
Q∈C

φ∗
Q

This is well defined since each φQ is supported on the neighbours of Q, so that
each x ∈ � is contained in the support of at most 12n of the φQ .

4.3 �∗ is bi-Lipschitz

In this section we show that φ∗ is a bi-Lipschitz embedding, beginning by showing
that it is Lipschitz.

For p ∈ (�∗)m and S ⊂ �∗, let

p−1(S) = {1 ≤ k ≤ m : pk ∈ S}.

From now on we use the notation σq to denote the element of (Rn)m arising from
the natural action of the symmetric group 
m on (Rn)m : (σq)i = qσ(i) for each
1 ≤ i ≤ m.

Lemma 4.7 For any p, q ∈ Am(�∗),
∑
Q∈C

W2(φ
∗
Q(p), φ∗

Q(q))2 ≤ c0W
2
2 (p, q),

where c0 ≥ 1 depends only upon n.
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Proof Fix p, q ∈ (�∗)m and let Q ∈ C and σ ∈ 
m . Set

Jσ
Q = p−1(B(Q, l(Q)/4)) ∪ (σq)−1(B(Q, l(Q)/4)),

so that, by Lemma 4.4 item 2,

m∑
k=1

‖φQ(pk) − φQ(qσ(k))‖2 =
∑
k∈Jσ

Q

‖φQ(pk) − φQ(qσ(k))‖2.

Applying Lemma 4.4 item 5 gives

m∑
k=1

‖φQ(pk) − φQ(qσ(k))‖2 ≤ 92(n + 1)
∑
k∈Jσ

Q

δ(pk, qσ(k))
2.

Therefore

∑
Q∈C

min
σ∈
m

m∑
k=1

‖φQ(pk) − φQ(qσ(k))‖2 ≤ 92(n + 1)
∑
Q∈C

min
σ∈
m

∑
k∈Jσ

Q

δ(pk, qσ(k))
2.

Further,

∑
Q∈C

min
σ∈
m

∑
k∈Jσ

Q

δ(pk, qσ(k))
2 ≤ min

σ∈
m

∑
Q∈C

∑
k∈Jσ

Q

δ(pk, qσ(k))
2

≤ min
σ∈
m

2 · 12n
m∑

k=1

δ(pk, qσ(k))
2,

since B(Q, l(Q)/4) is contained within the union of the neighbours of Q. The result
follows for c0 = 2 · 92 · 12n(n + 1). ��

To prove the lower Lipschitz bound, we fix the following notation until the end of
the section.

Notation 4.8 Fix p, q ∈ (�∗)m and, for every Q ∈ C, let σQ ∈ 
m be such that

m∑
k=1

‖φQ(pk) − φQ(qσQ(k))‖2 = W2(φ
∗
Q(p), φ∗

Q(q))2. (11)

Let Q ∈ C. For integer 0 ≤ r ≤ 2m, the annuli

Qr = B

(
Q,

r + 1

3m

l(Q)

8

)
\B

(
Q,

r

3m

l(Q)

8

)
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are disjoint and so there exists 0 ≤ r ≤ 2m such that

p−1(Qr ) ∪ (σQq)−1(Qr ) = ∅. (12)

Set

Q̂ = B

(
Q,

r

3m

l(Q)

8

)
.

Note that Q̂ is contained within the union of the neighbours of Q.
Let c1 = (48

√
n)−1 and define C′ to be the set of Q ∈ C for which

W2(φ
∗
Q(p), φ∗

Q(q)) < c1
l(Q)

m
. (13)

Set

E =
⋃
Q∈C′

Q̂.

To obtain a lower bound of

∑
Q∈C

W2(φ
∗
Q(p), φ∗

Q(q))2 (14)

in terms of W 2
2 (p, q), we will construct a τ ∈ 
m for which

∑m
i=1 δ(pi , qτ(i))

2 is
comparable to (14). A first attempt to do this may be, for each Q ∈ C and each
i ∈ p−1(Q), to define τ(i) = σQ(i). Of course, a τ defined in this way need not be
injective, for example if there exist Q �= Q′ ∈ C and i �= j such that qσQ(i) = qσQ′ ( j).
Nonetheless, we will show that it is possible to construct a permutation for the cubes
in C′. Indeed, we now show that conditions (12) and (13) ensure that, for each Q ∈ C′,
pi ∈ Q̂ if and only if qσQ(i) ∈ Q̂: (12) provides a moat surrounding Q̂ and (13)
ensures that the distance between pi and qσQ(i) is less than the width of the moat.

Lemma 4.9 For any Q ∈ C′,

p−1(Q̂) = (σQq)−1(Q̂) (15)

and

‖pk − qσQ(k)‖ = ‖φQ(pk) − φQ(qσQ(k))‖ ∀k ∈ p−1(Q̂). (16)

Moreover, if R ∈ C′ with l(R) ≤ l(Q),

p−1(Q̂ ∩ R̂) = (σRq)−1(Q̂ ∩ R̂) (17)
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Proof For any k ∈ p−1(Q̂), (13) and Lemma 4.4 item 6 imply

min

{‖pk − qσQ(k)‖
2
√
n

, l(Q)

}
< c1

l(Q)

m
.

In particular,

‖pk − qσQ(k)‖ <
l(Q)

24m
. (18)

Therefore (12) implies that qσQ(k) ∈ Q̂. By symmetry, if k ∈ (σQq)−1(Q̂) then
k ∈ p−1(Q̂) and so (15) holds. Since Q̂ ⊂ B(Q, l(Q)/8), Lemma 4.4 item 4 implies
(16).

Now let R ∈ C′ with l(R) ≤ l(Q) and k ∈ p−1(Q̂ ∩ R̂). Then (18) for R implies

‖pk − qσR(k)‖ <
l(R)

24m
≤ l(Q)

24m

and so (12) implies qσR(k) ∈ Q̂. The similar argument with p and σRq exchanged
gives (17). ��

By carefully partitioning E using the Q̂, we use Lemma 4.9 to construct the desired
permutation on p−1(E).

Proposition 4.10 There exists a bijection τ : p−1(E) → q−1(E) such that

∑
k∈p−1(E)

‖pk − qτ(k)‖2 ≤
∑
Q∈C′

W2(φ
∗
Q(p), φ∗

Q(q))2.

Proof Let

C′′ = {Q ∈ C′ : p−1(Q̂) �= ∅}.

Note that, by (15),C′′ can equivalently be defined as the set of Q ∈ Cwithq−1(Q̂) �= ∅.
Since C′′ is finite, we enumerate it as

C′′ = {Q1, Q2, . . . , Q j }

in such a way that

l(Q1) ≥ l(Q2) ≥ · · · ≥ l(Q j ).

Then, for 1 ≤ i ≤ k ≤ j , applying Lemma 4.9 with Q = Qk and R = Qi gives

p−1 (
Q̂i ∩ Q̂k

) = (σQkq)−1 (
Q̂i ∩ Q̂k

) ∀1 ≤ i ≤ k ≤ j . (19)
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Let B1 = Q̂1 and for each 2 ≤ k ≤ j define

Bk := Q̂k\
k−1⋃
i=1

Q̂i = Q̂k\
k−1⋃
i=1

Q̂i ∩ Q̂k .

Then (19) implies that σQk is a permutation between p−1(Bk) and σQkq
−1(Bk) for

each 1 ≤ k ≤ j . Therefore, we define a bijection

τ : p−1(E) → q−1(E)

by setting τ to equal σQk on Dk := p−1(Bk) for each 1 ≤ k ≤ j . Then

∑
k∈p−1(E)

‖pk − qτ(k)‖2 =
j∑

i=1

∑
k∈Di

‖pk − qτ(k)‖2

=
j∑

i=1

∑
k∈Di

‖pk − qσQi (k)
‖2

=
j∑

i=1

∑
k∈Di

‖φQi (pk) − φQi (qσQi (k)
)‖2

≤
∑
Q∈C′′

m∑
k=1

‖φQ(pk) − φQ(qσQ(k))‖2,

using (16) for the third equality. Finally (11) completes the proof. ��
Next we consider the points outside E for which we use the distance to ∂� to

estimate δ.

Lemma 4.11 For any bijection

σ : p−1(�\E) → q−1(�\E)

we have

∑
k∈p−1(�\E)

(dist(pk, ∂�) + dist(qσ(k), ∂�))2 ≤ m3c2
∑

Q∈C\C′
W2(φ

∗
Q(p), φ∗

Q(q))2,

for c2 ≥ 1 that depends only upon n.

Proof For a moment fix k ∈ p−1(�\E) and let Q ∈ C contain pk . Then necessarily
Q /∈ C′. Therefore (13) and (6) imply

W2(φ
∗
Q(p), φ∗

Q(q)) ≥ c1
m
l(Q) ≥ c1

5
√
nm

dist(pk, ∂�).
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Since each Q ∈ C contains at most m such points pk ,

∑
k∈p−1(�\E)

dist(pk, ∂�)2 ≤ 25m2n

c21
m

∑
Q∈C\C′

W2(φ
∗
Q(p), φ∗

Q(q))2.

The same estimate for σq gives the desired inequality for c2 = 4 · 25n/c21. ��
We combine our previous results to show that φ∗

Q is a bi-Lipschitz embedding.

Theorem 4.12 For any p, q ∈ Am(�∗),

W2(p, q)2

c3m3 ≤
∑
Q∈C

W2(φ
∗
Q(p), φ∗

Q(q))2 ≤ c3W2(p, q)2,

where c3 ≥ 1 depends only upon n.

Proof The right hand inequality is given by Lemma 4.7.
For the left hand inequality, let τ be the bijection obtained from Proposition 4.10

and arbitrarily extend it to a bijection of {1, . . . ,m}. Then
∑
Q∈C

W2(φ
∗
Q(p), φ∗

Q(q))2 =
∑
Q∈C′

m∑
k=1

‖φQ(pk) − φQ(qσQ(k))‖2

+
∑
Q /∈C′

m∑
k=1

‖φQ(pk) − φQ(qσQ(k))‖2

≥
∑

k∈p−1(E)

‖pk − qτ(k)‖2

+ 1

c2m3

∑
k∈p−1(�\E)

(dist(pk, ∂�) + dist(qτ(k), ∂�))2

≥ 1

c2m3

m∑
k=1

δ(pk, qτ(k))
2

≥ 1

c2m3W2(p, q)2,

using Proposition 4.10 and Lemma 4.11 for the first inequality. ��

5 The embedding into Hilbert space

In this section we conclude the proof of Theorem 1.1. Let ξ : Am(Rn+1) → R
N be

the embedding given by Theorem 2.3. We write

�2 =
∑
Q∈C

R
N
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as a direct l2-sum over C. Recall the construction of T from Definition 4.1.

Lemma 5.1 The function ξ ′ : T → �2 defined by

∑
Q∈C

Am(Rn+1) →
∑
Q∈C

R
N

ξ ′ =
∑
Q∈C

ξ

is well defined. Moreover, for any a, b ∈ T ,

1

cm2n+2

∑
Q∈C

W2(aQ, bQ)2 ≤ ‖ξ ′(a) − ξ ′(b)‖2 ≤
∑
Q∈C

W2(aQ, bQ)2,

for c ≥ 1 depending only upon n.

Proof Let a ∈ T , so that

∑
Q∈C

W2(pQ, 0)2 < ∞.

Since ξ is 1-Lipschitz this implies that

∑
Q∈C

‖ξ(pQ)‖2 =
∑
Q∈C

‖ξ(pQ) − ξ(0)‖2 ≤
∑
Q∈C

W2(pQ, 0)2 < ∞.

Hence, ξ ′ is well defined. Moreover, using that ξ is 1-Lipschitz again, we have, for
any b ∈ T ,

∑
Q∈C

‖ξ(aQ) − ξ(bQ)‖2 ≤
∑
Q∈C

W2(aQ, bQ)2,

so that ξ ′ is also 1-Lipschitz. Finally, Theorem 2.3 gives

∑
Q∈C

‖ξ(aQ) − ξ(bQ)‖2 ≥ 1

cm2n+2

∑
Q∈C

W2(aQ, bQ)2.

��
Theorem 5.2 There exists a bi-Lipschitz embedding ζ : Bm(�) → �2 with distortion
at most cmn+5/2, for c ≥ 1 depending only upon n. That is, for any p, q ∈ Bm(�),

W2(p, q)

cmn+5/2
≤ ‖ζ(p) − ζ(q)‖ ≤ cW2(p, q).
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Proof First isometrically embed Bm(�) into Am(�∗) via Corollary 3.12. One then
applies Theorem 4.12 to bi-Lipschitz embed Am(�∗) into T . Finally, Lemma 5.1
bi-Lipschitz embeds T into �2, as required. ��

Remark 5.3 For n ≥ 3, the distortion of any embedding ofAm(�∗) into �2 converges
to ∞ as m increases. In particular, Wb2(�) does not bi-Lipschitz embed into �2.

Indeed, by Eq. (7) we see that Am(�∗) contains an isometric copy of Am(Q) for
some cube Q. Thus, the distortion of any embedding into �2 is at least that ofAm(Q).
For n ≥ 3, Andoni, Naor and Nieman [4, Theorem 7] prove that W2(R

n) does not
coarsely, in particular bi-Lipschitz, embed into any Banach space of non-trivial type,
namely Hilbert space. Since the set of discrete measures is dense inW2(R

n), a scaling
argument shows that the distortion of any bi-Lipschitz embedding of Am(Q) must
converge to ∞ as m does.

The same conclusion can be made for n = 2 using an unpublished result of Austin
and Naor announced in [4, Remark 8], which states thatW2(R

2) does not bi-Lipschitz
embed into L1 and, hence, does not bi-Lipschitz embed into �2.
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