
Vol.:(0123456789)

Automated Software Engineering (2025) 32:15
https://doi.org/10.1007/s10515-024-00473-6

Large language model based mutations in genetic
improvement

Alexander E. I. Brownlee1 · James Callan2 · Karine Even‑Mendoza3 ·
Alina Geiger4 · Carol Hanna2 · Justyna Petke2 · Federica Sarro2 ·
Dominik Sobania4

Received: 17 May 2024 / Accepted: 8 October 2024
© The Author(s) 2025

Abstract
Ever since the first large language models (LLMs) have become available, both
academics and practitioners have used them to aid software engineering tasks.
However, little research as yet has been done in combining search-based software
engineering (SBSE) and LLMs. In this paper, we evaluate the use of LLMs as
mutation operators for genetic improvement (GI), an SBSE approach, to improve
the GI search process. In a preliminary work, we explored the feasibility of
combining the Gin Java GI toolkit with OpenAI LLMs in order to generate an edit
for the JCodec tool. Here we extend this investigation involving three LLMs and
three types of prompt, and five real-world software projects. We sample the edits
at random, as well as using local search. We also conducted a qualitative analysis
to understand why LLM-generated code edits break as part of our evaluation. Our
results show that, compared with conventional statement GI edits, LLMs produce
fewer unique edits, but these compile and pass tests more often, with the OpenAI
model finding test-passing edits 77% of the time. The OpenAI and Mistral LLMs
are roughly equal in finding the best run-time improvements. Simpler prompts are
more successful than those providing more context and examples. The qualitative
analysis reveals a wide variety of areas where LLMs typically fail to produce valid
edits commonly including inconsistent formatting, generating non-Java syntax, or
refusing to provide a solution.

Keywords  Large language models · Genetic improvement

1  Introduction

With the ever-growing size and complexity of software systems, their
maintenance requires a huge amount of manual effort (Böhme et al. 2017).
Therefore, methods for automating software maintenance and optimisation have

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-024-00473-6&domain=pdf

	 Automated Software Engineering (2025) 32:15 15   Page 2 of 25

been proposed. Although a lot of attention has been devoted to automated bug
fixing, more and more techniques for improvement of non-functional properties
of software such as runtime or memory consumption have emerged (Sarro 2023;
Blot and Petke 2022; Hort et al. 2021).

Genetic Improvement (GI) (Petke et al. 2018) applies search-based techniques
to improve such properties of existing software. Although GI has had success in
the industry (Kirbas et al. 2021; Marginean et al. 2019), it remains limited by
the set of mutation operators it employs in the search (Petke et al. 2023). Given
that Large Language Models (LLMs) have found a wide range of applications
in software engineering, in our preliminary work (Brownlee et al. 2024a) we
checked if they could be used to generate new mutations for GI.

LLMs are able to process textual queries without additional training for the
particular task at hand, and have been pre-trained on billion lines of code (Chen
et al. 2021). Their use for software engineering tasks has had great success (Hou
et al. 2023; Fan et al. 2023), showing promise also for program repair (Sobania
et al. 2023; Xia and Zhang 2023). Kang and Yoo (2023) have suggested that there
is untapped potential in using LLMs to enhance GI. GI uses the same mutation
operators for different optimisation tasks. These operators are hand-crafted prior
to starting the search and thus result in a limited search space.

In our preliminary work, we equipped a Genetic Improvement (GI) search-
based framework called Gin (Brownlee et al. 2019) with a novel mutation
operator that queried OpenAI’s API for generating a patch. Our initial results
showed that mutations generated by LLMs can lead to viable program variants.

In this paper, we extend that work by investigating the effectiveness of using
three different LLMs and three specialised prompts with Gin on five different
open-source software projects. In particular, we make the following contributions:

1.	 We sample random mutations for each combination of LLMs, prompts, and
software projects, and benchmark the performance against ‘statement’ edits
commonly used in the GI community that copy, delete, replace, or swap elements
of the AST (Petke et al. 2023). Our results show that, compared with conventional
statement GI edits, LLMs produce fewer unique edits, but these compile and
pass tests more often. OpenAI performed best over all target projects, finding
test-passing edits an average of 77% of the time. The figures for local models
Mistral and TinyDolphin were 31% and 7% compared to conventional
statement edits at 12% on average. Simpler prompts were also more successful
than those providing more context and examples.

2.	 We run local search to find runtime improvements. Our results show that OpenAI
and Mistral were roughly equal in finding the best run-time improvements;
Mistral found the maximum and highest average run time improvement on
three projects, with OpenAI finding the best on the other two. TinyDolphin
was able to find the highest average improvement on one project, JCodec .

3.	 We perform a qualitative analysis of the suggested edits from the LLMs. Our
results show that valid edits were not found for a variety of reasons: from
inconsistent formatting of code, or use of languages other than Java, in the

Automated Software Engineering (2025) 32:15 	 Page 3 of 25  15

response, to simply refusing to provide the requested suggestions. In particular,
a provision of example changes in the prompt tended to lead to echoing of the
examples in the LLM’s response, or erroneous responses.

In order to facilitate replication, reproduction and extension of our work, we make
available the code, LLMs prompts, data and results at (Brownlee et al. 2024).

The rest of this paper is divided as follows: Sect. 2 describes our approach for
incorporating LLM-generated mutations within Gin , a GI framework; Sect. 3
presents our research questions; Sect. 4 explains the experimental setup to evaluate
our proposed approach with different LLMs and prompts; Sect. 5 presents our
results; with Sect. 6 discussing threats to validity; Sect. 7 positions our work within
existing literature; while Sect. 8 concludes our paper.

2 � Approach

We are investigating the application of LLMs to generate edits (code variants)
for genetic improvement. In this section, we set out the essential preliminaries of
Genetic Improvement (GI), edits, and testing (Subsection 2.1), and then move on to
describe our approach to integrating an LLM within GI.

2.1 � Genetic improvement framework

Our test framework used the Gin (Brownlee et al. 2019) toolkit for Genetic
Improvement in Java. Gin ’s approach to Genetic Improvement centres on the
concept of edits: small changes to the code. Collections of edits, referred to as
patches, are applied to a target application, compiled, and run using unit tests.
The search for patches that make an improvement of some kind is carried out by a
heuristic such as local search. The framework implemented in Gin is as follows:

Profiling. For each program, Gin ’s profiler determines a set of hot methods. In
Gin , these are the methods seen most often at the top of the stack, when the full test
suite is executed. The assumption is that these are the methods that consume most
of the given program’s computational time. All edits are targeted at one of the hot
methods identified by the profiling stage. Gin’s profiler also identifies the unit tests
associated with each hot method by logging the calling test whenever a hot method
is identified (Watkinson and Brownlee 2024).

Applying Edits. Gin uses JavaParser1 to parse a target program into an abstract
syntax tree (AST). Edits are then made to the code by manipulating nodes in this
tree. In our study, we have limited edits to only manipulating Java block statements;
i.e. code enclosed in braces such as loop or conditional statement bodies, up to the
level of method bodies. For the edits within a given patch, Gin applies the change
to the target source code using JavaParser. After all patches are applied, it attempts

1  https://​javap​arser.​org

https://javaparser.org

	 Automated Software Engineering (2025) 32:15 15   Page 4 of 25

to compile the modified code. If this is successful, we run the unit tests associated
with the method that has been modified.2 In our experiments, this process was run
for each patch in a freshly instantiated Java Virtual Machine (JVM) (i.e. Gin runs
in one JVM, and creates a fresh second JVM for each patch to compile and run the
target application). Upon completion, the outcome of each stage is recorded; this is
summarised in our results as:

•	 Valid patches resulted in valid Java syntax that could be parsed by JavaParser
and successfully inserted into the target program

•	 Compiled patches successfully passed compilation
•	 Passed patches passed all associated unit tests
•	 Wall-clock time the time as measured by Java’s System.nanoTime function
•	 CPU time the CPU time as measured by a call to Java’s ThreadMXBean.

getThreadCPUTime() function

Search. We experimented with two types of search implemented within Gin :
random search and local search. Random search is intended to provide some insight
into the global search space. It simply generates patches each comprising a single
edit selected uniformly at random among the space of all possible edits for the
target program’s hot methods. Local search (Algorithm 1) is a random mutation
hillclimber, starting with the working code and only accepting edits that offer a run
time improvement while still passing the tests. The hillclimber is repeated for each
of the top ten hot methods (those identified by the profiler as consuming the most
CPU time). neighbour() generates a neighbour of an existing patch. With a 50%
probability either an edit will be removed from the patch, or a new edit generated
uniformly at random will be added.

Algorithm 1   Upper level stochastic local search

2  Since all our benchmarks use Maven, we use Maven to run tests.

Automated Software Engineering (2025) 32:15 	 Page 5 of 25  15

2.2 � LLM edits

We utilise two LLM APIs to integrate LLM models into the GI toolbox Gin
(Brownlee et al. 2019) to enable LLM edits within a GI framework: Langchain4J3
to access the OpenAI API and Ollama4j4 to access TinyDolphin and
Mistral using the Ollama toolkit. Gin gets as input the name of the LLM to load
and a prompt template to use. Both are fixed throughout a single experimental run.
The specific LLM versions used in our evaluation are detailed in Sect. 4.

LLM edits are applied by selecting a block statement uniformly at random in the
target hot method. This block’s content is < ���� > in the prompt examples in the
following section. The LLM is called with the specified prompt. The code blocks
in the LLM response are identified using a regular expression ```(?:java)
(.*?)```, which seeks text marked up as code either with or without the tag
‘java’. Gin uses JavaParser internally to represent target source files, so we attempt
to parse each of the LLM suggestions with JavaParser. The first suggestion that Java-
Parser is able to parse then replaces the original block to generate the variant code.

3  https://​github.​com/​langc​hain4j/​langc​hain4j
4  https://​github.​com/​amith​kouja​lgi/​ollam​a4j

Fig. 1   The basic prompt for LLM requests, with line breaks added for readability. Parameter placehold-
ers are indicated by uppercase letters surrounded by angled brackets

https://github.com/langchain4j/langchain4j
https://github.com/amithkoujalgi/ollama4j

	 Automated Software Engineering (2025) 32:15 15   Page 6 of 25

2.3 � Prompt templates

In our previous work (Brownlee et al. 2024a), we experimented with three different
prompts for sending requests to the LLM for both types of search: a simple prompt,

Fig. 2   The small changes prompt for LLM requests, with line breaks added for readability. Parameter
placeholders are indicated by uppercase letters surrounded by angled brackets

Fig. 3   The structural changes prompt for LLM requests, with line breaks added for readability. Param-
eter placeholders are indicated by uppercase letters surrounded by angled brackets

Automated Software Engineering (2025) 32:15 	 Page 7 of 25  15

a medium prompt, and a detailed prompt. All prompts requested 5 different Java
implementations of a given code snippet, to increase the chance that one of the sug-
gestions could be parsed. We found that the medium prompt (shown in Fig. 1) struck
the right balance by being informative enough to yield valid code while not being
overly aggressive in the edits, achieving a higher rate of compilable patches. The
medium prompt provides information about the programming language, the project
to which the code belongs, as well as formatting instructions.

We have implemented a new mechanism for fully parameterised prompt tem-
plates to explore further the efficiency of various prompts. Gin can receive a prompt
template and the name of an LLM model to query. Each template includes place-
holders for parameters (indicated by capital letters). These parameters are the num-
ber of different variations of the code at hand, the code itself, and the project name,
all integrated into the template structure. We parameterised the medium prompt
to create a template, which we denote as basic template (Fig. 1). We create two
additional prompt templates that extend the basic template by examples: (1) small
changes template suggesting, by examples, small GI edits (e.g. swap, remove, dupli-
cate) as exemplified in Fig. 2, and (2) structural changes template suggesting
examples related to structure (e.g. replace for loop in while loop) as shown in exam-
ple Fig. 3. The examples provided in the small changes prompt and the structural
changes prompt are fixed. In Sect. 5, we evaluate Gin using all three prompts, set-
ting < ������� > to five, thereby requesting five distinct variations of the code in
question.

3 � Research questions

We aim to understand how often LLMs produce valid and effective program variants
and how the LLM-generated mutations compare against traditional GI mutation
operators. Therefore, our primary research question is as follows:

RQ1: How effective are LLMs at producing valid, compiling, and test passing
program variants when prompted to produce an alternative implementation of
a given method compared to traditional GI mutation operators?

We seek to understand further the impact of employing different LLMs, which
can differ in size and may operate locally or in a server environment. It is worth
noting that if smaller and local LLMs are sufficient, this could facilitate a broader
uptake of the approach. Considering this, we ask:

RQ2: What is the difference in terms of efficacy between LLMs at
producing program variants when prompted to produce alternative method
implementations?

We explore the effect of using different prompts. We aim to identify essential
information necessary for efficient prompting in the context of program variants,
including assessing the potential benefits of using code examples to describe pos-
sible code changes. Thus, we ask:

	 Automated Software Engineering (2025) 32:15 15   Page 8 of 25

RQ3: Which prompts are most effective in generating program variants pro-
duced by an LLM when prompted to produce alternative method implemen-
tations?

Moreover, we investigate if the generated variants not only pass the tests, but
also improve upon the software property of interest, in our case - execution time.

RQ4: How effective are LLMs at producing runtime-improving software
variants when prompted for alternative method implementations compared
to traditional GI mutation operators?

Finally, we study the additional time overhead produced by LLM generated
edits. Here, we ask:

RQ5: What is the difference in terms of efficiency between LLMs at
producing program variants when prompted to produce alternative method
implementations?

4 � Experimental setup

In this section we describe the experimental setup we followed to answer our
research questions.

4.1 � Profiling

Gin’s profiler makes use of Java Flight Recorder, and works by sampling the
call stack during a run of the test suite. In the following, we summarise the main
aspects of this profiler, while a detailed description can be found in previous work
(Watkinson and Brownlee, 2024).

The profiler starts at the top of the stack and works down until it finds the first
appearance of a method in the target project (rather than Java API or library code)
at 10ms intervals. A counter for each method is incremented each time it is found
during profiling; the calling unit test is also logged. At the end of profiling, all
methods are ranked in order of appearances during profiling. We could take the
top-ranked methods from this ranking as the hot methods to be targeted, but this
leads to different methods being identified as hot in each run. A small number
of methods tend to be consistently identified as hot, with a long tail of less-hot
methods appearing rarely , i.e., not being ranked at all. Given this context, hot
methods to be targeted by the edits were identified using Gin ’s profiler tool by
repeating the profiling 20 times and taking the intersection of the resulting 20 sets
of methods assigned a ranking. Across the repeat runs, we identified the unit tests
that had called each hot method during each repeat run and took the union of the
unit tests for each hot method.

Automated Software Engineering (2025) 32:15 	 Page 9 of 25  15

4.2 � Target projects

In our preliminary work, the target project for improvements in our experiments
was the popular JCodec project. In this work, we extended our experiments to
four additional projects, namely JUnit4 , Gson , Commons-Net and Karate
. These additional projects were sourced by looking at popular projects rated
with high stars, which use Java 17, employ Maven or Gradle as the build system,
are open-source, and have a permissive licence. The project selection criteria
were similar to those used in two previous studies with Gin (Petke et al. 2023;
Watkinson and Brownlee 2024). From here, we tried to compile the project and
run the Gin ’s EmptyPatchTester to ensure the project was compatible.
Projects that successfully compiled, and were compatible with Gin , were selected
to be included in our evaluation.

Table 1 presents all five projects with their URL and the branch checked out for
the experiments as well as the number of Java files and Java code lines (denoted
as SLOC). The size of the selected projects ranges from 226 Java files for Gson
to 1182 files for JCodec . The SLOC range from 24787 for Commons-Net to
132538 for JCodec .

4.3 � Algorithm parameters

For the random sampling experiments, we set up the runs with statement-
level edits (copy/delete/replace/swap from Petke et al. (2023)) and LLM edits,
generating 1000 of each type at random. Line and statement level edits are the
most commonly applied in GI (Petke et al., 2019): here we focus on statements
as these have been shown to be more likely to lead to compiling and test-passing
variants (Petke et al., 2023). A timeout of 10000 milliseconds was used for each
unit test to catch infinite loops introduced by edits; exceeding the timeout counts
as a test failure. For local search, experiments were set up similarly. There were
10 repeat runs (one for each of the top 10 hot methods) but the runs were limited
to 100 evaluations resulting in 1000 evaluations in total, matching the random
sampling. In practice, this amounted to 99 edits per run as the first was used to
time the original unpatched code.

Table 1   Target projects with URLs and the checked-out versions as well as the number of Java files and
Java code lines (denoted as SLOC)

Project URL & branch Java files SLOC (Java)

JCodec github.com/jcodec/jcodec (master, 7e52834) 1182 132538
JUnit4 github.com/junit-team/junit4 (r4.13.2) 471 31242
Gson github.com/google/gson (gson-parent−2.10.1) 226 31011
Commons-Net github.com/apache/commons-net (rel/commons-

net−3.10.0)
281 24787

Karate github.com/karatelabs/karate (v1.4.1) 488 44869

	 Automated Software Engineering (2025) 32:15 15   Page 10 of 25

4.4 � LLM

We utilised Langchain4J version 0.18.0 and Ollama4j version 1.0.44 to inte-
grate OpenAI and Ollama models, respectively. LLM prompts using the OpenAI
API via the Langchain4J library were set with a temperature of 0.7, calling GPT
3.5 Turbo (specifically gpt −3.5-turbo-1106) ran directly on GPUs on
servers in data centres managed by OpenAI . We employed Ollama to prompt from
TinyDolphin (0f9dd11f824c, 637MB) and Mistral (61e88e884507,
4.1GB).

4.4.1 � A note on the selection of language models

Between January 8th and 9th, 2024, we evaluated several language models. We
tested their ability to write Java code and assessed the relevance of their outputs
given a sample prompt for optimising a JCodec patch. Models that mainly pro-
duced explanatory text with minimal code (e.g., CodeLlama, deepseek, StarCoder,
WizardCoder, and Zephyr) were excluded due to the difficulty in parsing and lim-
ited relevance. StarCoder was also excluded for occasionally outputting non-English
responses. Furthermore, we excluded models that either attempted to complete code
like adding class Main to the patch (DeepSeek and StarCoder) or included a vari-
ety of programming languages beyond Java (Dolphin-mixtral, Magicoder, and Wiz-
ardCoder). At the time, other candidates like OpenChat and Neural-Chat, similar in
size to Mistral , were considered.5 OpenChat performed comparably to Mis-
tral (15–30 min run per 10 patches), while Codeup had a worse performance with
a 30-60 min run per 10 patches. Hence, due to the rapidly evolving landscape of
language models, we selected one of them, Mistral .

Table 2   Machine specifications for each experiment

An experiment is described by the target project, the search type (local search (LS) or random search
(RS)) and the LLM model used for LLM edits, or Statement for statement-level edits. An asterisk
means the specification refers to all models and edit types.

Project, search (LLM) Machine specification

JCodec , RS (OpenAI , Mistral) AMD Threadripper 3990x, 64C/128T, 128GB, Titan
RTX

JCodec , RS (TinyDolphin , Statement) Intel Xeon W-2245, 8C/16T, 128GB, RTX 2080 TI
JCodec , LS (*) Intel Xeon 2620v3, 12C/24T, 32GB, Titan X
Gson , RS (OpenAI , Mistral) AMD Threadripper 3990x, 64C/128T, 128GB, Titan

RTX
Gson , RS (TinyDolphin , Statement) Intel Xeon W-2245, 8C/16T, 128GB, RTX 2080 TI
Gson , LS (*) Intel Xeon W-2245, 8C/16T, 128GB, RTX 2080 TI
JUnit4 , RS & LS (*) Intel Xeon 2620v3, 12C/24T, 32GB, Titan X
Commons-Net , RS & LS (*) Intel Xeon 2620v4, 16C/32T, 32GB
Karate , RS & LS (*) Intel Xeon 2620v3, 12C/24T, 32GB, Titan X

5  Most language models are of medium size due to their balanced performance and resource demands.

Automated Software Engineering (2025) 32:15 	 Page 11 of 25  15

To recap, we assessed models based mainly on the quality of their Java code
outputs. Yet, we focused on ensuring a diverse representation of models within our
evaluation to include models of different sizes: small (TinyDolphin), medium
(Mistral) and large (GPT 3.5 Turbo) while considering their performance
on CPU for usability. We shared examples from this experiment at Brownlee et al.
(2024).

4.5 � Experimental environment

We implemented our approach in Gin6. For the experiments, we installed Java
17 and Maven 3.9.x (managed by SDKMan), as well as Gradle 8, which are pre-
requirements for Gin and the evaluated projects. We ran our experiments on several
servers.7. The machine specifications for each experiment are listed in Table 2. For
any given project, all local search runs ran on the same machine to ensure that the
measured times were comparable among the results for that project.

5 � Results

In this section, we present and discuss the results of the comparison of statement-
level edits and LLM-based edits with different prompting strategies and LLM
models. The performance of both a Random Sampling and a Local Search approach
is compared using five well-known open-source projects as a benchmark.

5.1 � Random sampling

First, we analyse the statement-level edits and the LLM-based edits for Random
Sampling and compare the number of valid patches (successfully parsed), compiling
patches, and patches passing all unit tests. Figure 4 shows the achieved results for
all studied combinations of the considered prompting strategies and LLM models
as well as the results achieved with the statement-level edits for the projects Com-
mons-Net (subplot a), Gson (b), Karate (c), JUnit4 (d), and JCodec (e). The
number of unique patches is indicated with a triangle for each configuration.

We observe that most valid patches were found with the statement-level edits
on 4 out of 5 projects where always over 800 valid patches were found. For com-
parison, with the locally executed LLM models TinyDolphin and Mistral ,
the number of valid patches is always lower, regardless of the prompt used. How-
ever, if we analyse the number of found compiling patches and patches passing
the unit tests, we see a strong downward trend on all projects with the statement-
level edits. On average, less than 50% of the valid patches found with the state-
ment-level edits compiled and less than 20% passed the tests. For the LLM-based
edits, the percentage of the found compiling and unit test passing patches is nota-
bly higher in relation to the found valid patches. For example, out of 836 valid

6  GitHub https://​github.​com/​ginto​ol/​gin, llm branch, commit 9fe9bdf.
7  The environments of all machines are listed in Brownlee et al. (2024)

https://github.com/gintool/gin

	 Automated Software Engineering (2025) 32:15 15   Page 12 of 25

patches produced by OpenAI with the basic prompt for the Commons-Net pro-
ject, 835 compiled and 825 passed the unit tests.

Answer RQ1: LLMs produce up to 80% valid, compiling, and test passing
patches. Therefore, they are effective at producing program variants when
prompted to produce an alternative implementation of a given method. While

Fig. 4   Random Search results for the five projects: Commons-Net , Gson , Karate , JUnit4 and
JCodec . Each plot shows the results of a single project for each combination of an LLM and a prompt
with the results for the statement-level edits. The number of valid, passed and compiled patches is
shown. The triangles indicate the number of unique patches

Automated Software Engineering (2025) 32:15 	 Page 13 of 25  15

statement-level edits generally find more valid patches, the number of patches
that compile and pass the unit tests is higher using LLMs.

Analysing the number of compiling and unit test passing patches, the best results
were achieved with OpenAI ’s LLM model with the basic (denoted as B) and the
small changes (SM) prompt templates. On average, with OpenAI B about 821 valid,
783 compiling and about 774 passing patches were found. The results achieved with
the locally executed LLM models TinyDolphin and Mistral are considerably
lower. For example, with Mistral , the best results were achieved with the small
changes (SM) prompt with around 402 compiling and 309 passing patches on aver-
age. With TinyDolphin the number of found patches passing the unit tests is
always lower than 200 regardless of the prompt used. However, we should keep in
mind that every call to OpenAI ’s API is billed, while the costs of local LLM mod-
els (infrastructure and energy costs) can be adjusted to the user’s needs. In addition,
depending on the project, data protection and privacy reasons should also be taken
into account, which could favour the use of local or self-hosted LLMs.

Answer RQ2: The efficacy of LLMs in producing program variants depends
on the model. In general, OpenAI ’s LLM generates more valid, compil-
ing, and test passing program variants when prompted to produce alternative
method implementations compared to Mistral and TinyDolphin .

Answer RQ3: The best results are achieved with the basic and small changes
prompt, depending on the model used. This indicates that in our setup simpler
prompts are more effective in generating program variants produced by an
LLM when prompted to produce alternative method implementations.

Regarding the number of unique patches found, we have observed that on
average the highest number of unique patches was found with the statement-
based edits (78–94%). The proportion of unique patches is relatively high for the
TinyDolphin (74–100%) and Mistral (56–100%) models. With OpenAI ’s
model, on the other hand, unique patches range between 3–79% and often less than
50% of the patches found are unique (especially with OpenAI SM and OpenAI
B) indicating the generation of many repeated edits. We measured unique numbers
by removing patches with identical strings: it could be interesting to explore how
similar the remaining patches are in terms of syntax and semantics in the future.

5.2 � Local search

Second, we analyse the statement-level edits and the LLM-based edits for Local
Search with a focus on the run time of the found improvements. Figure 5 shows the
achieved best as well as the median improvements in milliseconds (ms) for all stud-
ied combinations of prompting strategies and LLM models as well as the improve-
ments achieved with the statement-level edits for all considered projects.

	 Automated Software Engineering (2025) 32:15 15   Page 14 of 25

For all projects (subplots a-e), we see that the best improvements were found with
LLM-based edits. Among these, we see that for three projects the best results were
achieved with the Mistral LLM model using the basic (B) prompt or the small

Fig. 5   Local Search results for the five projects: Commons-Net , Gson , Karate , JUnit4 and JCo-
dec . Each graph describes the results of a single project for each combination of an LLM and a prompt.
The best improvement (bestImprov) and the median improvement (median) are shown in milliseconds

Automated Software Engineering (2025) 32:15 	 Page 15 of 25  15

changes (SM) prompt, where we observe, e.g., best improvements for the projects
Commons-Net (a), Gson (b), and JUnit4 (d) of 69 ms, 220 ms, and 253 ms,
respectively. The overall best improvements for Karate (c) and JCodec (e) were
found with OpenAI of 9109 ms, and 1595 ms, respectively. Looking at the median
improvement, the best results for Commons-Net (a), Gson (b), and JUnit4 (d)
were found with Mistral again. According to the median improvement, OpenAI
performed best for Karate (c) and TinyDolphin for JCodec (e).

Answer RQ4: For all studied projects, the best runtime improvement is found
with an LLM-based edit. Moreover, higher median runtime improvements
were found with LLM-based edits compared to statement edits. However,
there are large differences depending on the model and prompt.

 Following RQ4-Answer, where LLM-based edits led to the best runtime
improvements, one might assume that a better prompt or sequence of prompts is
required (e.g. to address the low validity rate of LLM-generated code (Zhang
et al. 2023; Xia et al. 2024)). This seems promising, worth sacrificing Gin ’s
performances as LLMs can detect and fix programs through few-shot prompting (Jin
et al. 2023; Albuquerque et al. 2024). However, a patch that fails to compile likely
indicates deeper issues and poor quality. We have observed that LLMs often apply
examples as-is without generalising them to code snippets being edited (e.g. adding
a statement from an example as-is instead of applying an edit in a similar way as
presented in the example). We discuss this in the Invalid Code paragraph in the next
section (subsection 5.3).

Fixing such patches is unlikely to result in valid functional code that passes the
unit tests (Pearce et al. 2022). Nevertheless, a more complex mechanism is likely
necessary for a few-shot prompting to be effective in patch editing and passing the
unit tests. We leave it for future work.

There is, of course, additional time overhead when using the LLMs to generate
edits. Table 3 reports the relative wall clock times for the Local Search runs with
each model on each project. Raw times for these runs are provided in the artefact
(Brownlee et al. 2024). The times were measured from the beginning to the end of
the sampling run, and include all API calls, LLM response times, parsing, compila-
tion and testing of patches, and logging activity. The numbers reported in the table
are computed as the ratio of the runs using LLMs vs classic GI statement edits so, for

Table 3   Relative run times for the local search experiment for each model on each of the target projects

The numbers reflect the wall-clock time, relative to the equivalent for the statement edits, for the
complete sampling run including calls to the model, as well as parsing, compilation, and testing of the
patches.

Project

Model Commons-Net Gson jcodec JUnit4 Karate

Mistral 91.92 19.21 83.25 21.59 3.73
OpenAI 7.88 24.86 28.03 3.64 1.05
TinyDolphin 61.05 13.92 21.62 12.77 1.02

	 Automated Software Engineering (2025) 32:15 15   Page 16 of 25

example, the run on Commons-Net with OpenAI was 7.88 times as long as the run
on Commons-Net using statement edits. The run with Mistral was 91.92 times
as long as the run using statement edits. In concrete terms, the run exploring 1000
statement edits completed in 818 seconds, with OpenAI’s run taking 6449 seconds
and Mistral’s taking 75187 seconds. Put another way: in the same time it took
to generate and evaluate 1000 statement edits, it was only possible to generate and
evaluate 127 OpenAI edits or 11 Mistral edits. There are several confounding
factors to these numbers: as well as all the usual noise in measuring run times (even
given dedicated machines), the Ollama bug noted in Sect. 5.3 and variations in Ope-
nAI’s server response times make any precise comparisons impossible. In this light
the figures are reported only to provide some context. For some of the projects, test-
ing the patches took long enough that the extra overhead to call the LLM was lower
in impact than might be expected. For the OpenAI sourced edits, the Local Search
took around 1–3.6x as long as statement edits with JUnit4 and Karate. Given
that OpenAI edits passed the unit tests more than 4x as often with each of these
projects, the additional time taken by the LLM is of value. For the other projects,
while the extra time taken to run the models does not lead to a proportionate increase
in test-passing variants generated, LLM edits did produce larger speedups than state-
ment edits. Assuming the improved application will be run many times, the one-off
time investment in the optimisation stage is worthwhile.

Answer RQ5: In our setup, either OpenAI or TinyDolphin have the low-
est runtime overhead compared to statement edits.

5.3 � Qualitative analysis

We present here an error analysis to explain why some LLM-generated edits fail
to compile or pass tests. Our logs (stderr) are available at Brownlee et al. (2024).
However, understanding the errors beyond the common reasons identified in this
section requires a thorough familiarity with each project.

Certain combinations of models and prompts outperformed others. We conducted
a manual analysis of the logs, examining the responses from LLMs and Gin ’s parsing
of the suggested variants to understand better the source of failures. Through this pro-
cess, we categorised these into three categories: Cases where (1) no replacement was
found when parsing the response, (2) a replacement was offered but failed compilation
or was invalid according to regression tests, and (3) a replacement was found, success-
fully compiled, and passed all regression tests, yet offered no advantage. We shared
the logs analysed in this section as part of our artefact(Brownlee et al. 2024).

A Bug in the OllamaService. The Ollama service halted unexpectedly dur-
ing the experiment. We noticed it happened more frequently with TinyDol-
phin compared to Mistral . It is a known bug of Ollama previously reported.8
We attempted to mitigate this by pulling specific versions of Ollama known to be
less prone to the problem, but we observed no difference. We opted to implement a

8  E.g. https://​github.​com/​ollama/​ollama/​issues/​1863.

https://github.com/ollama/ollama/issues/1863

Automated Software Engineering (2025) 32:15 	 Page 17 of 25  15

simple mechanism to automatically restart the Ollama service during Gin ’s execu-
tion using a script available as part of our artefact (Brownlee et al. 2024), which led
to some responses being lost.

Issue with Code Formatting. While parsing code with Gin , we developed a
basic parser to detect code notations (```<CODE>```) with or without a java
label. However, all three models displayed creativity in marking sections as code,
which posed challenges for our parser in precisely identifying the < ������� > var-
iants requested from the model. Some examples:

1.	 No use of code notations, marking it as just regular text;
2.	 TinyDolphin and Mistral returned code that is not written in Java (e.g.

Python, Ruby, PhP, or Kotlin) and tagged it accordingly (e.g. Python:<line-
break>```python);

3.	 Applied non-consistent ways of marking the code as Java code, varied even within
the same execution of Gin , such as Java<line-break>```<CODE>```,
java<line-break>```java<CODE>``` or ```java java<line-
break><CODE>``` (with java tag having some variations such as JAVA,
java:, Java:, etc.); and

4.	 Used plenty of free text, making it difficult to parse, like <free-
text> <line-break>```java<CODE>``` with some variations
of free text before the code such as (Strict Implementation),
implementation, Java implementation 1:, (With ‘dfs‘
check), Java implementation #1:, With ‘dfs‘ check and
‘SimpleDateFormat‘ instantiation outside the if
condition:<line-break><line-break>.

LLM Response Contains No Code. Some prompts’ responses from TinyDol-
phin and Mistral did not contain any code, irrespective of the prompt type.
Some of them declared the task is impossible or done, e.g. with TinyDolphin
for this code in the prompt ```{ sb.append("return ");}```, the LLM
returned the following response:

Other responses contained pseudocode or a list of suggestions as free-text, e.g.,
with Mistral and the following code in the prompt ```{ rhs = "";}```,
the model’s response was:

	 Automated Software Engineering (2025) 32:15 15   Page 18 of 25

Note that OpenAI had a similar kind of response, but it made sure to surround
each code edit suggestion in code notation as a comment, like this: ```{ //
implementation using Java 8 Streams}```.

Last, LLMs have explanatory capabilities, which can lead to the following
response (Mistral and the small changes prompt):

In this example, Mistral explained each of the code examples in Fig. 2 when
presented relatively long code snippet to patch.

Invalid Code. The LLM’s response included an invalid code. It could be due to
various reasons like undeclared variables or syntax errors. However, we identified
several reasons specific to LLMs that can lead to invalid code.
OpenAI with structural changes attempted to turn the following code snippet

```{ for (DateFormat dateFormat: dateFormats) { try { 
return dateFormat.parse(s); } catch (ParseException 
ignored) } }``` into a method, abandoning completely the original task of 
seeking replacements for it, returning this method with some headers:



Automated Software Engineering           (2025) 32:15 	 Page 19 of 25     15 

as the original code was part of a block of instructions in a method, embedding 
the response suggestions led to a compilation failure. We observed this also in Mis-
tral and TinyDolphin ; TinyDolphin (Commons-Net, Random Sampling, 
basic prompt) identified the origin of the code snippet from Commons-Net ’s 
GitHub project, returning the entire Java implementation class as the response.

For all three models when using small changes or structural changes 
prompts, the response sometimes contained the code examples in Fig. 2 and Fig. 3, 
respectively. For example when prompting with this code snippet: ```{sb.
append("return ");}```, OpenAI with Fig. 3 was:

that would likely lead to test suite failure; specifically in this case, Gin failed 
much earlier because the LLM had appended free text too, resulting in the response 
not being parsed properly by Gin .

Useless Edits.  When mutating code snippets, LLM occasionally suggests useless 
edits. During our analysis, we found some of these: (1) No actual edit: The response 
remained identical to the prompt; (2) Comment-only edits: Edits were limited to the 
code’s comments; (3) Explaining the Code: LLM added comments to explain the code, 
but these additions don’t improve performance; and (4) Repetitive responses: The same 
response was repeated multiple times, offering no new insights.



	 Automated Software Engineering           (2025) 32:15    15   Page 20 of 25

6 � Threats to validity

In this work, we used different LLMs to investigate their suitability for code mutations 
in the well-known GI system Gin . However, common threats with LLMs are that they 
behave like a black box for their users and that newer versions may produce a different 
output, which could influence the reproducibility of the results. To mitigate these 
risks, we not only used OpenAI ’s GPT 3.5 Turbo via API, as this service could 
change at any time but also the TinyDolphin and Mistral models, which can 
be installed locally. Consequently, we specified the versions used for TinyDolphin 
and Mistral . Compounding this issue, even with temperature set to zero, LLMs 
show non-determinism (Ouyang et  al., 2023). While this variability may actually be 
beneficial for search, adding diversity (Blyth et  al., 2024), it nevertheless makes the 
replication of the results for a study like ours difficult, so the best that can be done 
is to provide the logs tracking the LLM responses as we have done in our artefact. 
Future study of techniques to minimise this variability such as temperature tuning or 
consistency checks would definitely be interesting to pursue.

Moreover, the number of software projects and LLM models studied in our experi-
ments is limited, which could have biased the drawn conclusions. However, compared 
to our preliminary work, we have significantly increased the number of studied projects 
and LLM models and could confirm previous findings and gain new insights. We con-
sidered projects of up to 132k significant lines of code: enterprise systems can be sig-
nificantly larger and it is not clear how far the approaches will scale. We expect that as 
the target application’s size increases, larger context windows for the LLM interactions 
will be required, the search space of possible edits will increase exponentially, and test-
ing will become more time-consuming. It is reasonable to think that these issues can be 
overcome: LLM context windows increase with each new development, and existing 
GI success stories suggest that search algorithms scale well to industrial scale software 
with the traditional operators.

In addition, the run time of the improvements is difficult to measure precisely. 
Furthermore, we assumed the validity of the test suites in our experiments. However, 
both risks affect most of SBSE research. To counteract them, we carried out our 
measurements in accordance with the GI literature.

7 � Related work

The last few years have seen a rapid uptake of large language models (LLMs) 
to solve software engineering problems  (Fan et  al. 2023) such as program 
repair (Zhang et al. 2024). Research in the area has resulted in many LLM-based 
end-to-end tools that address the functional improvement of software (Bouzenia 
et al. 2024; Xia et al. 2023; Jin et al. 2023).

Aside from end-to-end solutions to software engineering tasks, LLMs have 
also been augmented into existing ones and used as optimizers  (Hemberg et  al. 
2024). One such example is the use of LLMs for improving the search in existing 



Automated Software Engineering           (2025) 32:15 	 Page 21 of 25     15 

search-based approaches such as search-based test generation  (Lemieux et  al. 
2023) and fault localization (Murtaza et al. 2024).

Since the emergence of genetic improvement research, the canonical edits that 
delete, swap, replace, or insert pieces of code (statements, lines of code, assembly 
instructions etc.) have been used. Given the large search space for application 
of such mutation operators, more specialised ones have been introduced, such as 
insertion of a break/return (Brownlee et al. 2020), and others., In our preliminary 
work, we investigate whether taking this a step further by prompting LLMs for 
code mutations could be a viable approach in the GI context  (Brownlee et  al. 
2024). Similarly, Hu et al. (2023) used ChatGPT to generate variations to the seed 
program for a greybox fuzzer and Birna et al. (2024) use LLMs as a recombination 
operator for GI. It is worth noting that most of the previous work focused on 
the power of commercial LLMs, such as GPT. This provides a restriction on the 
availability of such models (both in terms of access and computing resources 
required). Here we want to see how well smaller, open-source models perform.

Furthermore, we explore different prompts. The field of prompt engineering 
deals with crafting prompts to gain more successful results from LLMs, yet the 
field does not yet provide clear guidelines, beyond those specific to each model. 
In this area, Chain-of-Thought prompting gained some attention (Wei et al. 2022). 
The method divides a given task into subtasks, for which prompts are individually 
crafted. It is yet unclear which prompts should be used for a given task, such as 
mutation operator generation. There have been a few attempts to automate this 
process though. Fernando et al. (2024) proposed to evolve mutations that change 
the prompts themselves, guided by a fitness function specific to a given task. 
Guo et al. (2023) proposed to evolve a population of prompts using hand-crafted 
mutations and crossover operators. While the second approach is freely available 
it is extremely time-consuming and it is unclear whether the operators would 
yield better results in our case. Nevertheless, use of such tooling could be used in 
future work.

8 � Conclusions and future work

Genetic improvement of software is highly dependent on the mutation operators 
it utilises in the search process. To diversify the operators and enrich the search 
space further, we previously incorporated a Large Language Model (LLM) as an 
operator. The present paper builds on that work to explore three models and three 
prompting strategies on five software programs.

We found that, although more valid and diverse patches were found with standard 
edits using Random Sampling, up to 9 times more patches passing the unit tests 
were found with LLM-based edits. Simpler prompts appeared to generate test-
passing edits more often. The larger models of OpenAI and Mistral appeared 
to be more successful than TinyDolphin . For example, with OpenAI ’s LLM 
and the basic prompt around 774 passing patches were found on average (compared 
to around 118 passing patches found with statement edits on average). However, 



	 Automated Software Engineering           (2025) 32:15    15   Page 22 of 25

the statement edits still produced more unique variations to the code, so there is 
potential in exploring approaches combining both LLM and ‘classic’ GI edits. It 
would be also interesting to carry out a deeper analysis of which kind of edits works 
best and where — perhaps exploring what features of the target source code make it 
more amenable to improvement.

Our preliminary exploration (Brownlee et  al. 2024a) hinted that the statement 
edits found the best runtime improvement. The additional prompts and models we 
analysed in the present work led to the best runtime improvements being found with 
LLMs for all 5 target projects. The improvements found with LLMs were between 2 
and 27 times greater than those found with statement edits.

Our experiments revealed that the prompts used for LLM requests greatly affect 
the results but there is clearly still much to be explored in terms of models and 
prompt strategies. A systematic exploration of different combinations of prompting 
elements would be a very interesting direction to pursue. This could include varia-
tions we have not yet considered, such as the inclusion of the optimisation objectives 
(“reduce runtime”) in the prompt, or including feedback about errors in the sug-
gested patches. It might also be helpful to mix prompts: e.g., starting with the basic 
prompt then switching to the small changes prompt to make larger edits that break 
out of local minima. Further, the possibility of combining LLM edits with others 
such as standard copy/delete/replace/swap or PAR templates (Kim et al. 2013) could 
be interesting.

Acknowledgements  This work was supported by the ERC advanced fellowship grant no. 741278.

Data Availability  Experimental data can be found in our  Zenodo artefact (Brownlee et  al. 2024). The 
code can also be found on GitHub https://​github.​com/​ginto​ol/​gin, llm branch, commit 9fe9bdf.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Albuquerque, L., Gheyi, R., Ribeiro, M.: Evaluating the capability of llms in identifying compilation 
errors in configurable systems. arXiv preprint arXiv:​2407.​19087 (2024)

Birna, G., Saemundur, S., Haraldsson, O.: Large language models as all-in-one operators for genetic improve-
ment 10(1145/3638530), 3654408 (2024)

Blot, A., Petke, J.: A Comprehensive Survey of Benchmarks for Automated Improvement of Software’s Non-
Functional Properties (2022). https://​doi.​org/​10.​48550/​ARXIV.​2212.​08540

Blyth, S., Treude, C., Wagner, M.: Creative and correct: Requesting diverse code solutions from ai founda-
tion models. In: Proceedings of the 2024 IEEE/ACM First International Conference on AI Foundation 
Models and Software Engineering. FORGE ’24, pp. 119–123. Association for Computing Machinery, 
New York, NY, USA (2024). https://​doi.​org/​10.​1145/​36501​05.​36523​02

https://github.com/gintool/gin
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2407.19087
https://doi.org/10.48550/ARXIV.2212.08540
https://doi.org/10.1145/3650105.3652302


Automated Software Engineering           (2025) 32:15 	 Page 23 of 25     15 

Böhme, M., Soremekun, E.O., Chattopadhyay, S., Ugherughe, E., Zeller, A.: Where is the bug and how is it 
fixed? An experiment with practitioners. In: Proc. ACM Symposium on the Foundations of Software 
Engineering, pp. 117–128 (2017). https://​doi.​org/​10.​1145/​31062​37.​31062​55

Bouzenia, I., Devanbu, P., Pradel, M.: Repairagent: An autonomous, llm-based agent for program repair 
(2024)

Brownlee, A.E.I., Callan, J., Even-Mendoza, K., Geiger, A., Hanna, C., Petke, J., Sarro, F., Sobania, D.: Arti-
fact of Large Language Model Based Mutations in Genetic Improvement. Zenodo, Switzerland (2024). 
https://​doi.​org/​10.​5281/​zenodo.​13381​774

Brownlee, A.E.I., Callan, J., Even-Mendoza, K., Geiger, A., Hanna, C., Petke, J., Sarro, F., Sobania, D.: 
Enhancing genetic improvement mutations using large language models. In: Search-Based Software 
Engineering, pp. 153–159. Springer, Switzerland (2024a). https://​doi.​org/​10.​1007/​978-3-​031-​48796-5_​
13

Brownlee, A.E., Petke, J., Alexander, B., Barr, E.T., Wagner, M., White, D.R.: Gin: genetic improvement 
research made easy. In: GECCO, pp. 985–993 (2019). https://​doi.​org/​10.​1145/​33217​07.​33218​41

Brownlee, A.E.I., Petke, J., Rasburn, A.F.: Injecting shortcuts for faster running Java code. In: IEEE CEC 
2020, pp. 1–8. https://​doi.​org/​10.​1109/​CEC48​606.​2020.​91857​08

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., 
Brockman, G., et al.: Evaluating large language models trained on code. ArXiv abs/2107.03374 (2021)

Fan, A., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S., Yoo, S., Zhang, J.M.: Large Language 
Models for Software Engineering: Survey and Open Problems (2023)

Fernando, C., Banarse, D.S., Michalewski, H., Osindero, S., Rocktäschel, T.: Promptbreeder: Self-Referential 
Self-Improvement via Prompt Evolution (2024). https://​openr​eview.​net/​forum?​id=​HKkiX​32Zw1

Guo, Q., Wang, R., Guo, J., Li, B., Song, K., Tan, X., Liu, G., Bian, J., Yang, Y.: Connecting large language 
models with evolutionary algorithms yields powerful prompt optimizers. CoRR abs/2309.08532 (2023) 
https://​doi.​org/​10.​48550/​ARXIV.​2309.​08532arXiv:​2309.​08532

Hemberg, E., Moskal, S., O’Reilly, U.M.: Evolving code with a large language model. Genet. Program. Evol. 
Mach. 25(2), 21 (2024)

Hort, M., Kechagia, M., Sarro, F., Harman, M.: A survey of performance optimization for mobile applica-
tions. IEEE Trans. Softw. Eng. (2021). https://​doi.​org/​10.​1109/​TSE.​2021.​30711​93

Hou, X., Liu, Y., Yang, Z., Grundy, J., Zhao, Y., Li, L., Wang, K., Luo, X., Lo, D., Wang, H.: Large language 
models for software engineering: A systematic literature review. arXiv:​2308.​10620 (2023)

Hu, J., Zhang, Q., Yin, H.: Augmenting Greybox Fuzzing with Generative AI (2023). https://​doi.​org/​10.​
48550/​arXiv.​2306.​06782

Jin, M., Shahriar, S., Tufano, M., Shi, X., Lu, S., Sundaresan, N., Svyatkovskiy, A.: Inferfix: End-to-end 
program repair with llms. ESEC/FSE 2023 - Proceedings of the 31st ACM Joint Meeting European 
Software Engineering Conference and Symposium on the Foundations of Software Engineering, 1646–
1656 (2023) https://​doi.​org/​10.​1145/​36116​43.​36138​92

Jin, M., Shahriar, S., Tufano, M., Shi, X., Lu, S., Sundaresan, N., Svyatkovskiy, A.: Inferfix: End-to-end pro-
gram repair with llms. In: Proceedings of the 31st ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering. ESEC/FSE 2023, pp. 1646–1656. 
Association for Computing Machinery, New York, NY, USA (2023). https://​doi.​org/​10.​1145/​36116​43.​
36138​92

Kang, S., Yoo, S.: Towards objective-tailored genetic improvement through large language models. arXiv:​
2304.​09386 (2023)

Kim, D., Nam, J., Song, J., Kim, S.: Automatic Patch Generation Learned from Human-Written Patches 
(2013). http://​loggi​ng.​apache.​org/​log4j/

Kirbas, S., Windels, E., Mcbello, O., Kells, K., Pagano, M., Szalanski, R., Nowack, V., Winter, E., Counsell, 
S., Bowes, D., Hall, T., Haraldsson, S., Woodward, J.: On the introduction of automatic program repair 
in bloomberg. IEEE Softw. 38(4), 43–51 (2021). https://​doi.​org/​10.​1109/​MS.​2021.​30710​86

Lemieux, C., Inala, J.P., Lahiri, S.K., Sen, S.: Codamosa: Escaping coverage plateaus in test generation with 
pre-trained large language models. Proceedings - International Conference on Software Engineering, 
919–931 (2023) https://​doi.​org/​10.​1109/​ICSE4​8619.​2023.​00085

Marginean, A., Bader, J., Chandra, S., Harman, M., Jia, Y., Mao, K., Mols, A., Scott, A.: Sapfix: Automated 
end-to-end repair at scale. In: ICSE-SEIP, pp. 269–278 (2019). https://​doi.​org/​10.​1109/​ICSE-​SEIP.​
2019.​00039

Murtaza, S.B., Mccoy, A., Ren, Z., Murphy, A., Banzhaf, W.: Llm fault localisation within evolutionary com-
putation based automated program repair. Proceedings of the Genetic and Evolutionary Computation 
Conference Companion, 1824–1829 (2024) https://​doi.​org/​10.​1145/​36385​30.​36641​74

https://doi.org/10.1145/3106237.3106255
https://doi.org/10.5281/zenodo.13381774
https://doi.org/10.1007/978-3-031-48796-5_13
https://doi.org/10.1007/978-3-031-48796-5_13
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1109/CEC48606.2020.9185708
https://openreview.net/forum?id=HKkiX32Zw1
https://doi.org/10.48550/ARXIV.2309.08532
http://arxiv.org/abs/2309.08532
https://doi.org/10.1109/TSE.2021.3071193
http://arxiv.org/abs/2308.10620
https://doi.org/10.48550/arXiv.2306.06782
https://doi.org/10.48550/arXiv.2306.06782
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/3611643.3613892
http://arxiv.org/abs/2304.09386
http://arxiv.org/abs/2304.09386
http://logging.apache.org/log4j/
https://doi.org/10.1109/MS.2021.3071086
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1145/3638530.3664174


	 Automated Software Engineering           (2025) 32:15    15   Page 24 of 25

Ouyang, S., Zhang, J.M., Harman, M., Wang, M.: LLM is Like a Box of Chocolates: the Non-determinism of 
ChatGPT in Code Generation (2023). https://​arxiv.​org/​abs/​2308.​02828

Pearce, H., Tan, B., Ahmad, B., Karri, R., Dolan-Gavitt, B.: Examining Zero-Shot Vulnerability Repair with 
Large Language Models (2022). https://​arxiv.​org/​abs/​2112.​02125

Petke, J., Alexander, B., Barr, E.T., Brownlee, A.E.I., Wagner, M., White, D.R.: A survey of genetic improve-
ment search spaces. In: Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion, pp. 1715–1721 (2019)

Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward, J.R.: Genetic improve-
ment of software: a comprehensive survey. IEEE Trans. Evolut. Comput. 22, 415–432 (2018). https://​
doi.​org/​10.​1109/​TEVC.​2017.​26932​19

Petke, J., Alexander, B., Barr, E.T., Brownlee, A.E., Wagner, M., White, D.R.: Program transformation land-
scapes for automated program modification using Gin. Empir. Softw. Eng. 28(4), 1–41 (2023). https://​
doi.​org/​10.​1007/​s10664-​023-​10344-5

Sarro, F.: Search-based software engineering in the era of modern software systems. In: 2023 IEEE 31st 
International Requirements Engineering Conference (RE), pp. 3–5 (2023). https://​doi.​org/​10.​1109/​
RE572​78.​2023.​00010

Sobania, D., Briesch, M., Hanna, C., Petke, J.: An analysis of the automatic bug fixing performance of chat-
gpt. In: 2023 IEEE/ACM International Workshop on Automated Program Repair (APR), pp. 23–30. 
IEEE Computer Society, Los Alamitos, CA, USA (2023).https://​doi.​org/​10.​1109/​APR59​189.​2023.​
00012

Watkinson, M., Brownlee, A.E.I.: Comparing apples and oranges? Investigating the consistency of cpu and 
memory profiler results across multiple java versions. Autom. Softw. Eng. (2024). https://​doi.​org/​10.​
1007/​s10515-​024-​00423-2

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-
of-thought prompting elicits reasoning in large language models. In: Advances in Neural Information 
Processing Systems, vol. 35, pp. 24824–24837. Curran Associates, Inc., New Orleans, LA, USA (2022)

Xia, C.S., Paltenghi, M., Le Tian, J., Pradel, M., Zhang, L.: Fuzz4all: Universal fuzzing with large language 
models. In: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 
ICSE ’24. Association for Computing Machinery, New York, NY, USA (2024). https://​doi.​org/​10.​1145/​
35975​03.​36391​21

Xia, C.S., Wei, Y., Zhang, L.: Automated program repair in the era of large pre-trained language models. 
Proceedings - International Conference on Software Engineering, 1482–1494 (2023) https://​doi.​org/​10.​
1109/​ICSE4​8619.​2023.​00129

Xia, C.S., Zhang, L.: Keep the conversation going: Fixing 162 out of 337 bugs for $0.42 each using chatgpt. 
arXiv preprint arXiv:​2304.​00385 (2023)

Zhang, S., Chen, Z., Shen, Y., Ding, M., Tenenbaum, J.B., Gan, C.: Planning with large language models for 
code generation. In: The Eleventh International Conference on Learning Representations (ICLR 2023) 
(2023). https://​openr​eview.​net/​forum?​id=​Lr8cO​OtYbfL

Zhang, Q., Fang, C., Xie, Y., Ma, Y., Sun, W., Yang, Y., Chen, Z.: A systematic literature review on large 
language models for automated program repair (2024)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Alexander E. I. Brownlee1 · James Callan2 · Karine Even‑Mendoza3 · 
Alina Geiger4 · Carol Hanna2 · Justyna Petke2 · Federica Sarro2 · 
Dominik Sobania4

 *	 Alexander E. I. Brownlee 
	 alexander.brownlee@stir.ac.uk

https://arxiv.org/abs/2308.02828
https://arxiv.org/abs/2112.02125
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1007/s10664-023-10344-5
https://doi.org/10.1007/s10664-023-10344-5
https://doi.org/10.1109/RE57278.2023.00010
https://doi.org/10.1109/RE57278.2023.00010
https://doi.org/10.1109/APR59189.2023.00012
https://doi.org/10.1109/APR59189.2023.00012
https://doi.org/10.1007/s10515-024-00423-2
https://doi.org/10.1007/s10515-024-00423-2
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
http://arxiv.org/abs/2304.00385
https://openreview.net/forum?id=Lr8cOOtYbfL


Automated Software Engineering           (2025) 32:15 	 Page 25 of 25     15 

	 James Callan 
	 james.callan.19@ucl.ac.uk

	 Karine Even‑Mendoza 
	 karine.even_mendoza@kcl.ac.uk

	 Alina Geiger 
	 geiger@uni-mainz.de

	 Carol Hanna 
	 carol.hanna.21@ucl.ac.uk

	 Justyna Petke 
	 j.petke@ucl.ac.uk

	 Federica Sarro 
	 f.sarro@ucl.ac.uk

	 Dominik Sobania 
	 dsobania@uni-mainz.de

1	 University of Stirling, Scotland, UK
2	 University College London, England, UK
3	 King’s College London, England, UK
4	 Johannes Gutenberg University Mainz, Mainz, Germany


	Large language model based mutations in genetic improvement
	Abstract
	1 Introduction
	2 Approach
	2.1 Genetic improvement framework
	2.2 LLM edits
	2.3 Prompt templates

	3 Research questions
	4 Experimental setup
	4.1 Profiling
	4.2 Target projects
	4.3 Algorithm parameters
	4.4 LLM
	4.4.1 A note on the selection of language models

	4.5 Experimental environment

	5 Results
	5.1 Random sampling
	5.2 Local search
	5.3 Qualitative analysis

	6 Threats to validity
	7 Related work
	8 Conclusions and future work
	Acknowledgements 
	References


