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Abstract
Ever since the first large language models (LLMs) have become available, both 
academics and practitioners have used them to aid software engineering tasks. 
However, little research as yet has been done in combining search-based software 
engineering (SBSE) and LLMs. In this paper, we evaluate the use of LLMs as 
mutation operators for genetic improvement (GI), an SBSE approach, to improve 
the GI search process. In a preliminary work, we explored the feasibility of 
combining the Gin Java GI toolkit with OpenAI LLMs in order to generate an edit 
for the JCodec tool. Here we extend this investigation involving three LLMs and 
three types of prompt, and five real-world software projects. We sample the edits 
at random, as well as using local search. We also conducted a qualitative analysis 
to understand why LLM-generated code edits break as part of our evaluation. Our 
results show that, compared with conventional statement GI edits, LLMs produce 
fewer unique edits, but these compile and pass tests more often, with the OpenAI 
model finding test-passing edits 77% of the time. The OpenAI and Mistral LLMs 
are roughly equal in finding the best run-time improvements. Simpler prompts are 
more successful than those providing more context and examples. The qualitative 
analysis reveals a wide variety of areas where LLMs typically fail to produce valid 
edits commonly including inconsistent formatting, generating non-Java syntax, or 
refusing to provide a solution.

Keywords  Large language models · Genetic improvement

1  Introduction

With the ever-growing size and complexity of software systems, their 
maintenance requires a huge amount of manual effort  (Böhme et  al. 2017). 
Therefore, methods for automating software maintenance and optimisation have 

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-024-00473-6&domain=pdf


	 Automated Software Engineering           (2025) 32:15    15   Page 2 of 25

been proposed. Although a lot of attention has been devoted to automated bug 
fixing, more and more techniques for improvement of non-functional properties 
of software such as runtime or memory consumption have emerged (Sarro 2023; 
Blot and Petke 2022; Hort et al. 2021).

Genetic Improvement (GI) (Petke et al. 2018) applies search-based techniques 
to improve such properties of existing software. Although GI has had success in 
the industry  (Kirbas et  al. 2021; Marginean et  al. 2019), it remains limited by 
the set of mutation operators it employs in the search (Petke et al. 2023). Given 
that Large Language Models (LLMs) have found a wide range of applications 
in software engineering, in our preliminary work  (Brownlee et  al. 2024a) we 
checked if they could be used to generate new mutations for GI.

LLMs are able to process textual queries without additional training for the 
particular task at hand, and have been pre-trained on billion lines of code (Chen 
et al. 2021). Their use for software engineering tasks has had great success (Hou 
et al. 2023; Fan et al. 2023), showing promise also for program repair  (Sobania 
et al. 2023; Xia and Zhang 2023). Kang and Yoo (2023) have suggested that there 
is untapped potential in using LLMs to enhance GI. GI uses the same mutation 
operators for different optimisation tasks. These operators are hand-crafted prior 
to starting the search and thus result in a limited search space.

In our preliminary work, we equipped a Genetic Improvement (GI) search-
based framework called Gin (Brownlee et  al. 2019) with a novel mutation 
operator that queried OpenAI’s API for generating a patch. Our initial results 
showed that mutations generated by LLMs can lead to viable program variants.

In this paper, we extend that work by investigating the effectiveness of using 
three different LLMs and three specialised prompts with Gin on five different 
open-source software projects. In particular, we make the following contributions: 

1.	 We sample random mutations for each combination of LLMs, prompts, and 
software projects, and benchmark the performance against ‘statement’ edits 
commonly used in the GI community that copy, delete, replace, or swap elements 
of the AST (Petke et al. 2023). Our results show that, compared with conventional 
statement GI edits, LLMs produce fewer unique edits, but these compile and 
pass tests more often. OpenAI performed best over all target projects, finding 
test-passing edits an average of 77% of the time. The figures for local models 
Mistral and TinyDolphin were 31% and 7% compared to conventional 
statement edits at 12% on average. Simpler prompts were also more successful 
than those providing more context and examples.

2.	 We run local search to find runtime improvements. Our results show that OpenAI 
and Mistral were roughly equal in finding the best run-time improvements; 
Mistral found the maximum and highest average run time improvement on 
three projects, with OpenAI finding the best on the other two. TinyDolphin 
was able to find the highest average improvement on one project, JCodec .

3.	 We perform a qualitative analysis of the suggested edits from the LLMs. Our 
results show that valid edits were not found for a variety of reasons: from 
inconsistent formatting of code, or use of languages other than Java, in the 
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response, to simply refusing to provide the requested suggestions. In particular, 
a provision of example changes in the prompt tended to lead to echoing of the 
examples in the LLM’s response, or erroneous responses.

In order to facilitate replication, reproduction and extension of our work, we make 
available the code, LLMs prompts, data and results at (Brownlee et al. 2024).

The rest of this paper is divided as follows: Sect. 2 describes our approach for 
incorporating LLM-generated mutations within Gin , a GI framework; Sect.  3 
presents our research questions; Sect. 4 explains the experimental setup to evaluate 
our proposed approach with different LLMs and prompts; Sect.  5 presents our 
results; with Sect. 6 discussing threats to validity; Sect. 7 positions our work within 
existing literature; while Sect. 8 concludes our paper.

2 � Approach

We are investigating the application of LLMs to generate edits (code variants) 
for genetic improvement. In this section, we set out the essential preliminaries of 
Genetic Improvement (GI), edits, and testing (Subsection 2.1), and then move on to 
describe our approach to integrating an LLM within GI.

2.1 � Genetic improvement framework

Our test framework used the Gin (Brownlee et  al. 2019) toolkit for Genetic 
Improvement in Java. Gin ’s approach to Genetic Improvement centres on the 
concept of edits: small changes to the code. Collections of edits, referred to as 
patches, are applied to a target application, compiled, and run using unit tests. 
The search for patches that make an improvement of some kind is carried out by a 
heuristic such as local search. The framework implemented in Gin is as follows:

Profiling. For each program, Gin ’s profiler determines a set of hot methods. In 
Gin , these are the methods seen most often at the top of the stack, when the full test 
suite is executed. The assumption is that these are the methods that consume most 
of the given program’s computational time. All edits are targeted at one of the hot 
methods identified by the profiling stage. Gin’s profiler also identifies the unit tests 
associated with each hot method by logging the calling test whenever a hot method 
is identified (Watkinson and Brownlee 2024).

Applying Edits. Gin uses JavaParser1 to parse a target program into an abstract 
syntax tree (AST). Edits are then made to the code by manipulating nodes in this 
tree. In our study, we have limited edits to only manipulating Java block statements; 
i.e. code enclosed in braces such as loop or conditional statement bodies, up to the 
level of method bodies. For the edits within a given patch, Gin applies the change 
to the target source code using JavaParser. After all patches are applied, it attempts 

1  https://​javap​arser.​org

https://javaparser.org
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to compile the modified code. If this is successful, we run the unit tests associated 
with the method that has been modified.2 In our experiments, this process was run 
for each patch in a freshly instantiated Java Virtual Machine (JVM) (i.e. Gin runs 
in one JVM, and creates a fresh second JVM for each patch to compile and run the 
target application). Upon completion, the outcome of each stage is recorded; this is 
summarised in our results as:

•	 Valid patches resulted in valid Java syntax that could be parsed by JavaParser 
and successfully inserted into the target program

•	 Compiled patches successfully passed compilation
•	 Passed patches passed all associated unit tests
•	 Wall-clock time the time as measured by Java’s System.nanoTime function
•	 CPU time the CPU time as measured by a call to Java’s ThreadMXBean.

getThreadCPUTime() function

Search. We experimented with two types of search implemented within Gin : 
random search and local search. Random search is intended to provide some insight 
into the global search space. It simply generates patches each comprising a single 
edit selected uniformly at random among the space of all possible edits for the 
target program’s hot methods. Local search (Algorithm  1) is a random mutation 
hillclimber, starting with the working code and only accepting edits that offer a run 
time improvement while still passing the tests. The hillclimber is repeated for each 
of the top ten hot methods (those identified by the profiler as consuming the most 
CPU time). neighbour() generates a neighbour of an existing patch. With a 50% 
probability either an edit will be removed from the patch, or a new edit generated 
uniformly at random will be added.

Algorithm 1   Upper level stochastic local search

2  Since all our benchmarks use Maven, we use Maven to run tests.
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2.2 � LLM edits

We utilise two LLM APIs to integrate LLM models into the GI toolbox Gin 
(Brownlee et al. 2019) to enable LLM edits within a GI framework: Langchain4J3 
to access the OpenAI API and Ollama4j4 to access TinyDolphin and 
Mistral using the Ollama toolkit. Gin gets as input the name of the LLM to load 
and a prompt template to use. Both are fixed throughout a single experimental run. 
The specific LLM versions used in our evaluation are detailed in Sect. 4.

LLM edits are applied by selecting a block statement uniformly at random in the 
target hot method. This block’s content is < ���� > in the prompt examples in the 
following section. The LLM is called with the specified prompt. The code blocks 
in the LLM response are identified using a regular expression ```(?:java)
(.*?)```, which seeks text marked up as code either with or without the tag 
‘java’. Gin uses JavaParser internally to represent target source files, so we attempt 
to parse each of the LLM suggestions with JavaParser. The first suggestion that Java-
Parser is able to parse then replaces the original block to generate the variant code.

3  https://​github.​com/​langc​hain4j/​langc​hain4j
4  https://​github.​com/​amith​kouja​lgi/​ollam​a4j

Fig. 1   The basic prompt for LLM requests, with line breaks added for readability. Parameter placehold-
ers are indicated by uppercase letters surrounded by angled brackets

https://github.com/langchain4j/langchain4j
https://github.com/amithkoujalgi/ollama4j
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2.3 � Prompt templates

In our previous work (Brownlee et al. 2024a), we experimented with three different 
prompts for sending requests to the LLM for both types of search: a simple prompt, 

Fig. 2   The small changes prompt for LLM requests, with line breaks added for readability. Parameter 
placeholders are indicated by uppercase letters surrounded by angled brackets

Fig. 3   The structural changes prompt for LLM requests, with line breaks added for readability. Param-
eter placeholders are indicated by uppercase letters surrounded by angled brackets
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a medium prompt, and a detailed prompt. All prompts requested 5 different Java 
implementations of a given code snippet, to increase the chance that one of the sug-
gestions could be parsed. We found that the medium prompt (shown in Fig. 1) struck 
the right balance by being informative enough to yield valid code while not being 
overly aggressive in the edits, achieving a higher rate of compilable patches. The 
medium prompt provides information about the programming language, the project 
to which the code belongs, as well as formatting instructions.

We have implemented a new mechanism for fully parameterised prompt tem-
plates to explore further the efficiency of various prompts. Gin can receive a prompt 
template and the name of an LLM model to query. Each template includes place-
holders for parameters (indicated by capital letters). These parameters are the num-
ber of different variations of the code at hand, the code itself, and the project name, 
all integrated into the template structure. We parameterised the medium prompt 
to create a template, which we denote as basic template (Fig.  1). We create two 
additional prompt templates that extend the basic template by examples: (1) small 
changes template suggesting, by examples, small GI edits (e.g. swap, remove, dupli-
cate) as exemplified in Fig.  2, and (2) structural changes template suggesting 
examples related to structure (e.g. replace for loop in while loop) as shown in exam-
ple Fig. 3. The examples provided in the small changes prompt and the structural 
changes prompt are fixed. In Sect. 5, we evaluate Gin using all three prompts, set-
ting < ������� > to five, thereby requesting five distinct variations of the code in 
question.

3 � Research questions

We aim to understand how often LLMs produce valid and effective program variants 
and how the LLM-generated mutations compare against traditional GI mutation 
operators. Therefore, our primary research question is as follows:

RQ1: How effective are LLMs at producing valid, compiling, and test passing 
program variants when prompted to produce an alternative implementation of 
a given method compared to traditional GI mutation operators?

We seek to understand further the impact of employing different LLMs, which 
can differ in size and may operate locally or in a server environment. It is worth 
noting that if smaller and local LLMs are sufficient, this could facilitate a broader 
uptake of the approach. Considering this, we ask:

RQ2: What is the difference in terms of efficacy between LLMs at 
producing program variants when prompted to produce alternative method 
implementations?

We explore the effect of using different prompts. We aim to identify essential 
information necessary for efficient prompting in the context of program variants, 
including assessing the potential benefits of using code examples to describe pos-
sible code changes. Thus, we ask:
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RQ3: Which prompts are most effective in generating program variants pro-
duced by an LLM when prompted to produce alternative method implemen-
tations?

Moreover, we investigate if the generated variants not only pass the tests, but 
also improve upon the software property of interest, in our case - execution time.

RQ4: How effective are LLMs at producing runtime-improving software 
variants when prompted for alternative method implementations compared 
to traditional GI mutation operators?

Finally, we study the additional time overhead produced by LLM generated 
edits. Here, we ask: 

RQ5: What is the difference in terms of efficiency between LLMs at 
producing program variants when prompted to produce alternative method 
implementations?

4 � Experimental setup

In this section we describe the experimental setup we followed to answer our 
research questions.

4.1 � Profiling

Gin’s profiler makes use of Java Flight Recorder, and works by sampling the 
call stack during a run of the test suite. In the following, we summarise the main 
aspects of this profiler, while a detailed description can be found in previous work 
(Watkinson and Brownlee, 2024).

The profiler starts at the top of the stack and works down until it finds the first 
appearance of a method in the target project (rather than Java API or library code) 
at 10ms intervals. A counter for each method is incremented each time it is found 
during profiling; the calling unit test is also logged. At the end of profiling, all 
methods are ranked in order of appearances during profiling. We could take the 
top-ranked methods from this ranking as the hot methods to be targeted, but this 
leads to different methods being identified as hot in each run. A small number 
of methods tend to be consistently identified as hot, with a long tail of less-hot 
methods appearing rarely , i.e., not being ranked at all. Given this context, hot 
methods to be targeted by the edits were identified using Gin ’s profiler tool by 
repeating the profiling 20 times and taking the intersection of the resulting 20 sets 
of methods assigned a ranking. Across the repeat runs, we identified the unit tests 
that had called each hot method during each repeat run and took the union of the 
unit tests for each hot method.
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4.2 � Target projects

In our preliminary work, the target project for improvements in our experiments 
was the popular JCodec project. In this work, we extended our experiments to 
four additional projects, namely JUnit4 , Gson , Commons-Net and Karate 
. These additional projects were sourced by looking at popular projects rated 
with high stars, which use Java 17, employ Maven or Gradle as the build system, 
are open-source, and have a permissive licence. The project selection criteria 
were similar to those used in two previous studies with Gin (Petke et  al. 2023; 
Watkinson and Brownlee 2024). From here, we tried to compile the project and 
run the Gin ’s EmptyPatchTester to ensure the project was compatible. 
Projects that successfully compiled, and were compatible with Gin , were selected 
to be included in our evaluation.

Table 1 presents all five projects with their URL and the branch checked out for 
the experiments as well as the number of Java files and Java code lines (denoted 
as SLOC). The size of the selected projects ranges from 226 Java files for Gson 
to 1182 files for JCodec . The SLOC range from 24787 for Commons-Net to 
132538 for JCodec .

4.3 � Algorithm parameters

For the random sampling experiments, we set up the runs with statement-
level edits (copy/delete/replace/swap from Petke et  al. (2023)) and LLM edits, 
generating 1000 of each type at random. Line and statement level edits are the 
most commonly applied in GI (Petke et al., 2019): here we focus on statements 
as these have been shown to be more likely to lead to compiling and test-passing 
variants (Petke et al., 2023). A timeout of 10000 milliseconds was used for each 
unit test to catch infinite loops introduced by edits; exceeding the timeout counts 
as a test failure. For local search, experiments were set up similarly. There were 
10 repeat runs (one for each of the top 10 hot methods) but the runs were limited 
to 100 evaluations resulting in 1000 evaluations in total, matching the random 
sampling. In practice, this amounted to 99 edits per run as the first was used to 
time the original unpatched code.

Table 1   Target projects with URLs and the checked-out versions as well as the number of Java files and 
Java code lines (denoted as SLOC)

Project URL & branch Java files SLOC (Java)

JCodec github.com/jcodec/jcodec (master, 7e52834) 1182 132538
JUnit4 github.com/junit-team/junit4 (r4.13.2) 471 31242
Gson github.com/google/gson (gson-parent−2.10.1) 226 31011
Commons-Net github.com/apache/commons-net (rel/commons-

net−3.10.0)
281 24787

Karate github.com/karatelabs/karate (v1.4.1) 488 44869



	 Automated Software Engineering           (2025) 32:15    15   Page 10 of 25

4.4 � LLM

We utilised Langchain4J version 0.18.0 and Ollama4j version 1.0.44 to inte-
grate OpenAI and Ollama models, respectively. LLM prompts using the OpenAI 
API via the Langchain4J library were set with a temperature of 0.7, calling GPT 
3.5 Turbo (specifically gpt −3.5-turbo-1106) ran directly on GPUs on 
servers in data centres managed by OpenAI . We employed Ollama to prompt from 
TinyDolphin (0f9dd11f824c, 637MB) and Mistral (61e88e884507, 
4.1GB).

4.4.1 � A note on the selection of language models

Between January 8th and 9th, 2024, we evaluated several language models. We 
tested their ability to write Java code and assessed the relevance of their outputs 
given a sample prompt for optimising a JCodec patch. Models that mainly pro-
duced explanatory text with minimal code (e.g., CodeLlama, deepseek, StarCoder, 
WizardCoder, and Zephyr) were excluded due to the difficulty in parsing and lim-
ited relevance. StarCoder was also excluded for occasionally outputting non-English 
responses. Furthermore, we excluded models that either attempted to complete code 
like adding class Main to the patch (DeepSeek and StarCoder) or included a vari-
ety of programming languages beyond Java (Dolphin-mixtral, Magicoder, and Wiz-
ardCoder). At the time, other candidates like OpenChat and Neural-Chat, similar in 
size to Mistral , were considered.5 OpenChat performed comparably to Mis-
tral (15–30 min run per 10 patches), while Codeup had a worse performance with 
a 30-60  min run per 10 patches. Hence, due to the rapidly evolving landscape of 
language models, we selected one of them, Mistral .

Table 2   Machine specifications for each experiment

An experiment is described by the target project, the search type (local search (LS) or random search 
(RS)) and the LLM model used for LLM edits, or Statement for statement-level edits. An asterisk 
means the specification refers to all models and edit types.

Project, search (LLM) Machine specification

JCodec , RS (OpenAI , Mistral ) AMD Threadripper 3990x, 64C/128T, 128GB, Titan 
RTX

JCodec , RS (TinyDolphin , Statement) Intel Xeon W-2245, 8C/16T, 128GB, RTX 2080 TI
JCodec , LS (*) Intel Xeon 2620v3, 12C/24T, 32GB, Titan X
Gson , RS (OpenAI , Mistral ) AMD Threadripper 3990x, 64C/128T, 128GB, Titan 

RTX
Gson , RS (TinyDolphin , Statement) Intel Xeon W-2245, 8C/16T, 128GB, RTX 2080 TI
Gson , LS (*) Intel Xeon W-2245, 8C/16T, 128GB, RTX 2080 TI
JUnit4 , RS & LS (*) Intel Xeon 2620v3, 12C/24T, 32GB, Titan X
Commons-Net , RS & LS (*) Intel Xeon 2620v4, 16C/32T, 32GB
Karate , RS & LS (*) Intel Xeon 2620v3, 12C/24T, 32GB, Titan X

5  Most language models are of medium size due to their balanced performance and resource demands.



Automated Software Engineering           (2025) 32:15 	 Page 11 of 25     15 

To recap, we assessed models based mainly on the quality of their Java code 
outputs. Yet, we focused on ensuring a diverse representation of models within our 
evaluation to include models of different sizes: small (TinyDolphin), medium 
(Mistral) and large (GPT 3.5 Turbo) while considering their performance 
on CPU for usability. We shared examples from this experiment at Brownlee et al. 
(2024).

4.5 � Experimental environment

We implemented our approach in Gin6. For the experiments, we installed Java 
17 and Maven 3.9.x (managed by SDKMan), as well as Gradle 8, which are pre-
requirements for Gin and the evaluated projects. We ran our experiments on several 
servers.7. The machine specifications for each experiment are listed in Table 2. For 
any given project, all local search runs ran on the same machine to ensure that the 
measured times were comparable among the results for that project.

5 � Results

In this section, we present and discuss the results of the comparison of statement-
level edits and LLM-based edits with different prompting strategies and LLM 
models. The performance of both a Random Sampling and a Local Search approach 
is compared using five well-known open-source projects as a benchmark.

5.1 � Random sampling

First, we analyse the statement-level edits and the LLM-based edits for Random 
Sampling and compare the number of valid patches (successfully parsed), compiling 
patches, and patches passing all unit tests. Figure 4 shows the achieved results for 
all studied combinations of the considered prompting strategies and LLM models 
as well as the results achieved with the statement-level edits for the projects Com-
mons-Net (subplot a), Gson (b), Karate (c), JUnit4 (d), and JCodec (e). The 
number of unique patches is indicated with a triangle for each configuration.

We observe that most valid patches were found with the statement-level edits 
on 4 out of 5 projects where always over 800 valid patches were found. For com-
parison, with the locally executed LLM models TinyDolphin and Mistral , 
the number of valid patches is always lower, regardless of the prompt used. How-
ever, if we analyse the number of found compiling patches and patches passing 
the unit tests, we see a strong downward trend on all projects with the statement-
level edits. On average, less than 50% of the valid patches found with the state-
ment-level edits compiled and less than 20% passed the tests. For the LLM-based 
edits, the percentage of the found compiling and unit test passing patches is nota-
bly higher in relation to the found valid patches. For example, out of 836 valid 

6  GitHub https://​github.​com/​ginto​ol/​gin, llm branch, commit 9fe9bdf.
7  The environments of all machines are listed in Brownlee et al. (2024)

https://github.com/gintool/gin
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patches produced by OpenAI with the basic prompt for the Commons-Net pro-
ject, 835 compiled and 825 passed the unit tests.

Answer RQ1: LLMs produce up to 80% valid, compiling, and test passing 
patches. Therefore, they are effective at producing program variants when 
prompted to produce an alternative implementation of a given method. While 

Fig. 4   Random Search results for the five projects: Commons-Net , Gson , Karate , JUnit4 and 
JCodec . Each plot shows the results of a single project for each combination of an LLM and a prompt 
with the results for the statement-level edits. The number of valid, passed and compiled patches is 
shown. The triangles indicate the number of unique patches
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statement-level edits generally find more valid patches, the number of patches 
that compile and pass the unit tests is higher using LLMs.

Analysing the number of compiling and unit test passing patches, the best results 
were achieved with OpenAI ’s LLM model with the basic (denoted as B) and the 
small changes (SM) prompt templates. On average, with OpenAI B about 821 valid, 
783 compiling and about 774 passing patches were found. The results achieved with 
the locally executed LLM models TinyDolphin and Mistral are considerably 
lower. For example, with Mistral , the best results were achieved with the small 
changes (SM) prompt with around 402 compiling and 309 passing patches on aver-
age. With TinyDolphin the number of found patches passing the unit tests is 
always lower than 200 regardless of the prompt used. However, we should keep in 
mind that every call to OpenAI ’s API is billed, while the costs of local LLM mod-
els (infrastructure and energy costs) can be adjusted to the user’s needs. In addition, 
depending on the project, data protection and privacy reasons should also be taken 
into account, which could favour the use of local or self-hosted LLMs.

Answer RQ2: The efficacy of LLMs in producing program variants depends 
on the model. In general, OpenAI ’s LLM generates more valid, compil-
ing, and test passing program variants when prompted to produce alternative 
method implementations compared to Mistral and TinyDolphin .

Answer RQ3: The best results are achieved with the basic and small changes 
prompt, depending on the model used. This indicates that in our setup simpler 
prompts are more effective in generating program variants produced by an 
LLM when prompted to produce alternative method implementations.

Regarding the number of unique patches found, we have observed that on 
average the highest number of unique patches was found with the statement-
based edits (78–94%). The proportion of unique patches is relatively high for the 
TinyDolphin (74–100%) and Mistral (56–100%) models. With OpenAI ’s 
model, on the other hand, unique patches range between 3–79% and often less than 
50% of the patches found are unique (especially with OpenAI SM and OpenAI 
B) indicating the generation of many repeated edits. We measured unique numbers 
by removing patches with identical strings: it could be interesting to explore how 
similar the remaining patches are in terms of syntax and semantics in the future.

5.2 � Local search

Second, we analyse the statement-level edits and the LLM-based edits for Local 
Search with a focus on the run time of the found improvements. Figure 5 shows the 
achieved best as well as the median improvements in milliseconds (ms) for all stud-
ied combinations of prompting strategies and LLM models as well as the improve-
ments achieved with the statement-level edits for all considered projects.
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For all projects (subplots a-e), we see that the best improvements were found with 
LLM-based edits. Among these, we see that for three projects the best results were 
achieved with the Mistral LLM model using the basic (B) prompt or the small 

Fig. 5   Local Search results for the five projects: Commons-Net , Gson , Karate , JUnit4 and JCo-
dec . Each graph describes the results of a single project for each combination of an LLM and a prompt. 
The best improvement (bestImprov) and the median improvement (median) are shown in milliseconds
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changes (SM) prompt, where we observe, e.g., best improvements for the projects 
Commons-Net (a), Gson (b), and JUnit4 (d) of 69 ms, 220 ms, and 253 ms, 
respectively. The overall best improvements for Karate (c) and JCodec (e) were 
found with OpenAI of 9109 ms, and 1595 ms, respectively. Looking at the median 
improvement, the best results for Commons-Net (a), Gson (b), and JUnit4 (d) 
were found with Mistral again. According to the median improvement, OpenAI 
performed best for Karate (c) and TinyDolphin for JCodec (e).

Answer RQ4: For all studied projects, the best runtime improvement is found 
with an LLM-based edit. Moreover, higher median runtime improvements 
were found with LLM-based edits compared to statement edits. However, 
there are large differences depending on the model and prompt.

 Following RQ4-Answer, where LLM-based edits led to the best runtime 
improvements, one might assume that a better prompt or sequence of prompts is 
required (e.g. to address the low validity rate of LLM-generated code (Zhang 
et  al. 2023; Xia et  al. 2024)). This seems promising, worth sacrificing Gin ’s 
performances as LLMs can detect and fix programs through few-shot prompting (Jin 
et al. 2023; Albuquerque et al. 2024). However, a patch that fails to compile likely 
indicates deeper issues and poor quality. We have observed that LLMs often apply 
examples as-is without generalising them to code snippets being edited (e.g. adding 
a statement from an example as-is instead of applying an edit in a similar way as 
presented in the example). We discuss this in the Invalid Code paragraph in the next 
section (subsection 5.3).

Fixing such patches is unlikely to result in valid functional code that passes the 
unit tests (Pearce et  al. 2022). Nevertheless, a more complex mechanism is likely 
necessary for a few-shot prompting to be effective in patch editing and passing the 
unit tests. We leave it for future work.

There is, of course, additional time overhead when using the LLMs to generate 
edits. Table  3 reports the relative wall clock times for the Local Search runs with 
each model on each project. Raw times for these runs are provided in the artefact 
(Brownlee et al. 2024). The times were measured from the beginning to the end of 
the sampling run, and include all API calls, LLM response times, parsing, compila-
tion and testing of patches, and logging activity. The numbers reported in the table 
are computed as the ratio of the runs using LLMs vs classic GI statement edits so, for 

Table 3   Relative run times for the local search experiment for each model on each of the target projects

The numbers reflect the wall-clock time, relative to the equivalent for the statement edits, for the 
complete sampling run including calls to the model, as well as parsing, compilation, and testing of the 
patches.

Project

Model Commons-Net Gson jcodec JUnit4 Karate

Mistral 91.92 19.21 83.25 21.59 3.73
OpenAI 7.88 24.86 28.03 3.64 1.05
TinyDolphin 61.05 13.92 21.62 12.77 1.02
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example, the run on Commons-Net with OpenAI was 7.88 times as long as the run 
on Commons-Net using statement edits. The run with Mistral was 91.92 times 
as long as the run using statement edits. In concrete terms, the run exploring 1000 
statement edits completed in 818 seconds, with OpenAI’s run taking 6449 seconds 
and Mistral’s taking 75187  seconds. Put another way: in the same time it took 
to generate and evaluate 1000 statement edits, it was only possible to generate and 
evaluate 127 OpenAI edits or 11 Mistral edits. There are several confounding 
factors to these numbers: as well as all the usual noise in measuring run times (even 
given dedicated machines), the Ollama bug noted in Sect. 5.3 and variations in Ope-
nAI’s server response times make any precise comparisons impossible. In this light 
the figures are reported only to provide some context. For some of the projects, test-
ing the patches took long enough that the extra overhead to call the LLM was lower 
in impact than might be expected. For the OpenAI sourced edits, the Local Search 
took around 1–3.6x as long as statement edits with JUnit4 and Karate. Given 
that OpenAI edits passed the unit tests more than 4x as often with each of these 
projects, the additional time taken by the LLM is of value. For the other projects, 
while the extra time taken to run the models does not lead to a proportionate increase 
in test-passing variants generated, LLM edits did produce larger speedups than state-
ment edits. Assuming the improved application will be run many times, the one-off 
time investment in the optimisation stage is worthwhile.

Answer RQ5: In our setup, either OpenAI or TinyDolphin have the low-
est runtime overhead compared to statement edits.

5.3 � Qualitative analysis

We present here an error analysis to explain why some LLM-generated edits fail 
to compile or pass tests. Our logs (stderr) are available at Brownlee et al. (2024). 
However, understanding the errors beyond the common reasons identified in this 
section requires a thorough familiarity with each project.

Certain combinations of models and prompts outperformed others. We conducted 
a manual analysis of the logs, examining the responses from LLMs and Gin ’s parsing 
of the suggested variants to understand better the source of failures. Through this pro-
cess, we categorised these into three categories: Cases where (1) no replacement was 
found when parsing the response, (2) a replacement was offered but failed compilation 
or was invalid according to regression tests, and (3) a replacement was found, success-
fully compiled, and passed all regression tests, yet offered no advantage. We shared 
the logs analysed in this section as part of our artefact(Brownlee et al. 2024).

A Bug in the OllamaService.  The Ollama service halted unexpectedly dur-
ing the experiment. We noticed it happened more frequently with TinyDol-
phin compared to Mistral . It is a known bug of Ollama previously reported.8 
We attempted to mitigate this by pulling specific versions of Ollama known to be 
less prone to the problem, but we observed no difference. We opted to implement a 

8  E.g. https://​github.​com/​ollama/​ollama/​issues/​1863.

https://github.com/ollama/ollama/issues/1863
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simple mechanism to automatically restart the Ollama service during Gin ’s execu-
tion using a script available as part of our artefact (Brownlee et al. 2024), which led 
to some responses being lost.

Issue with Code Formatting.  While parsing code with Gin , we developed a 
basic parser to detect code notations (```<CODE>```) with or without a java 
label. However, all three models displayed creativity in marking sections as code, 
which posed challenges for our parser in precisely identifying the < ������� > var-
iants requested from the model. Some examples: 

1.	 No use of code notations, marking it as just regular text;
2.	 TinyDolphin and Mistral returned code that is not written in Java (e.g. 

Python, Ruby, PhP, or Kotlin) and tagged it accordingly (e.g. Python:<line-
break>```python);

3.	 Applied non-consistent ways of marking the code as Java code, varied even within 
the same execution of Gin , such as Java<line-break>```<CODE>```, 
java<line-break>```java<CODE>``` or ```java java<line-
break><CODE>``` (with java tag having some variations such as JAVA, 
java:, Java:, etc.); and

4.	 Used plenty of free text, making it difficult to parse, like <free-
text> <line-break>```java<CODE>``` with some variations 
of free text before the code such as (Strict Implementation), 
implementation, Java implementation 1:, (With ‘dfs‘ 
check), Java implementation #1:, With ‘dfs‘ check and 
‘SimpleDateFormat‘ instantiation outside the if 
condition:<line-break><line-break>.

LLM Response Contains No Code. Some prompts’ responses from TinyDol-
phin and Mistral did not contain any code, irrespective of the prompt type. 
Some of them declared the task is impossible or done, e.g. with TinyDolphin 
for this code in the prompt ```{ sb.append("return ");}```, the LLM 
returned the following response:

Other responses contained pseudocode or a list of suggestions as free-text, e.g., 
with Mistral and the following code in the prompt ```{ rhs = "";}```, 
the model’s response was:
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Note that OpenAI had a similar kind of response, but it made sure to surround 
each code edit suggestion in code notation as a comment, like this: ```{ // 
implementation using Java 8 Streams}```.

Last, LLMs have explanatory capabilities, which can lead to the following 
response (Mistral and the small changes prompt):

In this example, Mistral explained each of the code examples in Fig. 2 when 
presented relatively long code snippet to patch.

Invalid Code.  The LLM’s response included an invalid code. It could be due to 
various reasons like undeclared variables or syntax errors. However, we identified 
several reasons specific to LLMs that can lead to invalid code.
OpenAI with structural changes attempted to turn the following code snippet 

```{ for (DateFormat dateFormat: dateFormats) { try { 
return dateFormat.parse(s); } catch (ParseException 
ignored) } }``` into a method, abandoning completely the original task of 
seeking replacements for it, returning this method with some headers:
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as the original code was part of a block of instructions in a method, embedding 
the response suggestions led to a compilation failure. We observed this also in Mis-
tral and TinyDolphin ; TinyDolphin (Commons-Net, Random Sampling, 
basic prompt) identified the origin of the code snippet from Commons-Net ’s 
GitHub project, returning the entire Java implementation class as the response.

For all three models when using small changes or structural changes 
prompts, the response sometimes contained the code examples in Fig. 2 and Fig. 3, 
respectively. For example when prompting with this code snippet: ```{sb.
append("return ");}```, OpenAI with Fig. 3 was:

that would likely lead to test suite failure; specifically in this case, Gin failed 
much earlier because the LLM had appended free text too, resulting in the response 
not being parsed properly by Gin .

Useless Edits.  When mutating code snippets, LLM occasionally suggests useless 
edits. During our analysis, we found some of these: (1) No actual edit: The response 
remained identical to the prompt; (2) Comment-only edits: Edits were limited to the 
code’s comments; (3) Explaining the Code: LLM added comments to explain the code, 
but these additions don’t improve performance; and (4) Repetitive responses: The same 
response was repeated multiple times, offering no new insights.
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6 � Threats to validity

In this work, we used different LLMs to investigate their suitability for code mutations 
in the well-known GI system Gin . However, common threats with LLMs are that they 
behave like a black box for their users and that newer versions may produce a different 
output, which could influence the reproducibility of the results. To mitigate these 
risks, we not only used OpenAI ’s GPT 3.5 Turbo via API, as this service could 
change at any time but also the TinyDolphin and Mistral models, which can 
be installed locally. Consequently, we specified the versions used for TinyDolphin 
and Mistral . Compounding this issue, even with temperature set to zero, LLMs 
show non-determinism (Ouyang et  al., 2023). While this variability may actually be 
beneficial for search, adding diversity (Blyth et  al., 2024), it nevertheless makes the 
replication of the results for a study like ours difficult, so the best that can be done 
is to provide the logs tracking the LLM responses as we have done in our artefact. 
Future study of techniques to minimise this variability such as temperature tuning or 
consistency checks would definitely be interesting to pursue.

Moreover, the number of software projects and LLM models studied in our experi-
ments is limited, which could have biased the drawn conclusions. However, compared 
to our preliminary work, we have significantly increased the number of studied projects 
and LLM models and could confirm previous findings and gain new insights. We con-
sidered projects of up to 132k significant lines of code: enterprise systems can be sig-
nificantly larger and it is not clear how far the approaches will scale. We expect that as 
the target application’s size increases, larger context windows for the LLM interactions 
will be required, the search space of possible edits will increase exponentially, and test-
ing will become more time-consuming. It is reasonable to think that these issues can be 
overcome: LLM context windows increase with each new development, and existing 
GI success stories suggest that search algorithms scale well to industrial scale software 
with the traditional operators.

In addition, the run time of the improvements is difficult to measure precisely. 
Furthermore, we assumed the validity of the test suites in our experiments. However, 
both risks affect most of SBSE research. To counteract them, we carried out our 
measurements in accordance with the GI literature.

7 � Related work

The last few years have seen a rapid uptake of large language models (LLMs) 
to solve software engineering problems  (Fan et  al. 2023) such as program 
repair (Zhang et al. 2024). Research in the area has resulted in many LLM-based 
end-to-end tools that address the functional improvement of software (Bouzenia 
et al. 2024; Xia et al. 2023; Jin et al. 2023).

Aside from end-to-end solutions to software engineering tasks, LLMs have 
also been augmented into existing ones and used as optimizers  (Hemberg et  al. 
2024). One such example is the use of LLMs for improving the search in existing 



Automated Software Engineering           (2025) 32:15 	 Page 21 of 25     15 

search-based approaches such as search-based test generation  (Lemieux et  al. 
2023) and fault localization (Murtaza et al. 2024).

Since the emergence of genetic improvement research, the canonical edits that 
delete, swap, replace, or insert pieces of code (statements, lines of code, assembly 
instructions etc.) have been used. Given the large search space for application 
of such mutation operators, more specialised ones have been introduced, such as 
insertion of a break/return (Brownlee et al. 2020), and others., In our preliminary 
work, we investigate whether taking this a step further by prompting LLMs for 
code mutations could be a viable approach in the GI context  (Brownlee et  al. 
2024). Similarly, Hu et al. (2023) used ChatGPT to generate variations to the seed 
program for a greybox fuzzer and Birna et al. (2024) use LLMs as a recombination 
operator for GI. It is worth noting that most of the previous work focused on 
the power of commercial LLMs, such as GPT. This provides a restriction on the 
availability of such models (both in terms of access and computing resources 
required). Here we want to see how well smaller, open-source models perform.

Furthermore, we explore different prompts. The field of prompt engineering 
deals with crafting prompts to gain more successful results from LLMs, yet the 
field does not yet provide clear guidelines, beyond those specific to each model. 
In this area, Chain-of-Thought prompting gained some attention (Wei et al. 2022). 
The method divides a given task into subtasks, for which prompts are individually 
crafted. It is yet unclear which prompts should be used for a given task, such as 
mutation operator generation. There have been a few attempts to automate this 
process though. Fernando et al. (2024) proposed to evolve mutations that change 
the prompts themselves, guided by a fitness function specific to a given task. 
Guo et al. (2023) proposed to evolve a population of prompts using hand-crafted 
mutations and crossover operators. While the second approach is freely available 
it is extremely time-consuming and it is unclear whether the operators would 
yield better results in our case. Nevertheless, use of such tooling could be used in 
future work.

8 � Conclusions and future work

Genetic improvement of software is highly dependent on the mutation operators 
it utilises in the search process. To diversify the operators and enrich the search 
space further, we previously incorporated a Large Language Model (LLM) as an 
operator. The present paper builds on that work to explore three models and three 
prompting strategies on five software programs.

We found that, although more valid and diverse patches were found with standard 
edits using Random Sampling, up to 9 times more patches passing the unit tests 
were found with LLM-based edits. Simpler prompts appeared to generate test-
passing edits more often. The larger models of OpenAI and Mistral appeared 
to be more successful than TinyDolphin . For example, with OpenAI ’s LLM 
and the basic prompt around 774 passing patches were found on average (compared 
to around 118 passing patches found with statement edits on average). However, 
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the statement edits still produced more unique variations to the code, so there is 
potential in exploring approaches combining both LLM and ‘classic’ GI edits. It 
would be also interesting to carry out a deeper analysis of which kind of edits works 
best and where — perhaps exploring what features of the target source code make it 
more amenable to improvement.

Our preliminary exploration (Brownlee et  al. 2024a) hinted that the statement 
edits found the best runtime improvement. The additional prompts and models we 
analysed in the present work led to the best runtime improvements being found with 
LLMs for all 5 target projects. The improvements found with LLMs were between 2 
and 27 times greater than those found with statement edits.

Our experiments revealed that the prompts used for LLM requests greatly affect 
the results but there is clearly still much to be explored in terms of models and 
prompt strategies. A systematic exploration of different combinations of prompting 
elements would be a very interesting direction to pursue. This could include varia-
tions we have not yet considered, such as the inclusion of the optimisation objectives 
(“reduce runtime”) in the prompt, or including feedback about errors in the sug-
gested patches. It might also be helpful to mix prompts: e.g., starting with the basic 
prompt then switching to the small changes prompt to make larger edits that break 
out of local minima. Further, the possibility of combining LLM edits with others 
such as standard copy/delete/replace/swap or PAR templates (Kim et al. 2013) could 
be interesting.
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