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ABSTRACT

Gene-order-based comparison of multiple genomes
provides signals for functional analysis of genes
and the evolutionary process of genome organiza-
tion. Gene clusters are regions of co-localized genes
on genomes of different species. The rapid increase
in sequenced genomes necessitates bioinformat-
ics tools for finding gene clusters in hundreds of
genomes. Existing tools are often restricted to few (in
many cases, only two) genomes, and often make re-
strictive assumptions such as short perfect conser-
vation, conserved gene order or monophyletic gene
clusters. We present GEcko 3, an open-source soft-
ware for finding gene clusters in hundreds of bacte-
rial genomes, that comes with an easy-to-use graphi-
cal user interface. The underlying gene cluster model
is intuitive, can cope with low degrees of conserva-
tion as well as misannotations and is complemented
by a sound statistical evaluation. To evaluate the
biological benefit of GEcko 3 and to exemplify our
method, we search for gene clusters in a dataset of
678 bacterial genomes using Synechocystis sp. PCC
6803 as a reference. We confirm detected gene clus-
ters reviewing the literature and comparing them to
a database of operons; we detect two novel clusters,
which were confirmed by publicly available experi-
mental RNA-Seq data. The computational analysis is
carried out on a laptop computer in <40 min.

INTRODUCTION

Genomes evolve not only on the level of single nucleotides
but by large-scale alterations, such as gene deletion, dupli-

cation, inversion and transposition. Without selective pres-
sure, gene order and content would randomize over time.
In reality, we observe low overall conservation of gene or-
der between species, but a large number of shared genome
segments with up to 50 conserved genes (1). These gene clus-
ters can provide signals for functional analysis (2,3): for ex-
ample, pairwise gene proximity indicates co-regulation in
prokaryotes, independent of relative gene orientation (4)
and/or cotranscription of operons. Moreover, multiple oc-
currences of regions with conserved gene content are strong
indicators for whole genome duplication (5). For a large
number of genomes, identification of gene clusters can be
a computationally challenging task, since conservation pat-
terns may vary across species due to micro-rearrangements,
gene insertions and losses or misannotations.

Numerous approaches and software tools have been
developed for the detection of gene clusters (6-28), but
many tools are limited to a pairwise comparison which
cannot detect faint signals. Only a few approaches can
handle multiple genomes, appearances in a subset of
genomes (where the quorum parameter determines the
minimum number of genomes) and inexact gene clusters
that are allowed to contain errors (Supplementary Ta-
ble S1). OTFQC3Part/Isofun (26) is limited to relatively
few genomes. CYNTENATOR (25) generates a gene-based
genome alignment. The method follows a guide tree, ig-
noring or splitting occurrences of a gene cluster not ex-
clusively contained in a single phylogenetic clade. Running
times of MCMuSeC (23) severely increase when the quo-
rum parameter becomes large, and its statistical evaluation
ignores the actual cluster or its conservation, taking into
account only the genomes a particular cluster is found in.
Finally, i-ADHoRe 3.0 (27) requires more than 128 GB of
memory for more than 500 genomes; by design, it only de-
tects collinear conserved regions in multiple genomes, cor-
responding to diagonal lines in the genome dot-plots. Both
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i-ADHoRe 3.0 and CYNTENATOR were designed to find
syntenic blocks in the genomes of higher eukaryotes, where
collinearity is more common than in bacteria. Few tools of-
fer a graphical user interface. See Supplementary Material
Sections 1 and 2 for details.

We present GECKO 3 for finding approximate gene clus-
ters. It improves upon its predecessor GECKO 2 by greatly
reduced memory consumption and running times, a sound
statistical evaluation and more flexible error parameters.
GECKO 3 features essential and desirable properties (Sup-
plementary Material Section 1) that were not previously
combined in any approach for gene cluster detection: (i) the
program uses an intuitive and potentially ‘biologically re-
alistic’ model for approximate gene clusters; (ii)) GECKO 3
is an exact method that is guaranteed to find all gene clus-
ters within the specified parameters; (iii) GECKO 3 is swift in
practice and processes more than 500 bacterial genomes on
a laptop computer (2.3 GHz Intel Core i7 processor, 16 GB
main memory) in less than an hour, using <8 GB RAM,; (iv)
the quorum parameter can be chosen without directly im-
pacting running time; (v) GECKO 3 integrates a sound and
accurate statistical evaluation (FDR-corrected P-values) of
detected gene clusters which is also swift in practice; and, fi-
nally, (vi) it offers a swift, flexible and easy-to-use graphical
interface for visualizing results.

To exemplify our method and to evaluate its biological
profit, we search for gene clusters in Synechocystis sp. PCC
6803 against 677 other bacterial genomes. GECKO 3 de-
tected 65 gene clusters and we successfully verified all but
two gene clusters using the literature and a database of oper-
ons. Genes of operons often evolve as gene clusters, due to
their common biological relevance; but this is not always the
case. Finally, the two novel gene clusters were successfully
confirmed by RNA-Seq data.

GECKO 3 is available online at http://bio.informatik.uni-
jena.de/software/gecko3/.

MATERIALS AND METHODS
GECKO 3 in a nutshell

GECKO 3 provides easy access to our methods for gene clus-
ter detection and statistical evaluation. The general work-
flow of GECKO 3 is depicted in Figure 1. GECKO 3 con-
sists of a Java program that implements the reference gene
cluster method, the computation of P-values and a graph-
ical user interface for setting search parameters, visualiz-
ing and filtering results (Figure 2). The tool can also be
run on the command line. GECKO 3 is distributed as a ZIP
archive and requires Java 7 to run. In addition, we supply
a python script to prepare full GenBank files for all-versus-
all blasting (29), clustering the results with TransClust (30)
(http://transclust.mmci.uni-saarland.de/) and transforming
the output to the GECKO 3 input format.

Informally, we model genomes as strings of gene num-
bers (or, equivalently, gene names) where homologous genes
from one family are represented by the same number. A ‘ref-
erence gene cluster’ as detected by GECKO 3 is a set of genes
that have an exact occurrence in one of the genomes, and
(possibly inexact) occurrences in a sufficient number of fur-
ther genomes: to measure ‘inexactness’, we simply count the
number of genes that have to be added or deleted from the
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gene cluster to match the occurrence in the genome, con-
ceptually similar to insertions and deletions in a sequence
alignment. For robustness, we ignore both multiplicities and
ordering of genes within the occurrences. See Figure 3 be-
low for an example.

GECKO 3 implements an exact algorithm for finding
all reference gene clusters. The algorithm has polynomial
running time, increasing quadratically with the number of
genomes and the length of the genomes. In practice, running
times are very swift, as we have made considerable effort to
improve speed by means of algorithm engineering. To be
able to rank and filter the gene clusters, GECKO 3 performs
a statistical evaluation of all computed clusters, based on
the null model of random gene order. The graphical user
interface permits swift browsing through the detected gene
clusters, a non-trivial task for hundreds of genomes and
gene clusters. Filtering of overlapping gene clusters can be
switched on/off in the user interface. See Supplementary
Material Section 3 on how to use GECKO 3.

Reference gene clusters

Reference gene clusters were introduced in ref. (31) under
the name ‘cluster filters’, and only later proposed as an al-
ternative gene cluster model (32). Unlike ‘median’ and ‘cen-
ter gene clusters’ (31), a reference gene cluster has an exact
occurrence in one of the genomes. This drastically reduces
the computational complexity of finding such gene clusters,
allowing gene cluster detection in hundreds of genomes. De-
tails can be found in Supplementary Material Section 4 and
refs. (31-33). See Supplementary Figure S1 for an artificial
reference gene cluster, highlighting advances of this gene
cluster model in comparison to other models.

For gene clusters with incomplete conservation patterns,
we quantify the differences in gene content of their approxi-
mate gene cluster occurrences, corresponding to the number
of genes deleted plus the genes inserted into a cluster occur-
rence. To limit the fuzziness of deleted and inserted genes,
we introduce the distance threshold & > 0 such that the sum
of inserted plus deleted genes is at most 8. Our model ig-
nores the order and multiplicity of genes in an occurrence,
and the gene clusters are modeled as (simple) sets. For exam-
ple, assume that one genome has a gene region ABACB, the
second has gene region BCDDC. The corresponding gene
cluster (ignoring order and multiplicity) are A,B,C for the
first genome (say, the reference gene cluster) and B,C,D for
the second genome (say, an occurrence); the distance is two
(one insertion, one deletion). See also Figure 3.

We demand that any cluster occurrence should have an
overlap of at least two genes to the gene cluster. The clus-
ter size threshold s is the minimum number of genes that a
gene cluster must contain; for the reference A,B,C above,
the size is three. The quorum parameter k' defines the min-
imum number of genomes that have an occurrence of the
gene cluster. Formally, a reference gene cluster of k genomes
with parameters s, 8, k" is a set of genes C with |Cl > s such
that C has an exact occurrence in one of the genomes and
C has d-locations in at least & — 1 other genomes, where a
d-location is an interval with distance at most & to C. See
the Supplementary Material for the complete definitions.
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Figure 1. Workflow proposed for the analysis of gene order data using GECKO 3. (1) Gene order information imported from GenBank files. Homologous
gene families are (2a) imported from a database such as STRING (36) or (2b) computed using all-against-all BLAST of the gene sequences, then applying
a tool for finding gene families such as TransClust (30). We supply Python scripts for this step of the analysis pipeline. (3) The combination of gene order
information and homology classification is imported into GECKO 3. (4) GECKO 3 finds a// (hypothetical) gene clusters that are within the parameters
given by the user. (5) Each gene cluster is evaluated by its P-value (significance), estimating the probability to encounter a gene cluster of this quality in
randomized genomes. (6) Gene clusters are sorted by P-value, and (7) those showing a large overlap with a better gene cluster can be hidden in the user

interface.

Algorithms

A high-level description of the algorithm behind GECKO 3
is as follows (Figure 1, steps 4-7):

e For given parameters s, , k', find all reference gene clus-
ters in the genomes S|, ..., Sk; alternatively, find all refer-
ence gene clusters in one genome selected by the user. For
each reference gene cluster, output all optimal &-locations
in the other genomes.

e For each reference gene cluster and each combination of
optimal 3-locations in the other genomes, compute its P-
value as described below; discard all but the optimal com-
bination of &-locations.

e Filter overlapping gene clusters, reporting only the one
with best P-value to the user. Filtering can be switched
off in the user interface.

The efficient computation of reference gene clusters in
uni-chromosomal genomes is described in ref. (31,32). As
indicated above, it is straightforward to generalize this ap-
proach to multi-chromosomal genomes. Reference gene
cluster computation in k genomes can be accomplished in

O(k*n?*8* + k*n?) time using O(kn?) space (31,32), where n
is the length of the largest genome. All optimal 3-locations
of the reference gene clusters can be detected under the
same time and space complexity (32). The algorithm is
exact, meaning that it is guaranteed to find all reference
gene clusters and their optimal occurrences as specified by
the search parameters. Extending the algorithm to multi-
chromosomal genomes, we reach the same time and space
bounds, where # is the length of the largest genome after
concatenation of chromosomes. See Supplementary Mate-
rial Section 4.2 for details, and Supplementary Figure S2
for the pseudocode for finding reference gene clusters in two
genomes.

Our algorithm outputs every gene cluster that cannot be
extended. But this results in a large number of overlapping
gene clusters: For example, a cluster may be found contain-
ing more genes, but conserved in less genomes, or with a
higher distance to the reference. GECKO 3 offers the option
to filter these cluster, keeping only those with the best P-
value (see below). For this, we apply a simple greedy proce-
dure that tries to add each cluster to a filtered list, processing
clusters sorted by their P-value: we compare the new cluster
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Figure 2. The GECKO 3 user interface after a gene cluster search has finished and one of the clusters has been selected for closer observation. ‘Score’
and ‘C-Score’ are negative logarithms (base 10) of the estimated P-value (uncorrected and FDR-corrected, respectively); for example, C-Score 395.284

corresponds to corrected P-value 107393284 = 520 x 10~
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Figure 3. Selected occurrences of the gene cluster with ID 520 in Table 1 found in the STRING dataset. All genes of identical color belong to the same gene
family; gene annotations are taken from RefSeq notes if available. In total, the cluster is found in 129 genomes. In the reference genome Synechocystis sp.
PCC 6803, the cluster has five protein coding sequences, but one gene with locus_tag slr0902, named moaC has two different functional units (annotated
COGO0315, MoaC and COG0746, MobA in the RefSeq notes), here depicted in red and brown. For Gluconobacter oxydans, two other functional units
(COG0746, MobA and COG1977, MoaD) are located on the same coding sequence, illustrated in brown and dark blue. Apart from that, the cluster is
perfectly conserved between this two genomes. The gene order in Escherichia coli is well conserved, but two genes are missing (moeA and mobA) and moaB
is inserted. In Phenylobacterium zucineum we find all but one (mobA) gene families of the reference genes, and again an inserted moeB gene, but with
deviating gene order. Lysinibacillus sphaericus contains all genes from Synechocystis sp. PCC 6803, but we find three additional genes in that region and
moeA is at a different position. The orientation of genes varies. Entries ‘ins.’, ‘del.” and ‘sum’ give the number of additional, missing and sum of genes of

occurrence versus reference gene cluster.

to all clusters already on the filtered list. If a cluster with a
overlap in any genome is found in the list, we do nothing;
otherwise, the cluster is added to the filtered list. We then
proceed to the next cluster. Filtering is done solely for pre-
senting the gene clusters in the graphical user interface, and
the user can also inspect those gene clusters which have been
filtered out.

In practice, many parameter combinations s, 8 do not
make sense: If & > s — 2, a 8-location is given by all oc-
currences of the two outer genes of the reference interval
with at most & — s + 2 intermediate genes. So, parameters s,
d should be chosen as a pair. To search for gene clusters of
different sizes at once, we modify the algorithm from Sup-
plementary Material Section 4.2: Instead of a single param-

eter pair s, 9, the algorithm accepts pairs s;, 8; such that s;
< s;and §; < §; holds for i < j. The algorithm guarantees to
find all gene clusters for parameters s = s;, & = §;, for one of
the pairs s;, 8;. Modifications of the algorithm are straight-
forward.

Searching for approximate occurrences of the conserved
reference interval, the reference gene cluster model tends
to overuse deletions: if we want to find approximate gene
clusters with many insertions, we have to set a large dis-
tance parameter 8. Unfortunately, this usually results in
the detection of many occurrences where a large number
of genes from the reference interval have been deleted. To
account for this problem, we modify the algorithm to ac-
cept three parameters 5249, §°% and 8™ instead of the sin-
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gle distance bound 8. Here, 324 is the maximum number
of insertions, 8'°% is the maximum number of deletions,
and 3™ is the maximum sum of deletions and insertions
(previously parameter ). As the algorithm computes the
number of deleted genes separately from the number of in-
serted genes, this modification is also straightforward to
integrate into the algorithm. Again, we allow the user to
provide not only one but many such parameter quadruples
57, 83dd_gloss gsum. that is, for any (minimum) cluster size,
we can choose the maximum allowed number of additional
genes, missing genes and sum of additional plus missing
genes. For example, the gene cluster and occurrences in Fig-
ure 3 can be detected for any parameters 524 > 3, §'°% > 2
and &M > 3 for s = 6.

It is understood that finding gene clusters strongly de-
pends on a correct assignment of homology groups. Our
flexible gene cluster model can deal with a certain amount
of wrong assignments, but this is clearly limited. When ho-
mology assignment quality drops, higher distance parame-
ters are required, which will result in higher running times
and potentially worse P-values.

Algorithm engineering

Practical running times were strongly decreased by ex-
tensive algorithm engineering. We leave out the details,
and just mention a single example: when processing 100+
genomes on a laptop computer, the memory requirements
of the above method become the limiting factor. Here, the
quadratic dependency of space on the genome length is no
longer acceptable. To this end, we came up with a modifi-
cation of the algorithm that only uses linear space but, in
the worst case, no longer guarantees the theoretical run-
ning times mentioned above. In practice, the linear-space
variant of the algorithm is often faster than the quadratic-
space variant, and usually not significantly slower. See ref.
(31-33) for more algorithm engineering tricks and evalua-
tions thereof.

Statistical evaluation of gene clusters

Evidence of gene cluster conservation is typically explained
as remnant ancestral gene order that was preserved up to
present either for lack of divergence time, or due to selective
constraints. However, it may as well be the case that seem-
ingly conserved patterns occur merely by chance. The statis-
tical evaluation integrated into GECKO 3 calculates P-values
to measure the likeliness of such events. The approach used
in GECKO 3 follows closely the framework introduced in ref.
(34). In the following, we give a synopsis of this approach.
Further details can be found in the original publication.

We use random gene order as the background model. For
each genome, we draw a random string S of the same length
where each character represents a gene family from the
genome and has probability proportional to its frequency in
the genome. We then estimate P-values, that is, the probabil-
ity that a gene cluster of the observed quality can be found
in the random genomes by chance.

Since we draw the random genomes independently, we
can proceed as follows: for each genome, we compute the

likelihood of a gene cluster occurring by chance in the cor-
responding random genome (Supplementary Section 5.1).
These are the individual P-values for each genome. Next,
we combine P-values from the individual genomes into one
P-value for the gene cluster, taking into account the quorum
parameter (Supplementary Section 5.2). Finally, we con-
sider the problem of multiple testing using a false discovery
rate (FDR) correction following Benjamini and Hochberg
(35) (Supplementary Section 5.3).

We stress that our computations are deterministic, imply-
ing that the same cluster will always be assigned the same P-
value if we run GECKO 3 multiple times on the same dataset.
Evaluations indicate that reported P-values are highly ac-
curate under the considered statistical model (34). Finally,
note that GECKO 3 will sometimes report P-values which
may appear to be unrealistically small: for example, the
best gene cluster from Table 1 (ID 282) has P-value 1.5 x
1019906 Byt the gene cluster (corresponding to the 508 ri-
bosomal protein L2) consists of 20 genes in the reference
genome, and is found in 547 out of the 678 genomes with
high degree of conservation. The probability that a gene
cluster of this conservation could be found by chance in ran-
dom genomes, is indeed vanishingly small. We stress that our
statistical model does not take into account aspects such
as the phylogenetic history of the organisms, so P-values
should nevertheless be interpreted with care.

STRING dataset

To demonstrate the abilities of GECKO 3 to detect gene clus-
ters in a large dataset, we analyze 678 bacterial genomes
for which grouping of genes in gene families was available.
The STRING database (36) (http://string-db.org/) clusters
proteins into orthologous groups, namely manually cu-
rated ‘clusters of orthologous groups’ (COG) (37) and ‘non-
supervised orthologous groups’ (NOG). We downloaded
orthologous groups (COG and NOG) and combined the
information with GenBank files downloaded from the Ref-
Seq database (38) to generate the GECKO 3 input file. For
species where multiple strains are present in the dataset,
we keep only a single strain. This results in a dataset con-
taining 678 genomes, see Supplementary Table S2 for a list
of all contained genomes. The dataset is available in the
GECKO 3 input format from http://bio.informatik.uni-jena.
de/data/#gene_cluster.

RESULTS

We evaluate GECKO 3 by comparison to known operons of
a model organism, and by comparison to other software
tools. First, we evaluate gene clusters predicted by GECKO 3
for Synechocystis sp. PCC 6803. Synechocystis serves as
model for fundamental and applied research in cyanobac-
teria (39), as it allows the analysis of reactions and metabo-
lites of photosynthetic primary metabolism (39-41). Its bio-
chemical similarities to plant chloroplasts are well-suited
for research of molecular mechanisms underlying stress re-
sponses and stress adaptation in higher plants (42). An-
other hallmark of this unicellular cyanobacterium is its nat-
ural competence for DNA uptake (43,44). As Synechocystis
sp. PCC 6803 is well-studied, we did not expect to identify
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Table 1. Gene clusters of searching Synechocystis sp. PCC 6803 against 677 bacterial genomes using default distances (see Supplementary Table S3, left)

and quorum parameter 10
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Synechocystis sp. PCC 6803

Escherichia coli O127:H6 str. E2348/69

1D p-score G GN T Collinearity gene name orientation gene name orientation lit.
282 19005.81 20 547 - 546, 1 adk-, rpIBCDEFNO-  all — rpIBCDEFNOPRVWX, all — (49)
PRVWX, rpmC, rpmCD, rpsCEHNQS,
rpsCEHQS, secY secY
442 5958.62 6 576 — 576 nusG, rplAJKL, secE =~ — — — — — — nusG, rplAJKL, secE +4+4++++ (50)
499 4344.40 5 545 - 545 Sfus-, rps7JL, tuf- - — — — — SfusA, rpsGL, tufA -———= (51)
146 3856.44 S 599 - 599 pl36Q, rpoA, rpslIM — — — — — — plQ, rpoA, rpsDKM ~ — — — — — (51)
24 3578.96 7 422 - 408, 14 atpACDFGHI ~  —— — — — — — atpABEFGH = —————— (52)
515 3519.31 6 466 — 460, 1,4, 1 pstABBCS, sphX - ————— pstABCS - == (53)
578 2438.20 4 315 — 312,3 ndhAEGI - == nuoHIJK - == (54)
495 2292.85 3 381 - 381 ndhCJK +++ nuoABC - —— (55)
474 2062.92 3 387 - 315,69, 3 mntABC - == * * (56)
569 2048.50 3 374 - 374 clpPX, tig- - — = clpPX, tig- +++ (57)
1 1737.59 4 364 — 50, 249, 65 fecBCDE +4+++ fhuBCD +++ (58)
462 1695.57 5 351 — 349,2 nrtABCCD - ———— * * (59,60)
480 1578.60 S 194 - 179, 11,3, 1 —, kdpABCD +4+ 44+ kdpABCD -———= (61,62)
525 1542.76 4 296 - 295,1 —, nifS, ycf1624 +4+++ sufBCDS - == (63)
563 1434.47 3 329 - 300, 28, 1 -, = ++ 4+ yejNOP +++ (64)
11 1401.51 3 230 — 230 —, —, nusA +++ * * N
526 1389.86 3 224 — 223,1 minCDE - —— minCDE - —— (65)
584 1228.22 3 202 - 200, 2 cysATW +++ cysAUW - == (47)
63 1005.10 3 202 - 202 ctaCDE +++ cyoABC - — = (66)
57 586.79 3 161 — 76, 82,3 —, —, pilJ - —— cheAW, tar- - —— (48)
83 538.87 3 115 — 114, 1 rpIM, rpsl, trud - —— * * (67)
520 499.81 6 129 - 78,6,7,12,14, —, moaACCE, moeA ++++++ moaABCDE +++++ (68)
6,1,1,1,3
536 395.28 7 31 - 7,3,3,18 — ey — —m—— — — — * * (69)
merR
490 340.10 5 73 — 71,2 —, —, —,rnpA, rpmH  +++++ * * (70)
481 264.36 3 67 - 46, 6,15 - == -—= * * N
517 225.38 3 55 - 52,3 —, —, cbiM - == * * (71)*
49 170.66 6 19 - 19 —, psbEFJL, rub- ++++++ * * (72)
488 162.14 5 23 — 23 —, —, hoxFUY ————— * * (73)
36 136.81 6 14 — 14 ccemKKLMMN ~ —— — — — — * * (74)
552 134.59 7 26 - 25,1 - =, = = nflJJg - === === * * N
38 114.94 3 34 - 30,2,2 rfbCFG +++ * * (75)
60 107.51 6 13 - 13 -, —, —, —, ndhDF ++++++ * * (76)
472 94.19 3 17 — 17 apcABC +++ * * (77)
585 86.08 3 18 — 18 -, = +++ * * (78)
565 85.14 3 21 + 21 —, —, lysd - —— * * N
528 78.51 3 56 - 44,12 - =, = - —+ * * (79)
506 77.33 3 15 - 15 - =, = +4++ * * N
576 77.31 3 21 — 21 —, asd-, dapA +++ * * (80)*
62 72.36 3 13 — 13 - = = +++ * * (81)
509 71.83 3 14 - 14 - =, = +++ * * (82)
566 70.55 3 18 - 18 —, —, dnaJ - — = * * N
492 67.65 3 12 - 12 —, —, pilM +++ * * (83)
512 61.96 3 16 — 16 —, dgkA, trpG +++ * * N
549 59.76 3 11 - 11 —, —, hypothetical - == * * N
protein
67 54.28 3 17 - 17 acpP, fabF, tktA - == * * N
434 49.52 3 15 - 15 —, rpoB, rpsT - == * * N
455 47.40 3 11 — 11 —, ndhD3F - —— * * (76)
508 44.32 6 33 - 18,7,7,1 — s — =y — ++++++ * * N
463 41.58 3 10 - 10 - == - == * * N
511 41.18 3 13 - 13 —, accB, efp- —++ * * N
485 40.62 6 46 - 39,4,2,1 — =y — +++++— atoSS, resBCCDD +++— —++ N
503 39.47 3 12 — 4,3,5 —, —, arsC +++ * * (84)*
580 32.24 3 11 - 11 gap2, murBC —++ * * N
554 31.08 6 10 - 10 - = = = = tar- — = — — = = * * N
42 31.02 6 16 - 16 -, —, —, —, galE, +4+++++ * * N
rfbU
586 30.26 3 11 — 4,7 —, rfbAB - —— * * (75)*
456 29.57 4 11 - 11 —, —, —, icsA —-——= * * N
435 25.66 5 22 - 4,6,1,8,2,1 —, ETRI11, cobN +4++++ * * (85)
510 23.64 3 11 - 1, 10 glcP, secDF —++ * * N
10 22.97 3 12 — 5,7 —, exbB, fhuA - —— * * (86)
507 22.69 5 20 - 16,3, 1 - === — === * * N
534 21.91 3 12 - 7,5 - == - == * * (87)
9 6.24 3 11 - 52,4 —, iutA, pchR - == * * N
486 5.55 5 15 - 15 - = — = mtfB - = === * * N
489 -1.48 5 11 - 1,8,1,1 — ==y =y — ——+++ * * N

Clusters sorted by corrected P-values; ‘p-score’ is the negative logarithm (base 10) of the corrected P-value. ‘G’ is number of genes in the reference gene cluster; ‘GN’ is the
number of genomes where the reference gene cluster is found. ‘T’ is “+’ if the cluster is found in a monophyletic clade of the phylogenetic tree from STRING. ‘Collinearity’
describes how often the cluster is found with all genes in the same order. Gene names taken from the GenBank entries for Synechocystis sp. PCC 6803 and Escherichia coli
O127:H6 str. E2348/69. Multiple gene names starting with the same first three letters are merged: for example, ‘rplB’ and ‘rplC’ become ‘rpIBC’. If the GenBank entry contains
no gene name then we put ‘—’. If the cluster has no occurrence in E. coli then we put “*’. Column ‘lit.” shows verification of the cluster in the literature, where ‘N’ means that no
cluster description was found. *Cluster was described in other bacteria but not in Synechocystis sp. PCC 6803.
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many gene clusters previously unknown; we aimed to evalu-
ate GECKO 3’s ability to recover known operons, evaluating
it against the literature available for this cyanobacterium.
Not all operons are evolutionarily organized as gene clus-
ters, and of course, not all gene clusters are operons. But
for the vast majority of gene clusters detected as part of this
study under default parameters, we were able to verify these
as operons.

For our computations, we use Synechocystis sp. PCC
6803 as the reference genome, comparing it against the
other 677 bacteria from the STRING dataset (Supplemen-
tary Table S2). We use a quorum parameter of ten. We run
GECKO 3 with two different parameter sets, namely, de-
fault parameters and relaxed parameters which allow for
more insertions and deletions of genes in cluster occur-
rences (Supplementary Table S3).

Gene clusters in Synechocystis

Using default parameters, GECKO 3 predicts 587 gene clus-
ters. After applying the filter option, we analyzed the re-
maining 65 gene clusters varying in size from 3 to 20 genes
with an average of 4.28 genes, and FDR-corrected P-values
ranging from 107148 to 1071°0%% see Table 1 for the list of
detected gene clusters, Figure 3 for an example gene cluster
and Supplementary Figures S9 and 10 for the visualization
of all gene clusters. Out of the predicted 65 gene clusters, 46
are not present in Escherichia coli O127:H6 (str. E2348/69);
of these, 20 are cyanobacteria specific.

For the 65 gene clusters, we searched for laboratory con-
firmation in the literature, both for any organisms and also
specifically for cyanobacteria and Synechocystis sp. PCC
6803. We find that 38 gene clusters were already described
in Synechocystis, 4 within bacteria and for 23 gene clusters,
no literature entry was found (Table 1).

Computations were performed on a Laptop Intel Core i5
M520, 2.4 GHz with 8 GB of RAM running Ubuntu Linux
14.04. For the default parameters, computations took 22
min for finding gene clusters plus 17 min for the statisti-
cal evaluation. Using relaxed parameters, computation re-
quired 33 min for finding gene clusters and 34 min for the
statistical evaluation, resulting in 1179 clusters and 206 clus-
ters after filtering. See Supplementary Table S5 for a list of
gene clusters after filtering for relaxed parameters. See Sup-
plementary Figures S3 and 4 for the influence of search pa-
rameters and different dataset sizes on running times.

Evaluation using DOOR 2.0 and Kopf et al.

We evaluate predicted gene clusters against the Database of
prOkaryotic OpeRons DOOR 2.0 (45) and results of RNA-
Seq studies reported by Kopf ez al (39). DOOR contains
operons computationally predicted by genome-specific and
general genomic information, such as promoter motifs.
Kopf et al. (39) determined 4091 transcriptional units for
Synechocystis, using RNAseg (46) on RNA-Seq data un-
der 10 different environmentally relevant stimuli which pro-
vide information about operons. Although both methods
are comparatively reliable, neither of the two sources pro-
vide experimental evidence of the predicted operons. Some-
what surprisingly, we detect a very strong agreement be-
tween operons and gene clusters, two non-related concepts.

272 253
26

413 12 351

295 284

Figure 4. Venn-Diagrams comparing results of GECKO 3, DOOR 2.0 (45)
and operons reported by Kopf ez al. (39). GECKO 3 is run with default pa-
rameters (left) and parameters with reduced minimum size and increased
maximum distance, increasing sensitivity but decreasing specificity of the
method (right, see Supplementary Table S3). We combine clusters and
operons in the three dataset based on connected components.

However, we find that gene clusters and operons are rarely
identical, meaning that beginning and end perfectly agree
for all three data sources. Hence, we rather test whether gene
clusters and operons contain at least 50% identical genes or
one is fully contained in the other; such cases are presumed
to be identical. Now, one operon reported in DOOR 2.0
may overlap with two or more gene clusters detected by
GECKO 3 and vice versa; to this end, we combine all oper-
ons and gene clusters that are contained in the same con-
nected component, interpreting the similarity of operons
and gene clusters defined above as the edges of an undi-
rected graph. This case is rare in application: for default
parameters, it results in 63 combined gene clusters instead
of the original 65 for GECKO 3. For DOOR 2.0 we have 743
combined operons and 760 for RNA-Seq studies (39) (over-
lap of 464 operons). In Figure 4 we show the overlap of gene
clusters and operons from GECKO 3, DOOR 2.0 and ref.
(39). For default parameters, all but four gene clusters pre-
dicted by GECKO 3 can be verified using DOOR 2.0, results
from ref. (39) or both. For relaxed parameters, the number
of ‘novel’ gene clusters not reported in DOOR 2.0 or ref.
(39) increases to 48.

Verification by RNA-Seq data

Using default parameters, four clusters (ID 9, 57, 485 and
584) are exclusively predicted by GECKO 3. These gene clus-
ter have FDR-corrected P-values between 6.0 x 10~!2%° (ID
584) and 5.8 x 1077 (ID 9). Their appearance among all
bacterial genomes is displayed in Supplementary Table S4.
For two clusters (ID 57 and 584) we find laboratory con-
firmation in the literature (47,48). Cluster 485 with P-value
2.4 x 10~*! contains evolutionary conserved genes oriented
antisense to each other, which are usually not detectable
by approaches using RNA-Seq data. Cluster 9 consists of
three proteins, namely IutA, a ferric aerobactin receptor,
PchR, an AraC-like regulator of fpr4 gene expression and
a protein with so far unknown function. All of these are en-
coded on the minus strand and show intergenic expression.
We successfully verified these four clusters (ID 9, 57, 485
and 584) including functional operons using six RNA-Seq
libraries from (39) (Figure 5).
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Figure 5. Confirmation of the four gene clusters 9, 57, 485 and 584 as operons using six RNA-Seq libraries from (39). Gene clusters ID 9 (pchR operon,
left top), ID 57 (pilJ operon, right top), ID 485 (rcs operon, left bottom) and ID 584 (cysW, cysT, cysA operon, right bottom). Notably, rcs operon can be
extended by another gene on the antisense strand, being part of the conserved cluster. In each subfigure, the upper half refers to the plus strand and the
lower half to the minus strand. The y-axis is adjusted to 100 reads per RNA-Seq library. Orange and green—all untreated; black—dark, no light for 12 h;
yellow—high light, 470 wmol quanta m~2s~! for 30 min; red—heat stress, 42 °C for 30 min; light blue—cold stress, 15°C for 30 min; blue—annotation.
Continuous coverage of reads across several genes of a cluster are commonly interpreted as operons. Red boxed genes were detected to be part of the

cluster.

Monophyly and collinearity

CYNTENATOR (25) is a progressive alignment method
that repeatedly builds pairwise alignments of the gene se-
quences, following a guide tree. To this end, we test all clus-
ters detected by GECKO 3 for monophyly. Clusters that are
not found exclusively in one clade cannot be detected us-
ing CYNTENATOR, or it may detect multiple independent
clusters for different clades. In both cases, the underlying
idea of gene clusters being monophyletic is defective. Us-
ing the phylogenetic tree from the STRING database as our
guide tree, we find that only one of 65 gene clusters from
Table 1 is monophyletic. We also find that the four ‘novel’
gene clusters (ID 9, 57, 485 and 584) are widely distributed
among different bacterial classes (Supplementary Table S4).
We find similar results for the 206 gene clusters found by
GECKO 3 using relaxed parameters (Supplementary Table
S5).

Both i-ADHoRe (27) (in ‘collinearity mode’) and CYN-
TENATOR can only detect collinear gene clusters, forbid-
ding micro-rearrangements inside the cluster. To this end,
we check the 65 gene clusters from Table 1 for collinearity.
To test whether two occurrences are collinear, we first re-
move all genes which are not present in the reference gene
cluster found by GECKO 3. We then check if one occurrence
is a subsequence of the other; this definition allows that

gaps may be present in one of the clusters. For each gene
cluster, we start with the reference as our first collinearity
group, then try to add each cluster to one of the existing
collinearity groups; in case this is not possible, we open up
a new collinearity group. We find that for half of the gene
clusters in Table 1, the collinearity assumption is violated,
as there is more than one collinearity group. As an exam-
ple, consider gene cluster ID 520 (Figure 3): The occurrence
of the gene cluster in Phenylobacterium zucineum shows al-
most the same gene content as for the other genomes, but
with a strongly deviating gene order. Again, we find similar
results for the 206 gene clusters found by GECKO 3 using
relaxed parameters (Supplementary Table S5).

Comparison with MCMuSeC

The three tools MCMuSeC (23), CYNTENATOR, i-
ADHoRe 3.0 are highly advanced approaches which ful-
fill most criteria for a successful gene cluster detection
method. Given that the monophyly assumption is violated
for the vast majority of gene clusters detected by GECKO 3,
we refrained from further evaluating CYNTENATOR. We
were unable to process the dataset using i-ADHoRe 3.0
in ‘collinearity mode’, as it ran out of memory on a com-
pute cluster with 128 GB RAM (multiplicon level 93). The
‘cloud mode’ of i-ADHoRe 3.0, which allows for micro-
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rearrangements inside the gene cluster, does not support
the detection of a gene clusters occurring in more than two
genomes.

We perform a detailed comparison to MCMuSeC, which
can find gene clusters in a large number of genomes and as-
sumes neither monophyly nor collinearity. To allow for a
fair comparison, we evaluate GECKO 3 on the dataset pro-
vided by Ling et al. (23), consisting of 133 genomes. We are
able to rediscover all 18 gene clusters reported as novel in
(23) using GECKO 3 with highly relaxed parameters (Supple-
mentary Table S3). Further relaxing parameter 8,44 is neces-
sary as the max-gap gene clusters model behind MCMuSeC
allows for a large number of inserted genes (Supplemen-
tary Figure S1). We observe that GECKO 3 detects many of
these gene clusters in a more complete form, as gene clus-
ters contain more genes and/or have occurrences in addi-
tional genomes; see Supplementary Figures S5-7 for nine
examples. We also compare running times of MCMuSeC
and GECKO 3 with respect to the quorum parameter (Sup-
plementary Figure S8): whereas GECKO 3 computations get
faster for larger quorum parameter, as fewer gene clusters
are detected and statistically evaluated, MCMuSeC running
times significantly increase with increasing quorum param-
eter and can become prohibitive for quorum parameter ex-
ceeding 15. Finally, we test the random sampling method
used by MCMuSeC to estimated statistical significance: in
10 runs with identical input and identical parameters, about
7% of the reported gene clusters are considered significant
(P-value < 0.05) in one run, but insignificant in another run.
See Supplementary Material Section 7 for details.

DISCUSSION

GECKO 3 is a tool for approximate gene cluster detection
that, for the first time, includes all prerequisites needed for
this type of analysis in times of next generation sequencing.
Applying GECKO 3 to a newly sequenced bacterium plus a
set of reference genomes can generate a set of high-quality
operon candidates for the novel genome. Clearly, GECKO 3
can also be applied to eukaryotic genomes (5).

GECKO 3 does not require gene clusters to be collinear or
monophyletic. We found that for the prokaryotic data an-
alyzed here, the collinearity assumption is widely violated;
this is even more so for the assumption of monophyly of
gene clusters. GECKO 3 assigns P-values to all gene clus-
ters which are based not only on the (number of) genomes
a cluster is detected in, but also on the number of genes and
the degree of conservation. Furthermore, computation of
gene clusters is exact and P-value estimation is determinis-
tic, meaning that repeated analysis of a dataset will result
in exactly the same gene clusters with exactly the same P-
values being detected and that no gene cluster within the
given parameters will be missed. To avoid that all genes from
the reference gene cluster can be deleted in an occurrence,
GECKO 3 offers individual parameters for insertions, dele-
tions, and sum of both that can be chosen depending on the
cluster size. Finally, GECKO 3 offers a user-friendly graph-
ical interface to view results, a feature missing from most
other approaches for finding gene clusters.

Next to 63 gene clusters previously described in the litera-
ture or databases, we find two novel clusters in Synechocys-

tis sp. PCC 6803 and confirmed these using RNA-Seq data,
including an antisense clusters.

Currently, our random model does not take into account
the phylogenetic relationship of genomes: to find a gene
cluster that is conserved between two closely related species
or strains, is much less surprising than to find this gene clus-
ter for distantly related species. It is an interesting open
question how to integrate such phylogenetic information
into our null model.
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Supplementary Data are available at NAR Online.
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