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Abstract—In this paper, we present a novel architecture and
learning algorithm for a multi-layered Echo State Machine (ML-
ESM). Traditional Echo state networks (ESN) refer to a particular
type of Reservoir Computing (RC) architecture. They constiute
an effective approach to recurrent neural network (RNN) train-
ing, with the (RNN-based) reservoir generated randomly, ad
only the readout trained using a simple computationally efftient
algorithm. ESNs have greatly facilitated the real-time apjication
of RNN, and have been shown to outperform classical approaes
in a number of benchmark tasks. In this paper, we introduce
novel criteria for integrating multiple layers of reservoirs within
an echo state machine, with the resulting architecture terrad the
ML-ESM. The addition of multiple layers of reservoirs are shown
to provide a more robust alternative to conventional reseroir
computing networks. We demonstrate the comparative merits
of this approach in a number of applications, considering bth

the model. Sequentially connecting each fixed-state tiansi
structure externally with other transition structures ates

a long-term memory cycle for each. This gives the ML-
ESM proposed in this article, the capability to approximate
with better accuracy, compared to state-of-the-art ESNedbas
approaches.

Echo State Network [20] is a popular type of reservoir
computing network mainly composed of three layers of ‘neu-
rons’: an input layer, which is connected with random and
fixed weights to the next layer, and forms the reservoir. The
neurons of the reservoir are connected to each other thraugh
fixed random, sparse matrix of weights. Normally only about
10 % of the weights in the reservoir are non-zero. The weights
from the reservoir to the output neurons are trained using

benchmark datasets and real world applications. error descent. Only weights from the reservoir to the output
node are trainable. In this paper we present a novel multiple
layer reservoir network of ESM. To achieve this, we have
introduced a new set of non-trainable weights which leads to
In machine learning and neural networks communitiesa stronger synaptic connection between neurons of more than
several neural network models and kernel-based methods ao@e reservoir, as part of the ESM.
applied to time series prediction tasks, such as MLPs (Multi . ) . .
Layer Perceptrons) [1], RBF (Radial Basis Function) neural We first deflng the idea of a reservorr as foIIovwm_
network [2], Extreme Learning Machine [3][4], deep leamin represents_the_ weight from tie, inputsu to th_eNx reservoir
autoencoders [5], FIR (Finite Impulse Response) neural ne nitsx, W indicates theNy x Nx reser_v0|rwe|ght matrix, gnd
work [6], SVR (Support Vector Regression) [7], SOM (Self- ;" out '”d'c"?‘tes .the(Nx +1) x Ny vyelght matrix connecting
Organization Map) [8], GP (Gaussian Process) echo state m41€ '€Servoir units to the output units, denotedsbyfypically
chine [9], SVESM (Support Vector Echo State Machine) [10],; '* < Nu. Win is fully connected and the weights are
RNNs (Recurrent Neural Networks) including NAR (Nonlinear trainable.

AutoRegressive network) [11], Elman networks [12], Jordan The supervised training and testing of the echo state net-

networks, RPNN (Recurrent Predictor Neural Networks) [13]work is conducted by updating the reservoir state and nétwor
and ESN (Echo State Network) [14]. A number of alternativeoutput as follows:

approaches are also being reported [15], [16], [17], [18] an
[19].

I. INTRODUCTION

Over the last decade, the echo state network has been  x(t+1) = (1 —7)h(Wx(t) + Winu(t + 1))
recognised as the most efficient network structure for ingin +Wouy (1)) + vx(t) (1)
RNNs. It was invented independently in the seminal works of y(t+1) = WieadouX(t + 1);u(t + 1)] )

Jaeger [20], who termed these RNNSs: “echo state networks
(ESNs). Maas<st al. [21] developed a similar approach for . . . .
spiking neural networks and termed the derived model: itiqu wherex(?) is the state of the reservoir at timegW is the

state machine” (LSM). These two pioneering methodologieéf;’]eight _mr?trix fofhneurons inside the r_eseg/oir .e. thﬁ matfi
have given rise to the novel paradigm of reservoir computing'€ Welghts of the synaptic connection between the reservol
(RC) [22] euronsu(t) is the input signal fed to the network at time

y(t) is the target value of the readout (i.e., the desired network
The standard echo state machines are state-space modelgput) at timet. y(¢) is the predicted value of the readout at
with fixed state transition structures (the reservoir) amd atime ¢t. v > 0 is the retainment rate of the reservoir network
adaptable readout form for the state space. Adding moréwith v > 0 if leaky integrator neurons are considereWi,
connected layers inside the state space of fixed-statdaticems and W, are the randomly initialized weights ai(¢) and
structures are expected to improve the overall performafnce y(¢), and i(.) is the activation function of the reservoir. In



this paper we will be considering hyperbolic tangent resierv
neurons, i.eh(.) = tanh(.).

xi(n+1) = (1 —=7)h(Wx1(t) + Wineman(t + 1))

To achieve an echo state property, the reservoir connection +yx1 (¢)
matrix W is typically scaled a®W <+ aW /Amax, Where|Amax| B
is the spectral radius &V and0 < a < 1 is a scaling param- x(nt1) = yxi(n+1)+ (1 —9)h(Wxa(t) +
eter [23]. Echo State network training is essentially based Wexternak1 (t + 1)) + 7x2(1)
teacher-forced calculation of the corresponding resestates x3(n+1) = yxo(n+1)+ (1 —v)h(Wxs(t) +
{x(t).}f:1 using (1), and application of a simple regression Wexternakz (£ + 1)) + yx3(t)
algorithm (e.g. linear regression or ridge regression)raint
the readout weightSV eaqout0n the resulting datasék (¢)} -,
[24]. All the weight matrices to the reserv@iW, Wiy, W)
are initialized randomly. The state of the reservoir isiatii x4(n+1) = yxs(n+1)+ (1 —7)h(Wx4(t) +
set to zero i.ex(0) = 0. Wexternaxs (t + 1)) + yx4(t)

The rest of this paper is organized as follows: T e

The second section explains how a multiple layer echo S
machine can be trained in a supervised manner. The natural*N (0t 1) = yxy_i(n+ 1) + (1 - )h(Wxy(t) +
approach here is to adapt only the weights of the multipleday Wexiemakn—1(t + 1)) + yxn (t)
network to output connections. Essentially, this trairedaut 3)

functions which transform the multiple layer echo state int
the desired output signal. This section also defines maltipl  The output is computed as follows:
layer echo states and provides equivalent charactenizatio

The third section presents a comparative analysis of the y(t +1) = Wieadoufx(t + 1);u(t + 1)] (4)
proposed method with a number of state-of-the-art benckhmar
approaches, considering Mackey-Glass Series datasednHen  \herey > ( is the retainment rate of the reservoir networks
map, NARMA sequence, an artificially generated Figure 8psige the echo state machine which can vary in each layer
dataset, 15 classification problems, Reuter-21578 datasdt (with v > 0 if leaky integrator neurons are considered).

finally by predicting human motion using the Carnegie Melon|ptially all the weight matrices for each layer inside thehe

University (CMU) MoCap dataset. state machine Winternar Wexterna) and Wy are initialized
Section four concludes with a comparative discussion anf@ndomly.
some future work suggestions. To achieve an echo state property wikhreservoir con-
nections inside the ML-ESM, the internal reservoir conioect
Il. M ULTI-LAYERED ECHO STATE MACHINE (ML-ESM) matrix Winema and the external reservoir connection matrix

. . . Wexternal @r€ typica”y scaled aWWinternal OéWinternal/)\in—max
Historically, Minsky and Papert [25] are known to have left and Weyemal < aWextemnal/ Aex-max Where [Ainmax| is the
open the possibility that multi-layer networks may be ca@ab spectral radius 0Winema and |Aex-max iS the spectral radius
of delivering better performance by overcoming the linia$  of W eyemar
of single-layered feedforward neural networks. Recertilg t
idea has virtually exploded with impressive successessa@o
wide variety of applications [26] [27] and [28].

In this paper we consider the input sequences in the first
layer (u(n))n.seU7, where U is required to be compact.
We use shorthanéi~ >, a*t>°, @~>°, a~" to denote input

The idea of our ML-ESM can be explained through thesequences for all thgl, 2, 3, ..., N} layers, which are, respec-
following mathematical formulation: We consider discrete tively, left-right infinite (/ = Z), right-infinite (/ = k, k+1, ...
time neural networks withK input units, R, wherei =  for somek ¢ Z), left-infinite, and finite of lengthh. The
1,2,3,..., N internal reservoir units]J number of neurons network state operatof’ is used to writex(n + h) =
inside each reservoir and output units. Activations from T'(x;(n)....xx(n),y(n),d") to denote the network states,
the input units at time step are u(n) = (u1(t),,ux(t)). that results from an iterated application of equation @B)hé
The internal units are representedsg®) = (xi1(t),...xn(t))  input sequence is fed into the network at timevith resulting
wherex; (n) = (z11(t), ..., x1s(¢)), and the output units are: outputy(n).

y(n) = (y1(t), ...,y (t)). Real-valued connection weights are

collected in a x K weight matrixW" = (w!) for the input . . = : .

. . > xrinternal internal”’ . on the following generic setup: (i) input to the first layer is
welghts,_ln a.]_x J matrix W ) ixggggl Mg([;?f internal drawn from a compact input space U; (ii) All network states
connections; in ad x J matrix W :N(wij ) for the  of each layer lie in a compact set A. These conditions, as in
external connections; and, inlax (K +>_." |R; + L) matrix ~ [20], can be termed: standard compactness conditions.

Weut — (w2 for the connections to the output units. Figure .
1 shows the basic network architecture of the ML-ESM. Definitionl Assume the network has no output feedback

connectionsand the network is maintaining the standard com-
The internal activations for both training and testing of pactness condition. Then, the ML-ESM hés, ..., N} echo
N reservoir units inside an echo state machine are updatestates, if the network states;(n) to xy(n) are uniquely
according to: determined by any left-infinite input sequenae .

Thus our analysis for the ML-ESM will rely specifically
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Fig. 1: Architecture of ML-ESM (ML-ESM)

Equivalently stating the echo state property for ML-ESM,
is to say that there exist input echo functidas= (eq, ..., e,)
for each layer of the machine, wheeg : U=V — R, such
that for all left-infinite input histories the current netikcstate
for each layer are:

(5)

x1(n) E(...,u(n —1),u(n))
x2(n) = xo+E(.,x1(n—1),x1(n))
x3(n) = x3+E(..,x2(n—1),x2(n))
xa(n) = x4+ E(.,x3(n—1),x3(n))
xn(n) xy+E(.,xy_1(n—1),xy-1(n))
Definition2
(@) A state sequence at each layer of the ML-ESM is
given by:
X1 =..,x1(n—1),x1(n)
to
N = xy(n—1),xy(n) e AN

(6)

(where A c R admissible states inside each layer)
is called compatible with an input sequence from the (©
first layer

=—00

a > =..un-1),un)

to the N*" layer

>—(]—\70701 = "'7XN71(n - 1)3X(n)7

(7)

(b)

if, at the first layer:
Vi<n:T(xy(),u(+1)) =x1( + 1)
to the N*" layer
T(xn (i), x(n-1)(i +1)) =xn(i+1). (8)

A network state at each layer is end-compatible with

the input sequence if there exists a state sequence at

each layer

such that

{T(x1(i),u(i+1)) =
...... T(xn(),xn-1(i+1)) =

Xl(i + 1)
xn(i+1),}

and
9)

Similarly, a left-right-infinite state sequene&e® is
called compatible with an input sequene® starting
from the first layer, if

Vi T(x1 (i), u(i + 1)) = x1(i + 1)
to the N** layer if

{x; =x1(n)..xn =xn5(n)}.

Vi:T(xn,xn-1(i+ 1)) =xpn(i +1). (20)

A network statex ¢ A is called end-compatible
with an input sequenca—° if there exists a state
sequence from the first layer

o Xno1(n —1),xn(n)
such that

T(Xl(i), u(z =+ 1)) = Xl(i —+ 1),



and i.e., the distance between two states...xy,X;...Xy)
x1 = x1(n) shrinks by a factorn < 1 at every step, regardless of the
input.
to the N*" layer
“(b)”: The null state input sequence along all the layers
T(xn (i), uli + 1)) = xn (i + 1). (11) (_J—OO_eU—N is compatible with the null state sequen@e™.
But if |\. > 1| then the null state is not asymptotically
(d) A network state {x,..xy}eA is called end- stable. This implies the existence of another state seguenc
compatible with a finite input sequenaé at the first  compatible with the null input sequence, which results i th

layer if there exist a state sequence: violation of echo state property along each layer.
{x;(n—h),..xi1(n)} Proposition 2 Assume standard compactness conditions
" and a multiple layer network without output feedback. Assum

ht that 7" is continuous in state and input from first to last layer.

{xy(n—h),.xy(n)}eA (12)  Then the properties of being state contracting, state fibiryg
such that and input forgetting are all equivalent to the multiple laye
network having echo states along each layer.

Tt (i), u(i +1)) = x1(i + 1) -

and

B “state contracting=- echo state” Assume that the ML-
x1 = x1(n) ESM has no echo states along multiple layers, i.e.

th , ,
to the N™* layer A(x1,%;) + (XN, Xpx))eDT,

T(xn(i),u(i+1) =xny(i+1).  (13) d((x1,%1) + (XN, Xy)) > 2¢ > 0, (14)

Metaphorically, the state;(n) of each layer can be un- L . . .
derstood as an echo of the input history. As demonstratefl Where DT s the .set _Of all |-dent|cal pairs
in [29], smaller reservoir sizes often yield better netveork (X1:X1)---(Xn;Xy) compatible with some input sequences.
with higher probability. On the contrary, as noted in [14]'Th|s |mpI]|Ves_that.there exists a strictly growing sequence
the random connectivity and weight structure of the regervo (2i)i=0eN™, finite input sequences along each layer
with a smaller size is unlikely to be optimal and does not
give a clear insight into the reservoir dynamics [30]. The
only way, as demonstrated in this paper, to determine the bes
approximation with a smaller reservoir size is by initialg  State ,
more than one layer of reservoir inside an ESM. (%105 X1) e (XNis X)), (15)

hi h;
(0" )iz0--(X(y_1))iz0;

Proposition 1 Assume a sigmoid network at each layer
with unit output functionf; =tanh. (a) Let the internal
weight matrix Winerna @and external weight matri?dVeyternal
satisfy ymax = A < 1, its largest singular value. Then _h, _h,
d(T(x1,), T(xy, 1) + d(T (. Xx—1), T (X, Xnv-1) < d((T(x14,0;").. T(xNi, X _1)), (X1..XN)) < €
Ad(x1,%1) + ....d(xn,xy_;) for all states (xi,x;) to
(xn, Xy )e[—1,1]". (b) Let the internal and external weight ) , .
matrix at each layer have a spectral radiud, .| > 1, d((T (x5, 0).. T(X i, X)), (X1 X)) < €. (16)
where A\, iS an eigenvalue of internal and external weight
matriX W|th the |argeSt absolute Value. Then the network haS “state Contractingf? state forgetting”: Assume the mu|t|p|e
an asymptotically unstable null state fronto IV layers of an  |ayer network is not state forgetting. This implies thatréhe
ESM. exists a left-infinite input sequenae >, a strictly growing

Proof “(a)”: index sequenceh;);>o, States (x1;,Xy;.....Xni,Xy;), and

somee > 0, such that

such that

and

d(T((x1,0) + ....(XN, XN—1), T((x/17 u) +
Xy, xNo1)) = d(E(W T a +
Wx1) + ... f(Wxn_1 + Wxy),

Vi : d(T(X1i7 ﬁJroo[—hi], ..... N

XNi Xy q [—ha]), T (x5, G [—hy]

. , ) " ogtoo g
E(Wimu + Wx') + ... £(Wxy_, + Wxy)) v X Rt [=hil) > € (A7)
< d(W™u + wheret>°[—h;] denotes the suffix of length;.
Wx1) + ... Wy + Wxy, "input forgetting = echo state” Assume that the mul-
W+ Wx + ... We”xN,1+Wx'N) tiple layer network does not have the echo state prop-
:d(le,Wx'1+....WxN,Wx}V) Ierty. Tﬁgon ther_eioeomst an input sequence fr/om 1 to N-1
ayera=°,....,Xy>",, states(xi,x)....(xn—-1,X5_;) end-
= [[W((x1 +..xn)) — ((x1 + .xn))l] compatible with (@=>°...%3y>,) > 0; which leads to a

< Ad(x1 + ...xN,x/l + ...x}v) contradiction to input forgetting.



[1l. EXPERIMENTS The training sequence for our experiment was generated
from equation (18) with a delay time = 17, similar to

[20] and [9]. The single and multiple layer ESN-based models
were trained using a signal comprising 6000 time points, and
the initial transient was washed out by employing a reservoi
warm-up time of 100 steps. Subsequently, evaluation ofising
and multiple layer ESN-based models were conducted by

using & non-linear auto-regressive moving average (NARMA imulating the trained models using a new time series of

model; (4) an artificially generated figure 8 dataset with the 50 samples, with a reservoir warm-up time of 100 time
o . Y9 9 : steps. We compare the performance of the considered models
points of the figure moving around very quickly, and each

cycle comprising only a few points: (5) robust evaluationby calculating the obtained normalized absolute error (NAE
y P 9 y P ’ n a specific prediction horizon using the simulated network

of the proposed method compared with standard benchmar%\‘l ) . -
techniques on 15 classification problems (see Table VI); (6 tputs. The NAE on a t-step prediction horizon reads as

Reuter-21578, a popular dataset mostly used for evalutiig
mining algorithms; and (7) Finally predicting human motion I
using the Carnegie Melon University (CMU) MoCap dataset NAE, = \/—Z(y((warmuer t) — g(warmup+£))2  (19)
[31]. In all experimental evaluations, we consider resgsvo s

comprising analog neurons, witlunh transfer functions. To ) . )

demonstrate the advantages of the proposed ML-ESM, we Where s* is the empirical variance of the actual target
also evaluate linear-regression based ESNs, ridge régmess Signal. Prediction on a t-step horizon in all the evaluated
based ESNs, and support vector echo state machine (SVESNodels was conducted by iteratively applying the predictor

models withe—insensitive loss functions [10], using the samet times in a generative mode, where on each step it takes its
reservoirs as the evaluated ML-ESM model. own most recent prediction to compute the next prediction.

Our source codes were developed in MATLAB, and made We consider a commonplace selection for the Mackey-
partial use of the RC Toolbox [22]. The implementation of theGlass system prediction horizon, i.e., prediction 84 anl 12
SVESM method was based on the library of SVM of [32], steps after the washout time elapses [20]. The obtainedtsesu
written in C, hence providing a computationally more efiitie are provided in Table Il and Figure 2. These results are
implementation in comparison to the rest of the evaluatedroduced by calculating the mean and standard deviatidmeof t
methods. Therefore, the execution times of the evaluate@ibtained performance metrics over 50 test sequences (where
algorithm are not fully comparable. Our experiments wereexecution of each test sequence includes first training 6060
executed on a Intel (R) Core (TM) i7 CPU 3770 @ 3.40 GHztime points, with initial transient of 100 steps washed out,
3.40 GHz machine with 16.0 GB of RAM. Table | summarizestesting of 250 time points with a reservoir warm-up time of

the configuration details of the employed reservoirs in thel0O time steps followed by a prediction horizon of 84, 120
considered experiments. upto 150 time steps). We observe that ML-ESM with linear

) ) ) and ridge-regression outperformed the considered atteesa
_ In our ex_perlments, the Welghts of_the mpm@_f), stored by producing much loweKNAE g4, NAE 15, and (NAE,) (mean
in the matrix W;,, the reservoir Wi‘lwght matridW and  NAE,) values. We also find that the performance of the
the external reservoir weight matriw“* in terms of ML-  SyESM is worse than the performance of the rest of the
ESM, are drawn randomly with a uniform distribution over (- considered methods. Another comment we would like to
0.1,0.1). The results provided in the remainder of thisisact mgake is the overwhelming computational cost of the SVESM
are averag_eq over 5 different random reservoir initiagliged.  qnethod. The SVESM method required more than 2.99993
Flr_lally,_ training of all _ESI_\I-based methods was conducted, 13 seconds to execute only 50 test sequences for each
using fivefold cross-validation. prediction horizon (84, 120, 150) of the estimation aldurit

A. Mackey-Glass Series _ Figure 3 further shows the comparison o_f s_ingle; layer ESN

with the proposed ML-ESM over 150 prediction time points
The Mackey-Glass delay differential equation has proof 50 test sequences. Figure 3 (a) demonstrates the results

vided classical benchmark tasks for time series modelihg. T by using the linear regression technique whereas Figurg 3 (b

Mackey-Glass delay differential equation in a discreteetim shows results by using the ridge regression technique.nit ca

setting is approximated as follows: be seen clearly in both Figure 3 (a) and (b) that adding layers
in the beginning further lowers the NAE at each time step and
then gradually increases with very little difference. Ttlsarly

In this section, we provide a thorough experimental evalua,
tion of the ML-ESM Model, considering; 1) Mackey-Glass Se-
ries dataset, which provides the most classical benchraakk t
for time series modeling; 2) Henon map, which is a discrete
time dynamical system exhibiting characteristic chaotic b
havior; (3) NARMA sequence which generates a sequenc

B yt—7/86) shows that the behaviour of ML-ESM with the Mackey dataset
yt+1)=y(t) +9o (0'21 Tyt—1/5 0-1y(t) | (18) maximally minimizes the error by adding only two layers to

' the network, over 150 prediction time points.
where the stepsizé typically set toé = 1/10 [20], [23]. Finally, to provide a better insight into how the proposed
The resulting time-series is later rescaled into the range1] ML-ESM method compares with its alternatives in regards to
by application of a tangent-hyperbolic transfogpsy(t) =  the imposed computational burden, we would like to highligh

tanh(y(t)—1), so that it can be used to train ESNs witlhh ~ that as part of our optimized MATLAB implementation, the
activation function in the reservoir. The system behavetiba ridge regression-based ML-ESM required roughly 73 seconds
for values of the delay time < 16.8. which is close to the ridge regression-based ESN which



TABLE I: Configuration of Reservoirs in our Experiments

Parameter Mackey-Glass| Henon map| Figure 8 | NARMA_SEQUENCE | 15 Benchmark datasets Reuter-21578] MoCap Video Dataset]

Reservoir neurons 400 100 1000 100 1000 1000 100

Spectral radius 0.99 0.99 0.998 1.25 1.25 1.25 0.998

Reservoir connectivity 0.1 0.1 0.2 0.1 0.1 0.1 0.1
Warm-up time (model training) 100 100 0 0 0 0 0
Warm-up time (model evaluation) 100 100 0 0 0 0 0

¥ 0.5 0.5 0.3 0.3 0.5 0.5 0.5
Number of Multiple Layers (ML-ESM) 2 2 2 2 2 2 2

required 65 seconds to execute only a 50 test sequence for eate Henon map, with the employed reservoirs being teacher-
prediction horizon (84, 120, 150). This shows that the compudriven for the first 100 time points. The performance of the
tational time required by the ML-ESM is far better than theanalyzed models in terms of the obtaimSdA Eg,, NAE; 5,
SVESM (2.99993 x10%) and when compared with the single NAE,q and (NAE,) metrics is depicted in Table Il

layer ESN, offers a very good trade-off between computation

complexity and sequential data modeling performance. As can be observed, the ML-ESM model using both ridge

and linear regression techniques, performs better than the
] considered alternatives. This is attributed to the extBrna
B. Figure 8 Dataset connected structures temporally creating a long term mgmor
In this experiment, we evaluate the effectiveness of oufycle- This led to a reduction in the error compared to stéte-
ML-ESM model in learning complex sequential patterns. Forth€ art time series learning approaches. It is worth nofirag t
this purpose, we consider an artificially generated figure ghe SVESM is the worst performing method in this experiment.
dataset with the points of the figure moving around very
quickly, and each cycle comprising only a few points. ToD. NARMA Sequence
obtain this signal, we use the artificially created function |, this subsection, we consider a sequence of a non-
figure8 dataset which generates figure_ 8, who_se circles arfnegr autoregressive moving average (NARMA) model. The
centered at (384,302) and (384,722), with a radius of 210 andequence at the beginning includes a ramp-up transient. The
a channel width of 79 i.e. 1.5 cm. output of the NARMA sequence model depends on past and

The evaluated model was trained using a sequence of 6gyesent values of the input as well as the output.
data points from the figure 8 trajectory, and no reservoimvar
up was employed. On the sequel the trained models were
evaluated over 600 time steps. In Figure 4, we provide the
trajectories produced by the evaluated methods. As can be
observed, the ML-ESM using both linear and ridge regressio
technique works considerably better than the SVESM and th
linear regression based ESN, and slightly better than thgeri The NARMA sequence non-linear autoregressive moving
regression-based ESN. Specifically the ridge-regredsimed average equation is approximated as
ESN vyields a normalized root mean square error (NRMSE)
equal to 0.0085, whereas the ML-ESM using ridge-regression
technique yields an NRMSE equal to 0.00002588.

Yi = f(Yio1, 0 Yim My Tiy ooy Tim M, ) + i (22)
where y;, x; and n; are the the output, input and noise
?aespectivelme denote the output and input memory orders.

X = a*xX;—M, +b+(1_}’i—l)*}’i—l (23)
where input sequence is an array of size equivalent to
C. Henon map twice the sequence length. Output sequeggeis an array

In this subsection, we consider another typical benchmarRf size equivalent to the sequence length. The length of the
in the field of RNNs, the Henon map chaotic process [33]. [tS€quence in our experiment was 1000. The constant variable
is a discrete-time dynamical system exhibiting a charatier @ andb were initialized with 0.7 and 0.1 respectively, which

chaotic behavior. Henon map receives as input a 2-D poin{/ere used to generate a linear sequence. NiRMSE and
y(t) = [y1,2], and maps it to a new point(t+1) = [y (t+  MSE of the ESN based models are shown in Table IV. Again

1), y2(t + 1)] on the 2-D plane, given by the ML-ESM with linear and ridge-regression techniques out
performed the standard linear and ridge-regression baSéd E
as well as the SVESM model.

Figure 5 further shows the comparison of single layer ESN
with the proposed ML-ESM using the same range of data
samples. The left side of Figure 5 shows the results obtained
by using the linear regression technique whereas the rigét s
demonstrate the results obtained using ridge regresgicanl
be clearly seen in the both the sub figures (on left and right)

In our experiments, the analyzed ESN-based models, weiia@ Figure 5 that the error first maximally decreases by using
trained using the first 1000 samples of the Henon map. The in2-layers with the proposed ML-ESM, in comparison to the
tial transient was washed out by employing a reservoir warmsingle layer ESN; and then remains steady in the following
up time of 100 steps. Afterwards, evaluation was conducyed blayers, from three to five, with a slight and steady increase o
using the trained models to generate the next 2000 samples afldition of each layer. It can be clearly seen in Table IV and

(20)
(21)

y2(t) + 1 — oy (t)
By (t)

—_ =
N
|

wherea = 1.4 and f = 0.3. The starting point of the
Henon map considered in our experimenyi®) = 0.
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TABLE Il: Mackey-Glass Series: Performance of the Evaldd#odels

[ Model T Linear-Regression-based ESN [ Ridge-Regression-based ESN Linear-Regression-based ML-ESM | Ridge-Regression-based ML-ES{1 SVESM |
NAEg, 1.1031 x10~°° (7.7998 x10~°%) [ 0.0107 (0.0755) 5.2633 x10 °° (3.7217 x10~ 7 0.00105 (0.00752) 0.0643 (0.0077)
NAE120 | 3.0737 x10~ 7 (4.7874 x10~ °° 0.0063 (0.0444) 2.6713x 10~ "% (1.8889 x 10~ °°) | 0.0021 (0.0323) 0.0746 (0.0197)
NAE, 1.592005 x10~ 2T 0.0085 3.9673 x10~ °° 0.001575 0.06945
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Fig. 4: Figure 8 dataset. (a) Original time series. (b) Retoction obtained by the ESN using linear regression. @jdrstruction obtained
by the ESN using ridge regression. (d) Reconstruction nbthby the multiple layer ESN using linear regression. (e)dRstruction obtained
by the multiple layer ESN using ridge regression. (f) Retmrusion obtained by the SVESM (Support Vector Echo Statetitee.)

TABLE lll: Henon Map: Performance of The Evaluated Models

[ Model T Linear-Regression-based ESN Ridge-Regression-based ESN Linear-Regression-based ML-ESNI Ridge-Regression-based ML-ES§I SVESM |
NAE g4 0.7536 0.7489 0.7477 0.7661 2.6469
NAE 129 0.7552 0.7432 0.7481 0.7655 1.3432
NAE 400 0.7813 0.7629 0.7466 0.7465 1.5134
(NAE) 0.7633 0.7516 0.7474 0.7593 1.8345

Figure 5 that the ML-ESM produced best results with two andmethod and other state-of-the-art approaches which proved
three layers where it significantly outperformed the statida more useful in other time series chaotic predictive tasks, a
ESN using both linear and ridge regression techniques. Theemonstrated earlier in this paper. The proposed ML-ESM
SVESM model, like with the henon map dataset in sectiorusing both linear and ridge regression was still found to
[1I-C, did not perform well with this NARMA sequence too. outperform other benchmark techniques. This occurred due
This is basically due to the poor prediction performanceéneft to the externally connected transition structures sedaignt
SVESM method at some time points, which adversely affectgreating a long term memory cycle, which further helped in
the average method performance. reducing the error compared to standard state-of-tharag t
series learning approaches.

E. 15 benchmark classification problems

. . L F. Reuters-21578 Textual Corpus
In this subsection, the 15 multivariate benchmark datasets ! X pu

are considered from UCI machine Learning repositories [34] Reuter-21578 [36] is a popular dataset mostly used for
and the [35]. The performance of all the methods includimg th evaluating text mining algorithms. Due to the consistenty o
ML-ESM and other state of the art recurrent neural networkconcepts and the connected component nature of this corpus
based time series learning approaches were encouragiisg. Ti37] we have selected this corpus for evaluating the sttengt
is due to the time series learning nature of the proposedf the proposed methods in comparison to state- of-the-art.



TABLE IV: NARMA SEQUENCE: NRMSE and MSE of The Evaluated Mdsle

[ Error | Linear-Regression-based ESN Ridge-Regression-based ESN Linear-Regression-based ML-ESNI Ridge-Regression-based ML-ESNI SVESM |
NRMSE | 6.6819 xe~ 10 0.0278 7.2090 xe~ 3 0.0212 2.6469
MSE 7.4175 xe~ 2° 1.2865 xe 07 8.6339 xe 29 7.4626 xe 0 0.00069423

TABLE V: Human Motion Modeling: Testing Dataset NRMSE
[ Video | Linear-Regression-based ESN Ridge-Regression-based ESN Linear-Regression-based ML-ESNI Ridge-Regression-based ML-ESYl SVESM |

3502 | 0.0743 0.0894 0.0739 0.0892 0.0873
02_03 | 0.0322 0.0322 0.0312 0.0321 0.03432
16 21 | 0.1538 0.1424 0.1416 0.1536 0.1534
0206 | 0.0370 0.0372 0.0370 0.0372 0.0387
02_10 | 0.0360 0.0362 0.0360 0.0362 0.08345
0502 | 0.0521 0.0596 0.0512 0.0595 0.09321
03 01 | 0.0910 0.0912 0.0400 0.0401 0.05345
06_01 | 0.1159 0.1289 0.1145 0.1287 0.1843
. «10'10 Multiple Layer ESN using Linear Regression o Multiple Layer ESN using Ridge Regression
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Fig. 5: NARMA Sequence: NRMSE of the evaluated model. LEF@mParison of Single Layer ESN with Multiple Layer (2-5) ESHKing
Linear Regression technique. RIGHT: Comparison of Singlger ESN with Multiple Layer (2-5) ESN using Ridge Regressiechnique.
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TABLE VI: Specification of 15 Benchmark Datasets testing documents_. Qverall after preprocessing, this worp
= A contained 18933 distinct terms. The normalized absolute er
umber Datasets # features | # Train | # Test X . .
T Connectd Y, 50000 | 17557 obtained on the testing dataset, using the SVESM, the state-
2 banknote authenticatio 5 1000 372 of-the-art ESN based techniques and the proposed ML-ESM
3 EEG Z 10000 | 200 i i ; i i
2 et e = =00 50 (using both Ilngar and rldge regres_smn) are shown in Table
5 Fil-Valley 10T 506 506 VIII. Further, since the weight matrices of the ML-ESM are
5 segmentation 19 2000 310 normally initialized randomly, to test their effect on thetput
; Pagscgl'i“ks 180 32%%0 2é763 we initialized the weight matrices including the input wetig
3 Pimaindian Diabetes g 500 268 matrix, internal weight matrices within each reservoirdan
10 MNIST Digit 784 60000 | 10000 external weight matrices between the reservoirs of eacdtr lay
11 __Yeast 8 1400 484 with different spectral radii. The spectral radius of theigin
Liver Disorders ! 200 | 145 matrices codetermines (i) the effective time constant @f th
12 Poker Hand 11 25010 10000 A . ) .
3 Abalone 3 2088 | 2089 ML-ESM (larger spectral radius implies slower decay of im-
14 SPECT Heart 22 80 187 pulse response) and (ii) the amount of nonlinear interaatio
1 STATLOG (Heart) 13 200 | 187 input components through time (larger spectral radius iespl

longer range interactions). The gradual effect on NAE due to
the change in spectral radius of the weight matrices and the
The Reuters corpus contains 21578 documents groupatimber of reservoir layers is demonstrated in Figure 6.
into 135 clusters. It is very unbalanced, with some large o
clusters more than 300 times larger than some of the smaller Figure 6 (a) shows the output of ML-ESM using linear
ones. We have considered the ModeApte version of this corpu€gression and Figure 6 (d) shows the output using the ridge
which discards documents with multiple category labels] an regression technique. Firstly it is observed that whilegshe
only selects the categories with more than 10 documents. Thlinear regression technique, the use of a small number ef¢ay
left 8123 documents in a total of 65 categories. with a gradual increase in spectral radius slightly incesabe
error. On the other hand, using the ridge regression teakniq
We followed the ModeApte split of training and testing decreases the error with a small number of layers and a gradua
documents which provides 5946 training documents and 234increase in the spectral radius. This implies that, pddity



TABLE VII: Performance Comparison of Recurrent Neural NetkBased Learning Techniques: Mean: Normalized AbsoluterESTD:
Standard Deviation

Datasets Features tho State Netvyork Echo State Netvyork SVESM Mgltiple Layer ESN Mu_ltiple Layer ESN
(Linear Regression) (Ridge Regression) (Linear Regression) (Ridge Regression)
MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD
Connect-4 43 0.7790 0.0019 0.7552 0.0138 0.8412  0.001®.5916 0.0063 0.5797 0.0222
banknote authentication 5 0.7293  8.9443%°  0.2664 0.0023 0.7145  0.0054 0.6845 0.0022 0.1706  3.0822ex 4
EEG 4 0.7788 0.0063 0.7816  4.472kx°>  0.7315  0.0143 0.7383 2.167% e "* 0.7674 1.3416& e ™
Breast Cancer 32 0.1732 0.0163 0.1804  1.34%6e "% 09528 0.00034 0.1805 8.9443ex’>  0.1805  2.8636 x *
Hill Valley 101 0.4141 0.0089 0.1085 0.0045 0.5456  0.0017  0.5554 0.0089  0.0849 0.0044
segmentation 19 0.5689 0.0295 0.2663 0.0363 0.0266  0.0013 0.2197 0.0055 0.1353 0.0045
Page Blocks 10 0.1610 0.0084 0.2887 0.0046 0.2643  0.0020.1597 0.0035 0.2064 0.0085
Ecoli 8 0.3284 0.0084 0.1666 0.00075  0.0057  0.0045 0.3124 0.00034 0.0942 1.24 x &
Pima Indian Diabetes 8 0.7053 0.0024 0.5802 0.00012 0.4652.0012  0.5162 0.0023 0.4850 0.0087
MNIST Digit 784 0.4557 0.0013 0.4554 0.00062 0.4333  0.00260.4296 0.0152 0.4132 0.0143
Yeast 8 0.1476 0.0023 0.4942 0.01022 0.4496  0.00140.1366 0.0352 0.2232 0.0324
Liver Disorders 7 0.6873 0.00015 0.5774 0.01457 0.5658  1B01 0.5343 0.0642 0.5254 0.00165
Abalone 8 0.5787 2.34 x€° 0.9103 0.001254 0.9874  0.0147 0.4659 0.0173 0.9099 0.0123
SPECT Heart 22 0.8015 0.0415 0.7911 0.034221 0.8346  0.0076.7808 0.0144 0.7826 0.0453
Statlog (Heart) 13 0.5224 0.09415 0.3072 0.00024221 0.3359.0758  0.4836 0.0924 0.2151 0.06433

on this dataset, longer range interactions between thet inptigher number of neurons inside each reservoir increages th
components, specifically while using linear regressionndd  error compared to when fewer number of neurons are used.
prove useful in improving the performance of the ML-ESM. The proposed method with ridge regression came out, oyerall
Further, using both linear and ridge regression technijguiéis  slightly better compared to the other. Further this implies
an increase in the number of layers and a gradual decreasigat multiple layers of the proposed method produce the best
in the spectral radius of the weight matrices, significantlyapproximation with fewer number of neurons inside each
decreases the error in the beginning, whereas the differenceservoir, compared to the standard state-of-the-art lwlsc
became smaller, eventually reaching a constant. normally observed to work better with a larger number of

) neurons.
Secondly, Figures 6 (b) and (e) show the output error of the

ML-ESM using linear and ridge regression techniques. This Finally after comparing both the linear and ridge regrassio
time, the effect on error is observed by varying the numbePUtputs with the proposed method, in all the sub figures of
of neurons inside each reservoir and the number of layers dfigure 6; in this particular dataset, the additional sminggh
the proposed method. The spectral radius is held fixed (equ&Pability and employment of regularization in ridge resgien

to 1.25) throughout the experiment for both the techniquesS@me out as a comparatively better performer in comparison
Firstly, it is observed that for both linear and ridge regies  t0 the linear regression technique.

techniques, fewer number of neurons inside each reservoir |n accordance with the configurations of Table |, for this
produce a smaller error using multiple layers of the reservo gataset, the comparison of the proposed ML-ESM with the
inside an ESM. Secondly, the highest variation in error fromstate-of-the-art ESN using both linear and ridge regressio
low to high, is observed using two layers inside the ML-ESM.techniques, and the SVESM method is also demonstrated.
The variation of error is observed to be much greater in ineapere too, the ML-ESM outperformed the standard ESN by
regression compared to the ridge regression techniquélyl.as improving the predicted accuracy and reducing the error.
for both the techniques, the higher the number of neurongyesMm's performance in this particular experiment, as show
inside each reservoir, the larger the error produced, with & Table VIII, was not bad but it was computationally very
smaller number of layers leading to a higher error than @larg expensive in comparison to the other ESN based approaches.
number of layers.

Thirdly, Figure 6 (c) and (f) shows the output for both G. MoCap Human Motion Modeling

ML-ESM, using linear and ridge regression techniques. In In this experiment, we trained the evaluated method using
these two sub figures, the effect on the error is analyzefbur walking sequences, a running sequence, a bending se-
by sequentially changing the number of neurons inside eacfuence, a washing and dancing sequence respectively, iiemm t
reservoir and the spectral radius of the weight matrices. ICarnegie Melon University (CMU) MoCap dataset [31]. The
can again be clearly seen in these two sub figures, that eonsidered training sequence, corresponding to five diffier



TABLE VIII: Reuter-21578: Mean: NAE and Standard Deviati(®td): NAE of The Evaluated Models

[ Error [ Linear-Regression-based ESN Ridge-Regression-based ESN Linear-Regression-based ML-ESNI Ridge-Regression-based ML-ESNI SVESM |
[ Mean [ 0.5474 [ 0.5384 [ 05144 [ 0.5066 [ 0.8653 |
[ Standard Deviation| 0.7254 [ 0.7159 [ 0.7049 [ 0.6928 [0.623F |

Multple Layer Echo State Machine (Linear Regression) Multiple Layer Echo Stae Machine (Linear Regression) Mulple Layer Echo State Machine (Linear Regression)

08

Spectral Radius

Multiple Layer Echo State Machine (Ridge Regression)

o7
specta Radivs € 5>, 3

@

Fig. 6: Top:(Left, Middle, Right): Multiple Layer Echo SeaiNetwork using Linear Regression, Bottom:(Left, MiddlagiR): Multiple Layer
Echo State Network using ridge regression

subjects, were obtained from the CMU database files035 the output using linear regression whereas the right-gurdi

02 03, 16 21, 02 06, 0210, 0502, 03 01 and 0601. Inthe  shows the output using the ridge regression technique. As ca
sequel, we used fifty percent of each considered video as lze seen, there is always a slight decrease in error by adding
training set of the evaluated algorithms, and the remaifiityy = more than one layer, compared with the single layer ESN, in
percent as the testing set. In Table V, we provideNRMSEs  every video file. The decrease mostly occurs with the additio
obtained for each considered method. Similarly in Figures 1 of 2 or 3 layers, whereas with additional layers, the error is
and 15 we illustrate the selected frame from the testingsgata seen to be relatively unchanged. It is also useful to note tha
of each considered video to show the difference between thimat running these experiments took around 45 seconds for
actual testing frame and the predicted frame using linedr anthe ML-ESM, and over an hour for the case of the SVESM,
ridge regression with the proposed ML-ESM. It can be clearlywhich further demonstrated the superiority of the ML-ESM
seen from Figures 11 and 15 that the two right columnsfor this challenging real-time human motion-based modglin
which show the predicted output of ML-ESM using both application.
linear and ridge regression technique, predict human motio

almost correctly compared with the actual frame with a sligh
vibration/noise seen on the moving part, and the remainamg p

very clearly visible. The NRMSE shown in Table V clearly In this paper we proposed a novel ML-ESM model for
reflect the predicted output of frames visualized in Figuresequential data. A detailed theoretical analysis has baeied

11 and 15. This enables us to conclude that adding anotheut, and a number of widely used time series benchmarks
layer in ML-ESM leads to comparatively better predictionsof different characteristics and origins, have been used to
compared to those of the SVESM and the single layer ESNgemonstrate:

for the case of both linear and ridge regression techniques. N . ] )
Further we tested the performance of our proposed ML-ESM 1) ~ The addition of multiple layers of reservoir provide
method using 2-5 layers, and compared results with theesing| a more robust alternative to conventional reservoir
layer ESN, using both linear and ridge regression techsique computing networks.

as shown in Figure 7. The left subfigure in Figure 7 shows 2) A multiple layers connected cyclic topology is often
sufficient for obtaining better performance compara-

IV. CONCLUSIONS
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ble to those of simple standard cyclic topology.

A competitive multiple layer cyclic reservoir network
can be constructed in a fully deterministic manner.
The state forgetting, state contracting and input for-
getting properties are all equivalent to the multiple
layer network, having an echo state property in each (4l
layer.

The null state input sequence along all the layers
of the ML-ESM is compatible with the null state
sequence.

[2]
3)
(3]
4)

5)
(5]

Additionally, with respect to state-of-the-art single day (g
ESN methodologies for sequential data modeling, we found
that our method is overwhelmingly more accurate in terms of
reducing the error and computational competitivenessi-Sim
larly with respect to conventional SVM based ESN method- [7]
ologies, such as SVESM [10], our proposed method was again
found to be computationally more efficient, especially ises
where large data corpora were required to be processed.

A a number of open issues relating to the ML-ESM that [9]
we aim to address in the near future include; (1) carrying
out a more detailed theoretical and comparative experiahent [10]
evaluation of the proposed model against other stateesf-th
art approaches, using different kinds of reservoir keraeld
benchmark datasets; (2) derivation of multi-objectiverofta-
tion criteria that can help select the appropriate number of
layers, number of neurons in each reservoir, learning ang
adaptation parameters for a particular task; (3) adajptaifo
the multiple layer reservoir network in an unsuperviseti@as
for appropriate tasks and evaluating the role of topoldgica
organization of reservoirs within the ML-ESM. (23]

(11]
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Fig. 11: Column (a) Ground Truth (382, 02.03, 16 21, 02 06) Column (b) Predicted Frame (ML-ESM-Linear-Regresgi@nlumn (c)
Predicted Frame (ML-ESM-Ridge-Regression)
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Fig. 15: Column (a) Ground Truth (020, 0502, 03 01, 06 01) Column (b) Predicted Frame (ML-ESM-Linear-Regresgsi@nlumn (c)
Predicted Frame (ML-ESM-Ridge-Regression)



