
Naseem et al. / Front Inform Technol Electron Eng in press 1

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Improved binary similaritymeasures for

softwaremodularization

⇤

Rashid NASEEM†1, Mustafa Bin Mat DERIS1, Onaiza MAQBOOL2,

Jing-peng LI3, Sara SHAHZAD4, Habib SHAH5

(1Faculty of Computer Science and Information Technology,Universiti Tun Hussein Onn Malaysia, Malaysia)

(2Department of Computer Science, Quaid-i-Azam University, Islamabad, Pakistan)

(3Division of Computer Science and Mathematics, University of Stirling, UK)
(4Department of Computer Science, University of Peshawar, Peshawar, Pakistan)

(5Faculty of Computer and Information Systems, Islamic University Madina, KSA)
†E-mail: rnsqau@gmail.com

Received Oct. 30, 2015; Revision accepted Apr. 12, 2016; Crosschecked

Abstract: Various binary similarity measures have been employed in clustering approaches to make homogeneous

groups of similar entities in the data. These similarity measures are mostly based only on the presence and absence of

features. Binary similarity measures have also been explored with different clustering approaches (e.g., agglomerative

hierarchical clustering) for software modularization to make the software systems understandable and manageable.

Each similarity measure has its own strengths and weaknesses that result in improving and deteriorating the clustering

results, respectively. This paper highlights the strengths of some well-known existing binary similarity measures

for software modularization. Furthermore, based on these existing similarity measures, this paper introduces the

improved new binary similarity measures. Proofs of the correctness with illustration and a series of experiments are

presented to evaluate the effectiveness of our new binary similarity measures.

Key words: Binary similarity measure, Binary features, Combination of measures, Software modularization

http://dx.doi.org/10.1631/FITEE.1500373 CLC number:

1 Introduction

Clustering is an approach that makes clusters of
similar entities in the data. Entities in a cluster are
similar to each other (based on characteristics or fea-
tures) while they are distinct from entities in other
clusters. In the software domain, an important appli-
cation of clustering is to modularize a software sys-
tem or to recover the module architecture or compo-
nents of the software systems by clustering the soft-

* Project supported by the Office of Research, Innovation, Com-
mercialization and Consultancy Office (ORICC), Universiti Tun
Hussein Onn Malaysia (UTHM) (No. U062)

ORCID: Rashid NASEEM, http://orcid.org/0000-0002-4952-
8100
c�Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

ware entities, for example, functions, files or classes,
in the source code. Recovery is very important when
no up-to-date documentation of a software system
is available (Shtern and Tzerpos, 2014). Besides
clustering, other approaches have also been used
for software modularization, for example, super-
vised clustering (Hall et al., 2012), optimization tech-
niques (Praditwong et al., 2011), role-based recovery
(Dugerdil and Jossi, 2008), graph-based techniques
(Bittencourt and Guerrero, 2009), association-based
approaches (Vasconcelos and Werner, 2007), spec-
tral method (Xanthos and Goodwin, 2006), rough
set theory (Jahnke, 2004), concept analysis (Tonella,
2001), and visualization tools (Synytskyy et al.,
2005).

une
dite
d



2 Naseem et al. / Front Inform Technol Electron Eng in press

A key activity in software clustering consists of
gathering the entities from source code of software
systems into meaningful and independent modules.
The process of software clustering usually starts with
the selection of entities and their features by parsing
the source code of software systems. Then entities
are organized into cohesive clusters by employing a
particular clustering algorithm (Mitchell and Man-
coridis, 2006).

Agglomerative Hierarchical Clustering (AHC)
algorithms have been widely used by researchers
to cluster the software systems (Muhammad et al.,
2012) (Maqbool and Babri, 2007) (Patel et al., 2009)
(Shtern and Tzerpos, 2010) (Mitchell, 2006) (An-
quetil and Lethbridge, 1999) (Wiggerts, 1997). AHC
comprises two main factors, a similarity measure to
find the association between two entities and a link-
age method to update the similarity values between
entities in each iteration. However, selection of a sim-
ilarity measure is an important factor in AHC (Cui
and Chae, 2011) (Jackson et al., 1989), which has
a major influence on the clustering results (Naseem
et al., 2010) (Shtern and Tzerpos, 2012).

There exist a large number of binary similarity
measures (Choi et al., 2010) (Cheetham and Hazel,
1969). Nevertheless, for software modularization,
the comparative studies have reported that Jaccard
(JC) binary similarity measure produced better clus-
tering results (Tzerpos and Holt, 2000) (Davey and
Burd, 2000) (Lung et al., 2004) (Shtern and Tzerpos,
2012). In our previous study (Naseem et al., 2010),
we proposed a new binary similarity measure, called
JaccardNM (JNM), which could overcome some de-
ficiencies of the JC binary similarity measure. We
also examined the Russell&Rao (RR) binary simi-
larity measure for software modularization for the
first time, and found that it could generate better
results as compared to JC and JNM binary similar-
ity measures for some of the test software systems.
In another study (Naseem et al., 2013), we proposed
COUSM (Cooperative Only Update Similarity Ma-
trix) clustering algorithm, which combines two sim-
ilarity measures in a single clustering process based
on AHC.

In this paper, we explore the integration of the
existing binary similarity measures for AHC algo-
rithms using linkage methods (e.g., Complete Link-
age (CL), Single Linkage (SL) and Weighted Average
Linkage (WL) methods). For example, we select the

JC similarity measure, which produces a relatively
large number of clusters (Maqbool and Babri, 2004)
(Saeed et al., 2003) and the JNM binary similar-
ity measure, which takes a less number of arbitrary
decisions (Naseem et al., 2010) during the cluster-
ing process. During the clustering process, creating
a large number of clusters means that a clustering
approach may create compact clusters, hence im-
proving the quality of clustering results (Maqbool
and Babri, 2007). Arbitrary decision is the arbitrary
clustering of two entities when there exist more than
two equally similar entities; hence, arbitrary deci-
sions create problems and reduce the quality of clus-
tering results (Naseem et al., 2010) (Maqbool and
Babri, 2007). This analysis leads us to introduce
better binary similarity measures by combining the
JC and JNM measures.

This study mainly focuses on the identification
of the strengths of the existing binary similarity mea-
sures.Moreover, the improved similarity measures
are based on the integration of JC, JNM, and RR
similarity measures. While in our previous studies
(Naseem et al., 2010) (Naseem et al., 2011), the main
focus was to explore the deficiencies (i.e., creating a
large number of equal similarity values and giving
no importance to a pair of entities sharing a large
number of features) of some well-known binary simi-
larity measures and then solved these deficiencies by
adding the total proportion of features to the denom-
inator in the JC similarity measure.

The contributions of this paper can be summa-
rized as:

1. Analysis of the Jaccard and JaccardNM
(Naseem et al., 2010) similarity measures for
binary features and a comparison of their
strengths;

2. The integration of the strengths of existing bi-
nary similarity measures to form new binary
similarity measures for software clustering;

3. Introduction of four improved binary similar-
ity measures that yield more effective solutions
than the existing binary similarity measures.
They are as follows:

(a) JCJNM : add the JC and JNM binary sim-
ilarity measures;

(b) JCRR: add the JC and RR binary similar-
ity measures;

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 3

(c) JNMRR: add the JNM and RR binary sim-
ilarity measures;

(d) JCJNMRR: add the JC, JNM and RR bi-
nary similarity measures.

4. The additional evidence providing support to
the correctness of the new binary similarity mea-
sures;

5. Conducting an experimental study that presents
an external and internal evaluation of the pro-
posed and existing similarity measures.

6. For all evaluation criteria, on average, our new
similarity measures outperform the existing sim-
ilarity measures.

The rest of this paper is organized as follows:
Section 2 presents the preliminaries of software mod-
ularization using AHC algorithms. The strengths of
the existing similarity measures are presented and
illustrated in Section 3. This section also gives
the derivations of our new similarity measures with
proofs of correctness. Section 4 presents the exper-
imental setup, which lists all the test software sys-
tems, similarity measures, linkage methods and eval-
uation criteria that are used to perform the series
of experiments. Section 5 gives the experimental re-
sults and discussion on comparing our new similarity
measures with existing similarity measures by using
different external and internal criteria. Section 6
concludes this paper.

2 Software Modularization Using AHC

Clustering algorithms can be broadly catego-
rized into hierarchical and partitional. As stated in
Section 1, AHC has been commonly used for software
modularization. AHC considers each entity to be a
singleton cluster and groups the two most similar
clusters at every step. At the end, it makes one large
cluster, which contains all the entities, as shown in
Algorithm 1.

Partitional clustering produces flat clusters with
no hierarchy, and requires prior knowledge of the
number of clusters. In the software domain, parti-
tional clustering has also been used (Kanellopoulos
et al., 2007) (Lakhotia, 1997) (Shah et al., 2013);
however, there are some advantages of using AHC.

Algorithm 1 - Agglomerative Hierarchical Cluster-
ing (AHC) Algorithm
Input: Feature (F ) matrix
Output: Hierarchy of Clusters (Dendrogram)

1: Create a similarity matrix by calculating similarity using
a Similarity Measure between each pair of entities

2: repeat
3: Group the most similar (singleton) clusters into one

cluster (using maximum value of similarity in similarity
matrix)

4: Update the similarity matrix by recalculating similar-
ity using a Linkage Method between newly formed
cluster and existing (singleton) clusters

5: until the required number of clusters or a single large
cluster is formed

For example, AHC does not require prior informa-
tion about the number of clusters. Moreover, Wig-
gerts (1997) stated that the process of AHC is very
similar to the approach of reverse engineering where
architecture of a software system is recovered in a
bottom-up fashion. AHC provides different levels of
abstraction and can be useful for end users to select
the desired number of clusters when the modulariza-
tion results are meaningful to them (Lutellier et al.,
2015). Since a maintainer may not have the knowl-
edge of the number of clusters in advance, therefore
viewing the architecture at different abstraction lev-
els facilitates understanding. Techniques have also
been proposed to select an appropriate abstraction
level, for example, (Chong et al., 2013) proposed a
dendrogram cutting approach for this purpose.

When AHC is utilized for software modulariza-
tion, the first step that occurs is the selection of the
entities to be clustered where each entity is described
by different features. The steps are presented in more
detail in the following subsections.

2.1 Selection of Entities and Features

Selecting the entities and features associated
with entities depends on the type of software system
and the desired architecture (e.g., layered/module
architectures) to be recovered. For software mod-
ularization, researchers have used different types of
entities, for example, methods (Saeed et al., 2003),
classes (Bauer and Trifu, 2004) and files (Andrit-
sos and Tzerpos, 2005), (Anquetil and Lethbridge,
1999). Researchers have also used different types of
features to describe the entities such as global vari-
ables used by an entity (Muhammad et al., 2012),
and procedure calls (Andritsos and Tzerpos, 2005).

une
dite
d



4 Naseem et al. / Front Inform Technol Electron Eng in press

Features are based on the relationships between enti-
ties, for example, containment and inheritance. Fea-
tures may be in the binary or non-binary format. A
binary feature represents the presence or absence of
a relationship between two entities, while non-binary
features are weighted features using different weight-
ing schemes, for example, absolute and relative (Cui
and Chae, 2011), to demonstrate the strength of
the relationship between entities. Binary features
are widely used in software modularization (Cui and
Chae, 2011) (Mitchell and Mancoridis, 2006) (Wig-
gerts, 1997).

To apply AHC, a software system must be
parsed to extract the selected entities and features
associated with entities. This process results in a
feature matrix of size N x P, where N is the total
number of entities and P is the total number of fea-
tures. Each entity in the feature matrix has a feature
vector fi, fi = {f1, f2, f3, ..., fP}. More generally, F

presents a general feature matrix, which takes values
from {0,1}p; in other words, F = {0,1}p, where ‘1’
means presence of a feature and ‘0’ otherwise. AHC
takes F as input, as shown in Algorithm I. Table 1
shows an example feature matrix F of a very small
imaginary software system, which contains 5 entities
(E1-E5) and 7 binary features (f1-f7). In Table 1,
for example, f1 is present in entities E1, E2, and E3
while absent in entities E4 and E5.

Table 1 An Example Feature (F) Matrix

f1 f2 f3 f4 f5 f6 f7
E1 1 1 0 0 0 0 0
E2 1 1 0 0 0 0 0
E3 1 0 1 1 0 0 0
E4 0 0 1 1 1 0 0
E5 0 0 0 0 0 1 0

2.2 Selection of Similarity Measure

The first step of the AHC process is to calculate
the similarity between each pair of entities to obtain
a similarity matrix by using a similarity measure, as
shown in Step 1 of Algorithm I. Following are some
well-known binary similarity measures for software
modularization.

Jaccard(JC) =
a

a+ b+ c
(1)

JaccardNM(JNM) =
a

2(a+ b+ c) + d
(2)

Russell&Rao(RR) =
a

a+ b+ c+ d
(3)

All the existing binary similarity measures are
expressed as functions of the following four quantities
associated with the pair of entities (Ei, Ej), 8 Ei, Ej
2 F (Lesot and Rifqi, 2009):

• the number of features common to both entities,
denoted by a

• the number of features present in Ei, but not in
Ej, denoted by b

• the number of features present in Ej, but not in
Ei, denoted by c

• the number of features absent in both entities,
denoted by d.

It is important to note that a+b+c+d is a con-
stant value and is equal to the total number of fea-
tures P. a+b=0 occurs only when Ei has the feature
vector fi = (0,...,0). Likewise, a+c=0 shows that Ej
has feature vector fj = (0,...,0).
Definition 1 A binary similarity measure, SM, is
a function whose domain is {0,1}p, and whose range
is R+, that is, SM : {0,1}p ! R+ (Veal, 2011), with
the following properties:

• Positivity: SM (Ei,Ej) � 0, 8 Ei, Ej 2 F

• Symmetry: SM (Ei,Ej) = SM (Ej,Ei), 8 Ei, Ej 2
F

• Maximality: SM (Ei,Ei) � SM (Ei,Ej), 8 Ei, Ej
2 F

Table 2 The similarity matrix derived from the ma-
trix in Table 1 by using the JC similarity measure

E1 E2 E3 E4 E5
E1
E2 1
E3 0.25 0.25
E4 0 0 0.5
E5 0 0 0 0.2

To illustrate the calculation, for instance, of the
JC measure as defined in Equation 1, Table 2 gives

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 5

the similarity matrix of the feature matrix shown in
Table 1. The similarity between E1 and E2 is cal-
culated using the quantities defined by a, b, c, and
d, and in this case a = 2, b = 0, c = 0, and d = 5.
Putting all these values in JC similarity measure, we
get similarity value ‘1’ (shown in Table 2). Likewise,
similarity values are calculated for each pair of en-
tities and are presented in Table 2. Now AHC will
group the most similar entities in Table 2, accord-
ing to the Step 2 in Algorithm I. E1 and E2 have
the highest similarity value, so AHC groups these
entities in a single cluster (E1E2). A new cluster is
therefore formed, and AHC will update the similar-
ity values of E1E2 and all other (singleton) clusters,
that is, E3, E4, and E5. To update these similarity
values, different linkage methods can be used, which
are described in the next subsection.

2.3 Selection of the Linkage Method

When a new cluster is formed, the similarities
between new and the existing clusters are updated
using a linkage method, as shown in step 3 of Algo-
rithm I. There exist a number of methods, which up-
date similarities differently. However, in this study,
we discuss only those methods that are widely used
for software modularization. They are listed below,
where (EiEj) represents a new cluster and Ek repre-
sents an existing singleton cluster.

• Complete Linkage: CL(EiEj, Ek)= min(sim(Ei,

Ek), sim(Ej, Ek))

• Single Linkage: SL(EiEj, Ek)= max(sim(Ei,

Ek), sim(Ej, Ek))

• Weighted Average Linkage: WL(EiEj, Ek)= 0.5

* (sim(Ei, Ek) + sim(Ej, Ek))

In the illustrative example, we update similarity
values between a new cluster (E1E2) and existing
singleton clusters using CL method. The updated
similarity matrix is shown in Table 3. For example,
the CL method returns the minimum similarity value
between E1 and E3 (0.25) and E2 and E3 (0.25).
Both of the returned values are the same (if there
was a minimum, then that value would be selected).
Therefore, AHC selects this similarity value as the
new similarity between (E1E2) and E3, as shown in
Table 3. Similarly, all similarity values are updated
between (E1E2) and E4 and E5.

AHC repeats Steps 2 and 3 until all entities are
merged in one large cluster, or the desired number
of clusters is obtained. At the end, AHC results in
a hierarchy of clusters, also known as dendrogram,
which is shown for the current example in Figure 1.
The obtained hierarchy is then evaluated to assess
the quality of the automatically formed clusters, and
the performance of similarity measures and methods.

2.4 Assessment of the Results

Assessment of the clustering results is usually
carried out using two approaches: external and inter-
nal assessment. The external assessment approach
finds the association between automated results (de-
composition) and the authoritative decomposition
prepared by a human expert (e.g., original developer
of the test software system). The approach is also
known as Authoritativeness. The automated decom-
position should resemble the authoritative decom-
position as much as possible (Wu et al., 2005). To
find the authoritativeness, different measures may be
used, such as, precision, recall (Sartipi and Konto-
giannis, 2003), MoJo, and MoJoFM. Here, the widely
used MoJoFM (Wen and Tzerpos, 2004) is discussed.
MoJoFM is the updated version of the MoJo (Tzer-
pos and Holt, 1999) (Tzerpos, 2003), which calcu-
lates the move and join operations to convert the
automated decomposition (M) into authoritative de-
composition (N).

Table 3 The updated similarity matrix from the val-
ues in Table 2 using CL linkage method

E1E2 E3 E4 E5
E1E2

E3 0.25
E4 0 0.5
E5 0 0 0.2

Fig. 1 Hierarchy created using the JC measure and
CL method

une
dite
d



6 Naseem et al. / Front Inform Technol Electron Eng in press

MoJoFM(M,N) =

✓
1� mno(M,N)

max(mno(8M,N))

◆
⇤100

(4)
where mno(M,N) is the minimum number of

‘move’ and ‘join’ operations required to translate M

in to N and max(mno(8M,N)) is the maximum of
mno(8M,N). MoJoFM produces percentage of the
similarity between two decompositions. A higher
percentage shows greater correspondence between
the two decompositions and hence better results,
while lower percentage indicates that the decompo-
sitions are different.

Internal assessment is to evaluate the quality
of the internal characteristics of the clusters in au-
tomated decomposition. There exist a number of
measures to evaluate the cluster quality internally,
for example, arbitrary decisions (Wang et al., 2010),
number of clusters (Wang et al., 2010), size of clus-
ters (extremity) (Glorie et al., 2009), modularization
quality (Praditwong, 2011), and coupling and cohe-
sion (Cui and Chae, 2011). In this study, we intend to
use arbitrary decisions and number of clusters. Ar-
bitrary decisions are taken by AHC when there exist
more than one maximum similarity values in the sim-
ilarity matrix during iteration. Thus, the decision of
selecting the maximum value is arbitrary, since more
than one pair of entities is equally similar. A large
number of arbitrary decisions shows poor character-
istic of the clusters, while a less number of arbitrary
decisions mean good characteristic, in terms of au-
thoritativeness (Naseem et al., 2013). The number
of clusters is another internal assessment criterion
that is used to evaluate cluster quality. If an AHC
produces a large number of clusters during the clus-
tering process, it means that clusters are compact
and have good quality (Maqbool and Babri, 2007).
A less number of clusters during clustering means
that they are large in size and less compact, and
hence are considered poor quality.

3 New Similarity Measures

As discussed in Section 1, we define new simi-
larity measures that have the combined strengths of
existing similarity measures JC, JNM, and RR de-
fined in Equations 1, 2 and 3, respectively. These
three similarity measures have shown better results
for software modularization as compared to other

measures (Cui and Chae, 2011). To highlight the
strengths of these existing measures, we first present
a small example case study, and then define our new
similarity measures.

3.1 An Example Case Study

To illustrate the strengths of existing similarity
measures, we take a small example of an imaginary
feature matrix from (Naseem et al., 2013). The ex-
ample feature matrix is shown in Table 4, with 8 enti-
ties (E1–E8) and 13 features (f1–f13). Using feature
matrix shown in Table 4, we illustrate the strengths
of JC and JNM similarity measures. We use the CL
method in AHC using the CL with JC and the CL
with JNM on the feature matrix in Table 4.

Table 4 An Example Feature Matrix
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

E1 0 0 0 0 0 1 1 1 1 1 1 1 1
E2 0 0 0 0 0 1 1 1 1 1 1 1 1
E3 1 1 0 0 0 0 0 0 0 0 0 0 0
E4 1 1 0 0 0 0 0 0 0 0 0 0 0
E5 1 1 1 1 1 0 0 0 0 0 0 0 0
E6 1 1 1 1 0 0 0 0 0 0 0 0 0
E7 0 0 1 1 1 1 1 0 0 1 0 1 0
E8 0 0 1 1 1 1 0 1 1 0 1 0 0

3.1.1 JC with CL clustering process

First, we illustrate the JC measure with the CL
method. The first step of AHC is to create the sim-
ilarity matrix using a similarity measure. After ap-
plying the JC measure to feature matrix in Table 4,
we get the similarity matrix shown in Table 5. In the
first iteration of AHC, a maximum similarity value
from the similarity matrix (Table 5) is selected to
make a new cluster or update a cluster. So, AHC
searches for a maximum similarity value in Table 5
but it finds maximum similarity value ‘1’ twice (i.e.,
for (E1E2) and (E3E4)). AHC may select either, but
we enforced AHC to select the last occurring value,
that is, similarity value of (E3E4) (see Table 6).

The CL method is used to update the similarity
values between the new cluster (E3E4) and all ex-
isting singleton clusters, and the updated similarity
matrix is shown in Table 6. In the second iteration,
AHC searches again for the maximum value in up-
dated similarity matrix Table 6. This time it makes
(E1E2) as a new cluster and updates its similarity
values with all other existing clusters, as shown in
Table 7. In iterations 3 and 4, it makes clusters of
(E5E6) and (E7E8), as shown in Table 8 and Table

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 7

9, respectively. From Table 8, it can be seen that
there are two maximum values (0.4), hence AHC
may select either again. As stated earlier, AHC will
select a value that occurs later; therefore, it a makes
cluster (E7E8). In the remaining iterations, AHC
makes clusters of ((E3E4)(E5E6)), ((E1E2)(E7E8))
and (((E1E2) (E7E8)) ((E3E4) (E5E6))), as shown
in Tables 10–12.

Table 5 Similarity matrix of table 4 using the Jaccard
(JC) similarity measure

E1 E2 E3 E4 E5 E6 E7 E8
E1
E2 1

E3 0 0
E4 0 0 1

E5 0 0 0.4 0.4
E6 0 0 0.5 0.5 0.8
E7 0.363 0.363 0 0 0.333 0.222
E8 0.363 0.363 0 0 0.333 0.222 0.4

Table 6 Iteration 1: updated similarity matrix of
Table 5 using the CL method

E1 E2 (E3E4) E5 E6 E7 E8
E1
E2 1

(E3E4) 0 0
E5 0 0 0.4
E6 0 0 0.5 0.8
E7 0.363 0.363 0 0.333 0.222
E8 0.363 0.363 0 0.333 0.222 0.4

Table 7 Iteration 2: updated similarity matrix of
Table 6 using the CL method

(E1E2) (E3E4) E5 E6 E7 E8
(E1E2)
(E3E4) 0

E5 0 0.4
E6 0 0.5 0.8

E7 0.363 0 0.333 0.222
E8 0.363 0 0.33 0.222 0.4

3.1.2 JNM with the CL clustering process

Now we apply the JNM measure on the fea-
ture matrix given in Table 4, and get a similarity
matrix that can be seen in Table 13. The pro-
cess for making clusters is the same as discussed in
Subsection 3.1.1. As per the AHC, the first cluster
formed is (E1E2), second is (E5E6), third is (E7E8),
fourth is ((E1E2) (E7E8)), fifth is (E3E4), sixth is
((E3E4) (E5E6)), and the last is (((E1E2) (E7E8))
((E3E4) (E5E6))). The similarity matrices during
iterations—from the first iteration to the seventh (n-
1) iteration—are given in Tables 14 to 20. In each

Table 8 Iteration 3: Updated Similarity Matrix of
Table 7 Using the CL Method

(E1E2) (E3E4) (E5E6) E7 E8
(E1E2)
(E3E4) 0
(E5E6) 0 0.4

E7 0.363 0 0.222
E8 0.363 0 0.222 0.4

iteration, the CL method is used to update the simi-
larity between newly formed and existing (singleton)
clusters.

Fig. 2 Number of clusters and arbitrary decisions
created by JC and JNM

une
dite
d



8 Naseem et al. / Front Inform Technol Electron Eng in press

Table 9 Iteration 4: Updated Similarity Matrix of
Table 8 Using the CL Method

(E1E2) (E3E4) (E5E6) (E7E8)
(E1E2)
(E3E4) 0
(E5E6) 0 0.4

(E7E8) 0.363 0 0.2

Table 10 Iteration 5: Updated Similarity Matrix of
Table 9 Using the CL Method

(E1E2) ((E3E4)(E5E6)) (E7E8)
(E1E2)

((E3E4)(E5E6)) 0
(E7E8) 0.363 0

Table 11 Iteration 6: Updated Similarity Matrix of
Table 10 Using the CL Method

((E1E2)(E7E8)) ((E3E4)(E5E6))
((E1E2)(E7E8))
((E3E4)(E5E6)) 0

Table 12 Iteration 7: Updated Similarity Matrix of
Table 11 Using the CL Method

(((E1E2)(E7E8))((E3E4)(E5E6)))
(((E1E2)(E7E8))((E3E4)(E5E6)))

Table 13 Similarity Matrix of Feature Matrix in Ta-
ble 4 Using the JNM Similarity Measure

E1 E2 E3 E4 E5 E6 E7 E8
E1
E2 0.381

E3 0 0
E4 0 0 0.133
E5 0 0 0.111 0.111
E6 0 0 0.118 0.118 0.222
E7 0.166 0.166 0 0 0.136 0.09
E8 0.166 0.166 0 0 0.136 0.09 0.173

Table 14 Iteration 1: Updated Similarity Matrix of
Table 13 Using the CL Method

(E1E2) E3 E4 E5 E6 E7 E8
(E1E2)

E3 0
E4 0 0.133
E5 0 0.111 0.111
E6 0 0.118 0.118 0.222

E7 0.166 0 0 0.136 0.09
E8 0.166 0 0 0.136 0.09 0.173

Table 15 Iteration 2: Updated Similarity Matrix of
Table 14 Using the CL Method

(E1E2) E3 E4 (E5E6) E7 E8
(E1E2)

E3 0
E4 0 0.133

(E5E6) 0 0.111 0.111
E7 0.166 0 0 0.09
E8 0.166 0 0 0.09 0.173

Table 16 Iteration 3: Updated Similarity Matrix of
Table 15 Using the CL Method

(E1E2) E3 E4 (E5E6) (E7E8)
(E1E2)

E3 0
E4 0 0.133

(E5E6) 0 0.111 0.111
(E7E8) 0.166 0 0 0.09

Table 17 Iteration 4: Updated Similarity Matrix of
Table 16 Using the CL Method

((E1E2)(E7E8)) E3 E4 (E5E6)
((E1E2)(E7E8))

E3 0
E4 0 0.133

(E5E6) 0 0.111 0.111

Table 18 Iteration 5: Updated Similarity Matrix of
Table 17 Using the CL Method

((E1E2)(E7E8)) (E3E4) (E5E6)
((E1E2)(E7E8))

(E3E4) 0
(E5E6) 0 0.111

Table 19 Iteration 6: Updated Similarity Matrix of
Table 18 Using the CL Method

((E1E2)(E7E8)) ((E3E4)(E5E6))
((E1E2)(E7E8))
((E3E4)(E5E6)) 0

Table 20 Iteration 7: Updated Similarity Matrix of
Table 19 Using the CL Method

(((E1E2)(E7E8))((E3E4)(E5E6)))
(((E1E2)(E7E8))((E3E4)(E5E6)))

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 9

3.1.3 Discussion on the results of JC and JNM mea-
sures

In the previous two Subsections 3.1.1 and 3.1.2,
we observed that the JC measure results in more
clusters during clustering as compared to the JNM
measure. Figure 2 shows the maximum number of
clusters achieved and the total number of arbitrary
decisions made during the clustering process for both
measures. It can be seen from Figure 2 that the
JNM measure produces a less number of arbitrary
decisions as compared to the JC measure. The JNM
produces results as expected because the main intu-
ition of introducing this measure is to reduce the ar-
bitrary decisions (Naseem et al., 2010). Hence, from
these results we can easily conclude that the JC has
the strength to create more clusters during the clus-
tering process, while the JNM has the strength to
reduce the number of arbitrary decisions.

It has been shown that if a clustering approach
results in a large number of clusters during the clus-
tering process, it increases the cohesiveness of the
clusters and hence increases the authoritativeness of
the results (Maqbool and Babri, 2007). Second, in
our previous study, we showed that if a clustering
approach reduces arbitrary decisions, it would cre-
ate more authoritative results (Naseem et al., 2013).
This analysis leads us to define the new measures
that may have the characteristics of these existing
similarity measures. It would be useful to integrate
the existing similarity measures and come up with
the new measures to increase the number of clusters
and reduce the arbitrary decisions during the clus-
tering process.

3.2 The New Binary Similarity Measures

According to the aforementioned discussion, the
JC measure has the strength of creating a large num-
ber of clusters during the clustering process, while
the JNM measure has the strength of creating clus-
ters with a less number of arbitrary decisions. We
also consider the RR measure because for some case
studies, it has produced better clustering results for
software modularization (Naseem et al., 2010). RR
reduces the arbitrary decisions when JC creates, for
example, when the values of a among the entities are
different and b+ c = 0. To combine the strengths of
these existing similarity measures, the add operation
is used to combine the existing similarity measures.

We introduce four new similarity measures as follows:

3.2.1 Addition of the JC and JNM measures:
“JCJNM” similarity measure

The strengths of similarity measures shown in
Subsection 3.1 can be combined by adding both the
similarity measures (JC and JNM) to obtain the
“JCJNM” binary similarity measure. Our new mea-
sure“JCJNM” is defined as:

JCJNM = JC + JNM

=
a

s
+

a

2s+ d

=
a(3s+ d)

s(2s+ d)
(5)

where
s = a+ b+ c

3.2.2 The Example Case Study and JCJNM Mea-
sure

To demonstrate the strengths of our new mea-
sure, we now apply the JCJNM similarity measure to
the example feature matrix shown in Table 4. The
corresponding similarity matrix using the JCJNM
similarity measure is shown in Table 21. The CL
method is used to update the similarity matrix dur-
ing the clustering process. We can see from Table
21 that the JCJNM prioritizes the similarity values
between the pair of entities (E1E2) and (E3E4), as
done by the JNM in the similarity matrix given in
Table 13. Hence, the decision to cluster the entities
is no longer arbitrary. Entities E1 and E2 have a
high value of similarity and are grouped first (see
Table 22). Then in the subsequent iterations, the
AHC makes clusters of (E3E4), (E5E6) and (E7E8).
Note that in Iteration 3 as given in Table 8, the JC
measure creates arbitrary decisions while our new
measure JCJNM does not, as shown in Table 24.

It is interesting to note that the JCJNM mea-
sure creates clusters as created by the JC measure (4
clusters) and similar to the JNM measure, makes no
arbitrary decisions. It can be inferred that our new
measure has the strength to create a large number of
clusters while reducing the arbitrary decisions made
by the AHC during the clustering process. There-
fore, the JCJNM outperforms the existing similarity
measure.

une
dite
d



10 Naseem et al. / Front Inform Technol Electron Eng in press

Table 21 Similarity Matrix of Feature Matrix in Ta-
ble 4 Using the JCJNM Similarity Measure

E1 E2 E3 E4 E5 E6 E7 E8
E1
E2 1.381

E3 0 0
E4 0 0 1.133
E5 0 0 0.511 0.511
E6 0 0 0.618 0.618 1.022
E7 0.526 0.526 0 0 0.466 0.31
E8 0.526 0.526 0 0 0.466 0.31 0.573

Table 22 Iteration 1: Updated Similarity Matrix of
Table 21 Using the CL Method

(E1E2) E3 E4 E5 E6 E7 E8
(E1E2)

E3 0
E4 0 1.133

E5 0 0.511 0.511
E6 0 0.618 0.618 1.022
E7 0.526 0 0 0.466 0.31
E8 0.526 0 0 0.466 0.31 0.573

Table 23 Iteration 2: Updated Similarity Matrix of
Table 22 Using the CL Method

(E1E2) (E3E4) E5 E6 E7 E8
(E1E2)
E3E4 0
E5 0 0.511
E6 0 0.618 1.022

E7 0.526 0 0.466 0.31
E8 0.526 0 0.466 0.31 0.573

Table 24 Iteration 3: Updated Similarity Matrix of
Table 23 Using the CL Method

(E1E2) (E3E4) (E5E6) E7 E8
(E1E2)
(E3E4) 0
(E5E6) 0 0.511

E7 0.526 0 0.31
E8 0.526 0 0.31 0.573

Table 25 Iteration 4: Updated Similarity Matrix of
Table 24 Using the CL Method

(E1E2) (E3E4) (E5E6) (E7E8)
(E1E2)
(E3E4) 0
(E5E6) 0 0.511
(E7E8) 0.526 0 0.31

Table 26 Iteration 5: Updated Similarity Matrix of
Table 25 Using the CL Method

((E1E2)(E7E8)) (E3E4) (E5E6)
((E1E2)(E7E8))

(E3E4) 0
(E5E6) 0 0.511

Table 27 Iteration 6: Updated Similarity Matrix of
Table 26 Using the CL Method

((E1E2)(E7E8)) ((E3E4)(E5E6))
((E1E2)(E7E8))
((E3E4)(E5E6)) 0

Table 28 Iteration 7: Updated Similarity Matrix of
Table 27 Using the CL Method

(((E1E2)(E7E8))((E3E4)(E5E6)))
(((E1E2)(E7E8))((E3E4)(E5E6)))

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 11

Proposition 3.1 Let the range of JCJNM be z (P
represents the total number of features), then

JCJNM(Ei,Ej) =

8
>><

>>:

z = 1.5, if a = P

0 < z < 1.5, if 0 < a < P

z = 0, if a = 0

Proof. JCJNM is the combined function of four
quantities a, b, c, and d, as shown in Equation 5.
Substituting value of s = a + b + c.

JCJNM(Ei,Ej) =
a(3(a+ b+ c) + d)

(a+ b+ c)(2(a+ b+ c) + d)
(6)

If all features are present in feature vectors of Ei
and Ej, that is, b = c = d = 0, and a = P, then the
above equation reduces to

JCJNM(Ei,Ej) =
a(3(a))

(a)(2(a))
= 1.5 (7)

Therefore, the maximum similarity value that
JCJNM can produce is 1.5
Now, if no common feature is present in feature vec-
tors of Ei and Ej, that is, a = 0 and b + c + d � 0,
then Equation 6 reduces to

JCJNM(Ei,Ej) =
0(3(0 + b+ c) + d)

(0 + b+ c)(2(0 + b+ c) + d)
= 0

(8)
Thus the minimum similarity value that JCJNM
can produce is 0.

Lastly, if there exist some common and absent
features in feature vectors of Ei and Ej, that is, if a =

x and b = c = d = y, where x, y > 0, then Equation
5 reduces to

JCJNM(Ei,Ej) =
x(3(x+ y + y) + y)

(x+ y + y)(2(x+ y + y) + y)

The above equation simplifies to

JCJNM(Ei,Ej) =
3x2 + 7xy

2x2 + 9xy + 10y2
(9)

Equation 9 results in values between 0 and 1.5,
if x, y>0, 8 Ei, Ej 2 F.

Proposition 3.2 JCJNM satisfies Definition 2.1
given in Section 2.2, which states that the domain
of a binary similarity measure is {0,1}p and range is
R+.

Proof. JCJNM is the combined function of four
quantities a, b, c, and d, and all these quantities
can be calculated only using binary values in feature
vector of entities as defined in Section 2.2. Hence,
the domain of JCJNM measure is{0,1}p. Meanwhile,
JCJNM results in a real value, that is, z = R+ as
proved in Proposition 3.1.

Proposition 3.3 JCJNM fulfills the properties of
Positivity and Symmetry

Proof. Positivity: It has been shown in the proof of
Proposition 3.1, that JCJNM creates similarity value
equal to or greater than 0, that is, JCJNM(Ei,Ej) !
R+, 8 Ei, Ej 2 F.

Symmetry: JCJNM is the combined function of
four quantities a, b, c, and d, and all these quantities
are symmetric, so it is obvious that

JCJNM(Ei,Ej) = JCJNM(Ej,Ei)

Proposition 3.4 JCJNM fulfills the property of
Maximality of similarity measure.

Proof. Let us suppose that b + c = x and x is a
positive number, then Equation 5 becomes

JCJNM(Ei,Ej) =
a(3(a+ x) + d)

(a+ x)(2(a+ x) + d)

The above equation simplifies to

JCJNM(Ei,Ej) =
a(3a+ d+ 3x)

a(2a+ d+ 2x)
(10)

To calculate the similarity of an entity with it-
self, that is, JCJNM(Ei,Ei) then x = 0,a, d � 0.
Using these quantities, Equation 10 of JCJNM re-
duces to:

JCJNM(Ei,Ei) =
a(3a+ d)

a(2a+ d)
(11)

Therefore, using Equations 11 and 10, 8 Ei, Ej
2 F, the following association will always be true for

une
dite
d



12 Naseem et al. / Front Inform Technol Electron Eng in press

a + d � 1 and x, where a + d + x = P:1

a(3a+ d)

a(2a+ d)
>

a(3a+ d+ x)

a(2a+ d+ x)
if(x > 0)

� a(3a+ d+ 3x)

a(2a+ d+ 2x)
if(x � 0)

3.2.3 Addition of the JC and RR measures: “JCRR”
similarity measure

The second new similarity measure that we de-
rive is “JCRR”. This measure adds RR similarity
measure with JC similarity measure. The derivation
of JCRR is given as:

JCRR = JC +RR

=
a

s
+

a

s+ d

=
a(2s+ d)

s(s+ d)
(12)

For proofs of the correctness of JCRR binary
similarity measure, please refer to Appendix A.

3.2.4 Combination of the JNM and RR measures:
“JNMRR” similarity measure

The third combination of the existing similarity
measure is JNM and RR. We add both the similarity
measures and the derived similarity measure is called
"JNMRR" and defined as:

JNMRR = JNM +RR

=
a

2s+ d
+

a

s+ d

=
a(3s+ 2d)

(2s+ d)(s+ d)
(13)

For proofs of the correctness of JNMRR binary
similarity measure, please refer to Appendix B.

1We have two associations, that is, equality and maximal-
ity. 1) Equality: for instance, let x = 0, then Equation 10
becomes equal to Equation 11. 2) Maximality: let a = d =
x = 1, so a + b + x = P = 3, then the association between
Equations 11 and 10 becomes

(3 + 1)

(2 + 1)
>

(3 + 1 + 3)

(2 + 1 + 2)

3.2.5 Addition of the JC and JNM and RR measures:
“JCJNMRR” similarity measure

Finally, we add all the three existing measures
and come up with a new measure “JCJNMRR”. This
measure adds the JC with JNM, with RR as follows:

JCJNMRR = JC + JNM +RR

=
a

s
+

a

2s+ d
+

a

s+ d

=
a(5s2 + 5sd+ d2)

s(2s2 + 3sd+ d2)
(14)

For proofs of the correctness of JNMRR binary
similarity measure, please refer to Appendix C.

4 The Experimental Setup

AHC produces different results due to the bi-
ases of the different linkage methods and similarity
measures (Cui and Chae, 2011). We have performed
a number of experiments by employing well known
basic linkage methods using existing and our new
similarity measures. In this section, we discuss the
test systems used for experimental purposes and the
clustering process setup including the selection of as-
sessment criteria.

4.1 Test Systems

We have used 8 test systems that are devel-
oped using C, C++, and Java languages to conduct
the experiments. The test systems have been used
in previous research (Siddique and Maqbool, 2012),
(Muhammad et al., 2012), (Naseem et al., 2013). All
of these test systems vary in their source code sizes
and application domains. Table 29 presents the de-
tails of the test software systems.

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 13

Table 29 Details of the Test Software Systems
ID Test System Number of Classes LOC Entity
1 DDA 90 82877 Class
2 FES 47 10402 Class
3 Mozilla 1202 Files 400000 File
4 PEDS 41 16360 Class
5 PLC 69 51768 Class
6 PLP 72 50661 Class
7 SAVT 97 27311 Class
8 Weka 331 100000 Class

We used two open source and six proprietary
test software systems. The open source test software
systems are: 1) Mozilla, an open source web browser
and developed in C and C++ programming lan-
guages. For experiments, we used Mozilla2 version
1.3 released in March 2003. This test system is taken
from Siddique and Maqbool (2012); 2) Weka, an-
other open source software system developed in Java
programming language, is a well-known data mining
software system used for data pre-processing, clus-
tering, regression, classification, association rules,
and visualization. We use Weka3 version 3.4, taken
from Siddique and Maqbool (2012), for experimental
purposes.

The proprietary test software systems used for
experiments are developed in Visual C++ program-
ming language. They are: 1) DDA, software to de-
sign the document composition and layout; 2) FES, a
fact extractor software system to extract the facts of
software systems; 3) PEDS, a power dispatch prob-
lem solver using conventional and evolutionary com-
puting techniques; 4) PLC, a printer language con-
verter software system used to convert the intermedi-
ate data structure to a well-known printer language;
5) PLP, a parser software system, which is used to
parse a well-known printer language; 6) SAVT, a sta-
tistical and analysis visualization tool. These soft-
ware systems are proprietary and are currently op-
erational. We obtained the extracted feature matrix
from Muhammad et al. (2012).

4.2 Entities and Features

Mozilla’s data set is taken from Siddique and
Maqbool (2012), who considered files as entities be-
cause a .c or .cpp file contains both functions with
and without classes. Hence, in this study, files are
considered entities for Mozilla, and file calling is used

2ftp://ftp.mozilla.org/pub/mozilla.org/mozilla/releases/
mozilla1.3/src/

3http://perun.pmf.uns.ac.rs/radovanovic/dmsem/cd/
install/Weka/doc/html/Weka%203.4.5.htm

as a feature. The total number of file calling fea-
ture is 258. For Weka test system, which is purely
developed Java, we consider classes to be entities
(Siddique and Maqbool, 2012). Since classes are
considered to be the basic building blocks of object
oriented languages. Siddique and Maqbool (2012)
selected functions invoked, user-defined types and
global variables as features for classes.

For the proprietary software systems, Muham-
mad et al. (2012) considered classes to be entities.
We select ten indirect features for these entities
(shown in Table 30), since indirect features give
better results as compared to direct features
(Muhammad et al., 2012). We consider various
types of test software systems that are developed
in different programming languages, with different
types of entities and features because we want to see
whether our new proposed similarity measures are
applicable to these different artifacts to make good
clusters for software modularization.

Table 30 Indirect Features of the Classes in Propri-
etary Test Systems That were Used for Experiments
Feature Type DDA FES PEDS PLC PLP SAVT
Same Inheritance Hierarchy 98 166 70 26 64 986
Same Class Containment 58 56 12 58 144 1032
Same Class in Methods 476 384 76 162 672 1900
Same Generic Class 59 91 6 465 98 49
Same Generic Parameter 0 4 0 0 0 0
Same File 136 42 36 1812 826 264
Same Folder 2456 0 0 0 0 0
Same Macro Access 0 0 12 0 2 0
Same Global Access 918 0 0 0 268 0
Total Features 4201 743 212 2523 2074 4231

4.3 Clustering Strategies

In this study, we have considered existing simi-
larity measures and linkage methods that have pro-
duced better results for software modularization
(Muhammad et al., 2012) (Davey and Burd, 2000).
In order to conduct the experiments, we categorize
clustering actors into different clustering stratagems
shown in Table 31. These stratagems are composed
of three existing similarity measures and four new
similarity measures, using three well-known basic
linkage methods. The details of these stratagems
are given in Table 31.

une
dite
d



14 Naseem et al. / Front Inform Technol Electron Eng in press

Table 31 Clustering Stratagems
Sr. No. SM Abbr Linkage Method Abbr
1 JCJNM JCJNM Complete CL
2 JCRR JCRR Complete CL
3 JNMRR JNMRR Complete CL
4 JCJNMRR JCJNMRR Complete CL
5 JCJNM JCJNM Single SL
6 JCRR JCRR Single SL
7 JNMRR JNMRR Single SL
8 JCJNMRR JCJNMRR Single SL
9 JCJNM JCJNM Weighted Average WL
10 JCRR JCRR Weighted Average WL
11 JNMRR JNMRR Weighted Average WL
12 JCJNMRR JCJNMRR Weighted Average WL
13 Jaccard JC Complete CL
14 JaccardNM JNM Complete CL
15 Russell&Rao RR Complete CL
16 Jaccard JC Single SL
17 JaccardNM JNM Single SL
18 Russell&Rao RR Single SL
19 Jaccard JC Weighted Average WL
20 JaccardNM JNM Weighted Average WL
21 Russell&Rao RR Weighted Average WL

4.4 Assessment Criteria

To assess the output of the stratagems given
in Subsection 4.3, we considered external as well as
internal assessment. External assessment is the ap-
proach in which expert decomposition is required to
evaluate the automated results, also known as au-
thoritativeness. As AHC produces results at each
iteration, the following question arises: which iter-
ation’s result should be evaluated? To answer the
question, researchers used external criterion to eval-
uate results of each iteration, and then presented the
maximum or average value of the criterion (Wen and
Tzerpos, 2004), (Muhammad et al., 2012), (Maqbool
and Babri, 2007). We report the results by select-
ing the maximum MoJoFM value out of all values
obtained from each iteration. To show the strengths
and weakness of the proposed and existing measures,
we also evaluate the experimental results using inter-
nal assessment criteria, that is, arbitrary decisions
(Naseem et al., 2013) and the number of clusters pro-
duced during clustering (Maqbool and Babri, 2007).

4.5 Expert Decomposition

Since we evaluated our results externally (us-
ing the MoJoFM), it was important to have reliable
expert decompositions with which to compare our
clustering results. For the proprietary software sys-
tems, expert decompositions were developed by per-
sonnel having design and development experience in
the software industry. They had 6 to 7 years of ex-

perience in developing software systems using C++.
Some of the experts were the original developers of
the software systems. We provided the source code
and class listing to all the experts and asked them to
develop a decomposition of the given system. The ex-
perts were not provided with any details about clus-
tering algorithms, and what relationships between
entities were utilized during clustering. A summary
of relevant statistics of the experts are presented in
Table 32.

Table 32 Personnel Statistics
Personnel System Experience

in Years

Actual designer DDA 7
Experienced in C++ FES 6
Actual designer PEDS 7
Maintainer PLC 7
Actual designer PLP 6
Experienced in C++ SAVT 7

The process of preparing the expert decompo-
sition is described in detail in (Muhammad et al.,
2012) and (Naseem et al., 2013). These expert de-
compositions have been previously used in different
studies (Naseem et al., 2013), (Muhammad et al.,
2012).

For Mozilla, we used the expert decomposition
used in (Siddique and Maqbool, 2012). (Siddique
and Maqbool, 2012) have taken this decomposition
from Xia and Tzerpos (2005). For Weka, we used the
expert decomposition given in (Patel et al., 2009).
This expert decomposition was provided by the orig-
inal designers of the Weka software system. The
expert decompositions for these systems have been
used for modularization experiments earlier in (Sid-
dique and Maqbool, 2012), (Patel et al., 2009), (An-
dreopoulos and Tzerpos, 2005) and (Hussain et al.,
2015).

5 Assessment of the new similarity
measure

In this section, we present the experimental re-
sults using arbitrary decisions, number of clusters,
and authoritativeness using MoJoFM measure.

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 15

5.1 Arbitrary Decision

The overall results for all similarity measures
are reported in Table 33. This table lists the av-
erage number of arbitrary decisions that are made
by the AHC using different similarity measures in
each iteration. The first column in Table 33 shows
the methods, that is, CL, SL, and WL. Similarity
measures are shown in the second column, while the
arbitrary decision values for all test systems are given
in the next eight columns. The second last column
presents the average values for each similarity mea-
sure, and the last column shows the average values
for new and existing measures. The bold face values
enclosed in parentheses indicate best values, while
only bold face values represent the better values for
a certain system/method.

As can be seen from Table 33, our proposed sim-
ilarity measures have reduced the arbitrary decisions
for each method. It is very interesting that JCJNM,
JCRR and JCJNMRR measures in most cases pro-
duce the same number of arbitrary decisions and also
less than the existing JC and RR measures. JNMRR
and JNM measures produce the same results except
in two cases, where the difference is minor. Same
results may be due to the fact that both similarity
measures (JNM and RR) have the ability to count
all features, that is, a, b, c, and d. Therefore, adding
RR may have no additional effect on the similarity
values of JNM to reduce arbitrary decisions.

Though our proposed measures produce a less
number of arbitrary decisions, the existing JNM

measure and our new JNMRR measure have the low-
est number of arbitrary decisions. It is interesting to
note that for the SL method, the JNMRR and JNM
measures produce a less number of arbitrary deci-
sions for all the test systems as compared to other
methods.

It can be easily observed from the second last
column of Table 33 that, as was expected, our pro-
posed similarity measures produced a less number of
arbitrary decisions on average, as compared to exist-
ing similarity measures (see the last column of Table
33).

To ease the analysis, we select the average val-
ues from the second last column of Table 33, and
summarize them in the Table 34. Table 34 shows the
average values of each similarity measure for linkage
methods. It can be seen from second last column of
Table 34 that for all methods on average, JNMRR
and JNM produced a less number of arbitrary de-
cisions. Meanwhile, last columns show the average
values for all methods of our new and existing sim-
ilarity measures separately in two rows. As can be
seen, our new similarity measures on average pro-
duced 79.03 arbitrary decisions during the clustering
process which are less than arbitrary decisions pro-
duced by existing similarity measures (86.44).

For further analysis, box-plots are used in Fig-
ure 3 to illustrate the arbitrary decisions made dur-
ing the clustering process by AHC using different
similarity measures. A box-plot shows the variation
in the values of arbitrary decisions by indicating

Table 33 Experimental Results using Arbitrary Decisions for all Similarity Measures
Method Measure DDA FES Mozilla PEDS PLC PLP SAVT Weka Average Average

CL JCJNM 2.06 10.28 253.19 9.80 37.59 9.24 20.47 695.42 129.76 129.69

JCRR 2.06 10.28 253.20 9.80 37.59 9.24 20.47 695.42 129.76
JNMRR 1.89 10.26 253.17 9.80 37.63 9.25 18.89 695.13 129.50

JCJNMRR 2.07 10.28 253.19 9.80 37.59 9.24 20.47 695.42 129.76
JC 4.34 10.43 245.27 10.95 72.10 10.72 30.19 700.39 135.55 139.86
JNM 1.89 10.26 253.17 9.80 37.63 9.25 18.89 695.13 129.50

RR 33.79 11.93 296.01 14.78 50.79 27.39 31.52 769.93 154.52
SL JCJNM 1.55 3.00 4.07 1.13 35.90 1.85 10.91 374.69 54.14 54.03

JCRR 1.55 3.00 4.08 1.13 35.90 1.85 10.91 374.69 54.14
JNMRR 1.22 2.98 3.03 1.13 35.90 1.85 10.91 372.77 53.72

JCJNMRR 1.55 3.00 4.05 1.13 35.90 1.86 10.91 374.69 54.14
JC 3.93 3.20 8.68 2.25 70.47 3.30 20.98 384.05 62.11 60.90
JNM 1.22 2.98 3.03 1.13 35.90 1.85 10.91 372.77 53.72

RR 8.38 4.70 17.49 8.20 53.16 20.59 22.32 400.20 66.88
WL JCJNM 1.15 2.98 2.36 0.98 (35.81) 1.80 (10.68) 371.36 53.39 (53.37)

JCRR 1.15 2.98 2.37 0.98 (35.81) 1.80 (10.68) 371.36 53.39
JNMRR (0.97) (2.91) (2.23) (0.90) 35.85 (1.79) (10.68) (371.21) (53.32)
JCJNMRR 1.15 2.98 2.36 0.98 (35.81) (1.79) (10.68) 371.36 53.39
JC 3.06 3.07 4.43 1.93 70.28 3.20 20.30 374.15 60.05 58.55
JNM 0.99 (2.91) (2.23) (0.90) 35.85 (1.79) 10.69 (371.21) (53.32)
RR 4.97 3.72 7.42 3.73 48.71 19.61 16.48 393.58 62.28

une
dite
d



16 Naseem et al. / Front Inform Technol Electron Eng in press

Fig. 3 Arbitrary decisions made during the clustering process by all binary similarity measures using CL and
SL methods for different test software systems.

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 17

Table 34 Average Number of Arbitrary Decisions for
all Similarity Measures

Measure CL SL WL Average Average
JCJNM 129.76 54.14 53.39 79.09 79.03

JCRR 129.76 54.14 53.39 79.09
JNMRR 129.50 53.72 53.32 78.85

JCJNMRR 129.76 54.14 53.39 79.09
JC 135.55 62.11 60.05 85.90 86.44
JNM 129.50 53.72 53.32 78.85

RR 154.52 66.88 62.28 94.56

the quartiles and also highlights the outliers for each
measure. For clarity, points are presented alongside
a box-plot, which represent the number of iterations
in which that many arbitrary decisions made (i.e.,
the number of times that value of arbitrary deci-
sions arises during clustering). Thus, the density of
the points shows which arbitrary decision values are
mostly observed during the clustering process.

As shown in Figure 3, JC and RR produce a
larger number of arbitrary decisions as compared to
JCJNM, JCRR, JNMRR, JCJNMRR and JNM in
general. This is apparent from the height of the box,
which indicates higher dispersion. Although in some
cases the height of the box is lower for JC and RR
(e.g., for FES using SL), there is a higher average
in Table 33 for these measures. This indicates that
arbitrary decisions are being made in a large number
of iterations.

We also list some important statistics for our
new and existing measures. Table 35 presents, for
the arbitrary decisions, the minimum value (Min),
maximum value (Max), mean, standard deviation
(Std), Mode, and Percentage of the count of occur-
rence of mode value. The Min value for new measures
is 78.85, which is equal to the Min value of existing
measures. However, the Max value for new mea-
sures (79.09) is smaller than the existing measures.
It indicates that new measures create the maximum,
which is very near to the minimum value created by
both the existing and new measures. It can be seen
that the Std for our new similarity measures is 0.11,
which is much less than the Std value for existing
similarity measures. It clearly indicates that our new
similarity measures produce very compact results as
compared to existing similarity measures. It can also
be observed that 75% of the results produced by our
proposed measures are the same, while the existing
measures created varied results and hence found no
mode.

Table 35 Statistics of Arbitrary Decisions
Measure Type Min Max Mean Std Mode Percentage

New 78.85 79.09 79.03 0.11 79.09 75%
Existing 78.85 94.56 86.44 6.42 N/A 0%

5.2 Number of Clusters

The number of clusters during the clustering
process shows how compact the produced clusters
are. A large number of clusters created during
the clustering process indicates that created clus-
ters are highly compact, while a low number of clus-
ters presents that created clusters are non-cohesive
(Wang et al., 2010) (Maqbool and Babri, 2007).
Hence, a high number of clusters indicates the use-
fulness of the AHC approach.

Table 36 shows the maximum number of non-
singleton clusters, created by AHC during all iter-
ations. The values enclosed in parentheses indicate
best values, while only bold face values represent
the better values for a system/method. As can be
seen from Table 36, the number of clusters created
by AHC using our new similarity measures is higher
than that created by existing similarity measures.
It can be seen that for all test software systems,
JCJNM, JCRR and JC measures created a large
number of clusters using the CL, SL, and WL meth-
ods except for four cases, that is, CL applied on
PLC, SL applied on DDA and Mozilla, and WL ap-
plied on Mozilla and Weka. For the SL method,
JCJNM, JCRR, and JCJNMRR measures produced
a large number of clusters for all test system except
one (SAVT). It is interesting to note that once again,
JNMRR and JNM measures result in the same num-
ber of clusters for all test software systems and link-
age methods. It can also be seen that for Mozilla and
Weka software systems, our new measures substan-
tially increased the number of clusters similar to the
JC measure. It is very interesting to note that the
new measures integrating the JC similarity measure
have achieved equally a large number of clusters as
the JC measure. This is because our new measures
(JCJNM, JCRR, and JCJNMRR) integrate the JC
measure, which results in a large number of clus-
ters. The JNMRR does not integrate the JC mea-
sure; therefore, results are the same as those of the
JNM measure.

As can be seen from the second last column of
Table 36, on average for the CL method, the JCJNM,
JCRR, JCJNMRR, and JC produce better results,

une
dite
d



18 Naseem et al. / Front Inform Technol Electron Eng in press

that is, they create a large numbers of clusters. The
JCJNM and JCRR measures with the SL method
and the JCJNMRR measure with the WL method
result in a large number of clusters. It can be seen
from the last column of Table 36 that, for each link-
age method our new similarity measures outperform
the existing one.

To summarize the results, we listed the values
given in the second last column of Table 37 in Table
36. Table 37 presents the number of cluster values
of similarity measures for linkage methods. This ta-
ble clearly indicates how well a measure performs as
compared to other contesting measures. This table
also shows the average of each type, which indicates
the average of all new measures and all existing mea-
sures separately. It can be seen that the new mea-
sures outperform the existing ones by creating a large
number of clusters.

Table 37 Average Number of Clusters Produced dur-
ing clustering for All Similarity Measures

Measure CL SL WL Average Average
JCJNM 26.88 17.38 24.13 22.79 20.90

JCRR 26.88 17.38 24.13 22.79

JNMRR 22.38 6.88 16.38 15.21
JCJNMRR 26.88 17.25 24.25 22.79

JC 26.88 17.25 24.13 22.75 16.97
JCNM 22.38 6.88 16.38 15.21
RR 17.63 6.13 15.13 12.96

For further analysis, a violin plot is shown in
Figure 4, which shows the number of clusters created
during the clustering process by different similarity

measures using CL and SL on various test software
systems4. The clustering process starts by forming
very small-sized clusters (size 2). Increase in the
height of violin graph means that a large number
of clusters are created during the clustering process.
The width of the violin shows the values distribution
over the observed number of clusters. It can be easily
observed that our new similarity measures and JC
(in most of the cases) result in a large number of
clusters. It can also be seen that JNM, RR, and
JNMRR measures produce a relatively fewer number
of clusters during the clustering process. This is
especially true for the SL measure, where the number
of clusters during clustering is much lower for these
measures.

To support the claim that our proposed mea-
sures perform better, Table 38 shows the statistics of
Table 37. All the statistical data (Min, Max, Mean,
Std, Mode and Percentage) are derived from the sec-
ond last column of Table 37. The Min value for
new measures is 15.21, which is greater than the Min
value of existing measures (12.96). The Max value
for the new measures is slightly greater than the ex-
isting measures. It can be seen that the Std value for
our proposed measures (3.28) is less than the existing
measures, which indicates that our new measure’s re-
sults are close to the mean value and are also close
to each other. This table also shows the Mode and

4Due to the limited space only the results of CL and SL
methods employed on DDA, FES, Mozilla, PEDS and PLC
test software systems are presented

Table 36 Experimental Results using Number of Clusters Produced during Clustering for All Similarity
Measures

Method Measure DDA FES Mozilla PEDS PLC PLP SAVT Weka Average Average
CL JCJNM (23) (10) (75) 12 10 (12) (18) (55) (26.88) (25.75)

JCRR (23) (10) (75) 12 10 (12) (18) (55) (26.88)
JNMRR 21 9 64 12 (11) 11 16 35 22.38
JCJNMRR (23) (10) (75) 12 10 (12) (18) (55) (26.88)
JC (23) (10) (75) 12 10 (12) (18) (55) (26.88) 22.29
JNM 21 9 64 12 (11) 11 16 35 22.38
RR 17 8 49 10 10 9 14 24 17.63

SL JCJNM 17 8 49 8 6 8 12 31 17.38 14.72

JCRR 17 8 49 8 6 8 12 31 17.38

JNMRR 7 4 11 5 5 4 7 12 6.88
JCJNMRR 17 8 48 8 6 8 12 31 17.25
JC 16 8 48 8 6 8 13 31 17.25 10.08
JNM 7 4 11 5 5 4 7 12 6.88
RR 7 4 8 5 4 4 5 12 6.13

WL JCJNM 20 9 68 12 9 11 17 47 24.13 22.22

JCRR 20 9 68 12 9 11 17 47 24.13
JNMRR 15 7 45 8 7 10 13 26 16.38
JCJNMRR 20 9 69 12 9 11 17 47 24.25

JC 20 9 69 12 9 11 17 46 24.13 18.54
JNM 15 7 45 8 7 10 13 26 16.38
RR 15 7 41 8 8 9 11 22 15.13

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 19

Fig. 4 Number of clusters created by all binary similarity measures during the clustering process using CL
and SL methods for different test software systems.

une
dite
d



20 Naseem et al. / Front Inform Technol Electron Eng in press

Percentage of mode value’s occurrence. The mode
for new measures is 22.79 which occurs three times
in the second column of Table 38. The percentage
value 75 means that 75% values are the same for the
JCJNM, JCRR and JCJNMRR similarity measures.

Table 38 Statistics of Number of Clusters Based on
Table 37
Measure Type Min Max Mean Std Mode Percentage
New 15.21 22.79 20.90 3.28 22.79 75%
Existing 12.96 22.75 16.97 4.19 #N/A 0%

5.3 Authoritativeness

The automated result is required to approxi-
mate the decomposition prepared by a human ex-
pert (an authority). For this purpose we use Mo-
JoFM to compare the automated results with the
expert decompositions. The MoJoFM values for the
series of experiments are given in Table 39. This
table shows the maximum MoJoFM values selected
during the iterations of the clustering process for all
similarity measures and test software systems. The
bold face values indicate the better values for a test
system/method. The values enclosed in parenthe-
ses indicate best values in the Table 39. The aver-
age values for each similarity measure is shown in
the second last column of Table 39, while the last
column presents the average for new measures and
existing measures and are based on the average val-
ues given in the second last column. As can be seen
from Table 39, in most of the cases our new mea-
sures outperform the existing ones. This is because
in previous Subsections 5.1 and 5.2, we have shown
that our new similarity measures result in a smaller
number of arbitrary decisions and a large number of
clusters. Thus reducing arbitrary decisions and in-
creasing the number of clusters improve the author-
itativeness of the automated results (Naseem et al.,
2013) (Maqbool and Babri, 2007).

It can be easily analyzed that our new measures
produce better results than the existing measures ex-
cept for one test software system, that is, the PLC
software system where results of the JNM measure
using the CL method, is better. As can be seen from
Table 39, for the DDA software system the JNMRR
measure using the CL method results in the high-
est MoJoFM value. For the FES software system,
the JCJNM, JCRR, and JCJNMRR measures using
the CL method produce better results as compared

to all other stratagems. For the Mozilla test system,
the JNMRR similarity measure using the CL method
gives the highest MoJoFM value. For the PEDS soft-
ware system, our new and existing measures perform
equally well. PLC is the only test systems for which
the existing JNM measure using the CL method re-
sults in the highest MoJoFM value. For the PLP
software system, all the existing measures using the
CL method give the highest value, while for SAVT
test software system JNMRR measure using the CL
method and JCJNM and JCRR measures using the
WL method result in the highest MoJoFM values
(67.03%). Lastly, for the Weka software system, the
JCJNM and JCRR measures using the WL method
produce the highest MoJoFM values as compared to
other measures using the CL and SL methods.

As can be seen from the second last column in
Table 39, on average our new measures outperform
the existing measures. The last column of Table 39
shows the average values of the new and existing sim-
ilarity measures, respectively. As can be seen, our
new measures outperform all existing measures us-
ing all linkage methods on all test software systems.
Meanwhile, the CL method results in the highest
MoJoFM value. Hence we can infer that the CL
method produces better results as compared to the
SL method, while the WL method falls in between
these two.

To show results more precisely, Table 40 lists
average values from the second last column of Table
39 for each similarity measure. It can be seen from
Table 40, that for the CL method, the JNMRR mea-
sure results in better MoJoFM values as compared
to other similarity measures. For the SL method,
JCJNMRR measure yields better results, while for
the WL method, the JCJNM and JCRR produce
better results. As can be seen from the second last
column of Table 40, on average, the JCJNMRR pro-
duces better result as compared to all other similarity
measures. This table also provides good evidence to
say that our new measures produce better results as
compared to existing measures for all linkage meth-
ods.

Table 41 lists different statistics based on values
in the second last column of Table 40. It can be seen
that Min, Max, and Mean values for proposed new
measures are higher than the existing measures. It
indicates that in all cases, our new measures produce
better results. These values indicate the superiority

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 21

Table 39 MoJoFM Results for all Similarity Measures
Method Measure DDA FES Mozilla PEDS PLC PLP SAVT Weka Average Average

CL JCJNM 56.25 45.00 63.89 57.14 61.54 (65.67) 65.93 30.45 55.73 (55.94)
JCRR 56.25 45.00 63.89 57.14 61.54 65.67 65.93 30.45 55.73
JNMRR (60.00) 45.00 64.68 57.14 61.54 65.67 (67.03) 30.13 (56.40)
JCJNMRR 57.50 45.00 63.89 57.14 61.54 65.67 65.93 30.45 55.89
JC 56.25 43.00 63.00 57.14 61.00 51.00 54.00 30.45 51.98 52.45
JNM 56.25 43.00 64.00 57.14 (65.00) 60.00 54.00 30.13 53.69
RR 53.75 38.00 62.00 57.14 64.00 55.00 58.00 25.64 51.69

SL JCJNM 53.75 (47.50) 46.03 57.14 63.08 59.70 58.24 22.12 50.95 47.97

JCRR 53.75 (47.50) 46.03 57.14 63.08 59.70 58.24 22.12 50.95
JNMRR 25.00 32.50 35.71 54.29 60.00 38.81 47.25 17.31 38.86
JCJNMRR 53.75 (47.50) 46.03 57.14 64.62 59.70 58.24 22.12 51.14

JC 53.75 35.00 46.00 54.29 55.00 28.00 32.00 23.08 40.89 36.16
JNM 25.00 43.00 36.00 54.29 42.00 28.00 32.00 17.31 34.70
RR 23.75 33.00 36.00 51.43 42.00 28.00 32.00 16.99 32.90

WL JCJNM 56.25 42.50 61.11 57.14 63.08 59.70 (67.03) (32.05) 54.86 53.95

JCRR 56.25 42.50 61.11 57.14 63.08 59.70 (67.03) (32.05) 54.86

JNMRR 50.00 40.00 56.35 54.29 63.08 58.21 63.74 24.68 51.29
JCJNMRR 56.25 42.50 62.30 57.14 63.08 59.70 (67.03) 30.45 54.81
JC 56.25 38.00 61.00 57.14 56.00 46.00 48.00 31.09 49.19 49.40
JNM 50.00 35.00 61.00 54.29 55.00 55.00 53.00 24.68 48.50
RR 52.50 45.00 62.00 54.29 61.00 55.00 51.00 23.40 50.52

of our new measures over existing measures. Stan-
dard deviation (Std) values for both type of measures
indicates that each type has one value that is out of
the range. Meanwhile, the JCJNM and JCRR mea-
sures result in exactly the same values, which can be
seen in Table 40 and Table 41 (column Mode). The
percentage value 50 means that 50% values are the
same, that is, for the JCJNM and JCRR similarity
measures.

Table 40 Average MoJoFM Results for all Similarity
Measures

Measure CL SL WL Average Average
JCJNM 55.73 50.95 54.86 53.85 52.62

JCRR 55.73 50.95 54.86 53.85
JNMRR 56.40 38.86 51.29 48.85
JCJNMRR 55.89 51.14 54.81 53.94

JC 51.98 40.89 49.19 47.35 46.01
JNM 53.69 34.70 48.50 45.63
RR 51.69 32.90 50.52 45.04

Table 41 Statistics for New and Existing Measure
based on Table 40
Measure Type Min Max Mean Std Mode Percentage

New 48.85 53.94 52.62 2.18 53.85 50%
Existing 45.04 47.35 46.01 0.98 #N/A 0%

5.3.1 Significance of the Authoritativeness

In order to show the significance of the authori-
tativeness’ results, the t-test is conducted to show if
there is significant difference between the MoJoFM
values of new measures and the existing measures.
In this case, null hypothesis H

o

is as follows: “There

is no difference between the MoJoFM values of new
measures and the existing measures”.

Table 42 The T-test Values between the MoJoFM
Results of the New and Existing Measures using CL
and SL Method

New Measures Existing Measures CL SL

JCJNM
JC 1.90 2.41
JNM 1.30 4.10
RR 2.79 5.10

JCRR
JC 1.90 2.41
JNM 1.30 4.10
RR 2.79 5.10

JNMRR
JC 2.24 -0.45
JNM 1.64 1.31
RR 3.19 2.39

JCJNMRR
JC 2.01 2.46
JNM 1.42 4.11
RR 2.93 5.12

T-test (with df = 7) is conducted between the
new and existing measures using CL and SL meth-
ods. The t-test results are given in Table 42. This
table clearly indicates that if t > 2.365, then the new
measures have significantly performed better at 95%
confidence level; at this level of confidence, all new
measures are significantly better than RR using the
CL method, and JCJNM, JCRR, and JCJNMRR are
better than all existing measures using SL. Moreover,
JNMRR is significantly better than RR using the SL
method. At 90% confidence level (t > 1.895), all
new measures are significantly better than JC using
the CL method. At 80% confidence level (t > 1.415),
JNMRR and JCJNMRR are significantly better than
JNM using the CL method. Finally, the JCJNM
and JCRR are significantly better than JNM using

une
dite
d



22 Naseem et al. / Front Inform Technol Electron Eng in press

the CL method at 70% confidence level (t > 1.12).
Thus, the new measures produced significantly bet-
ter results at different confidence levels; hence, the
null hypothesis H

o

is rejected.

5.4 Summary of Results

Considering the overall performance of the
similarity measures, our new similarity measures
(JCJNM, JCRR, JNMRR, and JCJNMRR) outper-
form the existing similarity measures (JC, JNM and
RR) using the CL, SL and WL methods with respect
to authoritativeness, number of clusters and arbi-
trary decisions. It can be noticed that for most of
the cases the JCJNM, JCRR, and JCJNMRR mea-
sures yield better results. However, on average the
JNMRR using the CL method results in the high-
est authoritativeness value as shown in Table 39.
The JCJNM and JCRR measures used with the WL
method achieve the second position, and the JCJN-
MRR measure using the SL method is on the third
position. On average, the JCJNMRR measure gives
better authoritativeness for all methods as compared
to all other measures, which can be seen in Table 40.

Experimental results in terms of the number of
clusters reveal that for all test software systems, the
JCJNM, JCRR, JCJNMRR and JC measures using
the CL method yield better results, as can be seen
in Table 36. However, for all methods, the JCJNM
measure performs better as shown in Table 37.

As can be seen from Table 33, the JNMRR mea-
sure using the WL method creates the lowest arbi-
trary decisions for all test software systems, as com-
pared to other stratagems. For all methods, the JN-
MRR and JNM measures produce a less number of
arbitrary decisions, as shown in Table 34.

As compared to the SL and WL methods, the
CL method yield better results for authoritativeness
for all the test software systems, as shown in Table
39. The WL method results in a less number of
arbitrary decisions, as presented in Table 33. The
CL method creates a large number of clusters during
clustering as compared to the WL and SL methods,
which can be seen in Table 36.

5.5 Threats to Validity

The selection of test systems may pose a threat
to a study, since the test system characteristics may
influence the results. To reduce this threat, we se-

lected open and closed source software systems of dif-
ferent sizes (numbers of source lines) having different
application domains. We used 8 test systems devel-
oped in well-known programming languages, that is,
C, C++, and Java. However, more experiments may
be conducted on large-size software systems devel-
oped in other programming languages.

In order to evaluate the results, we used Mo-
JoFM as the external assessment criterion, and used
the number of clusters and the number of arbitrary
decisions as the internal assessment criteria. As Mo-
JoFM requires an expert decomposition prepared by
a human, a threat may exist during the preparation
of expert decomposition due to human biases. How-
ever, we have tried to reduce this threat by selecting
experienced software personnel as experts, who were
also involved in the development of the proprietary
software systems. For Mozilla, expert decomposi-
tion is prepared by the authors of (Godfrey and Lee,
2000) and then updated for the Mozilla 1.3 by the
authors of (Xia and Tzerpos, 2005) and for Weka we
used the decomposition prepared by the actual de-
signers of the systems (Patel et al., 2009). Moreover,
we selected software systems that have been used in
previous studies, with their expert decompositions
(Siddique and Maqbool, 2012) (Muhammad et al.,
2012) (Patel et al., 2009) (Andreopoulos and Tzer-
pos, 2005) (Hussain et al., 2015). Since our main
goal was to integrate the strengths of existing mea-
sures, our choices of internal assessment criteria are
based on that goal. We are aware that there exist a
number of other internal assessment criteria, for ex-
ample, coupling and cohesion that can also be used
to investigate the results.

6 Conclusions

This paper presents the improved binary simi-
larity measures, namely, JCJNM, JCRR, JNMRR,
and JCJNMRR for clustering software systems
for modularization. These measures integrate the
strengths of the following existing binary similar-
ity measures: Jaccard (JC), JaccardNM (JNM), and
Russell&Rao (RR). An example of the existing and
new similarity measures is presented to show how
our new measures integrate strengths of the existing
similarity measures. We present empirical results to
compare the results of the existing and new simi-
larity measures and show the strengths of our new

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 23

measures. The experimental results are obtained us-
ing eight real-world, different test software systems
developed in different programming languages, and
belonging to different domain applications.

The empirical results indicate that our new bi-
nary similarity measures are able to produce better
authoritative results than those of the existing simi-
larity measures. Our new measures reduce the arbi-
trary decisions and increase the number of clusters
during the clustering process. The proposed similar-
ity measures can be applied to test software systems
developed in any programming language, since they
depend only on binary feature vector representation
of data.

It is possible to extend our integration approach
to form new similarity and distance measures using
existing similarity and distance measures for other
clustering application domains.

References

Andreopoulos, Bill, Tzerpos, Vassilios, 2005. Multiple Layer
Clustering of Large Software Systems. Working Con-
ference on Reverse Engineering, p.79–88.

Andritsos, P., Tzerpos, Vassilios, 2005. Information-theoretic
software clustering. IEEE Transactions on Software
Engineering, 31(2):150–165.

Anquetil, Nicolas, Lethbridge, Timothy C, 1999. Experi-
ments with clustering as a software remodularization
method. Working Conference on Reverse Engineering,
p.235–255.

Bauer, Markus, Trifu, M., 2004. Architecture-aware adaptive
clustering of OO systems. European Conference on
Software Maintenance and Reengineering, p.3–14.

Bittencourt, Roberto Almeida, Guerrero, Dalton Dario Serey,
2009. Comparison of Graph Clustering Algorithms for
Recovering Software Architecture Module Views. Euro-
pean Conference on Software Maintenance and Reengi-
neering, p.251–254.

Cheetham, Alan H, Hazel, Joseph E, 1969. Binary (Presence-
Absence) Similarity Coefficents. Journal of Paleontol-
ogy, 43(5):1130–1136.

Choi, Seung-Seok, Sung-Hyuk, Cha, Tappert, Charles C,
2010. A Survey of Binary Similarity and Distance Mea-
sures. Journal of Systemics, Cybernetics & Informatics,
8(1):43–48.

Chong, Chun Yong, Lee, Sai Peck, Ling, Teck Chaw, 2013.
Efficient software clustering technique using an adaptive
and preventive dendrogram cutting approach. Informa-
tion and Software Technology (IST), 55(11):1994–2012.

Cui, Jian Feng, Chae, Heung Seok, 2011. Applying agglom-
erative hierarchical clustering algorithms to component
identification for legacy systems. Information and Soft-
ware Technology (IST), 53(6):601–614.

Davey, J., Burd, Elizabeth, 2000. Evaluating the suitability
of data clustering for software remodularisation. Work-
ing Conference on Reverse Engineering, p.268–276.

Dugerdil, Philippe, Jossi, Sebastien, 2008. reverse-
architecting legacy software based on roles: an indus-
trial experiment. Communications in Computer and
Information Science, 22(Part 2):114–127.

Glorie, Marco, Zaidman, Andy, van Deursen, Arie, Hofland,
Lennart, 2009. Splitting a large software repository
for easing future software evolution-an industrial expe-
rience report. Journal of Software Maintenance and
Evolution: Research and Practice, 21(2):113–141.

Godfrey, Michael W, Lee, Eric HS, 2000. Secrets from the
monster: Extracting MozillaâĂŹs software architecture.
International Symposium on Constructing Software En-
gineering Tools, p.1–10.

Hall, Mathew, Walkinshaw, Neil, McMinn, Phil, 2012. Su-
pervised software modularisation. IEEE International
Conference on Software Maintenance (ICSM), p.472–
481.

Hussain, Ibrar, Khanum, Aasia, Abbasi, Abdul Qudus,
Javed, M Younus, 2015. A Novel Approach for Software
Architecture Recovery Using Particle Swarm Optimiza-
tion. The International Arab Journal of Information
Technology, 12(1):1–10.

Jackson, Donald A, Somers, Keith M, Harvey, Harold H,
1989. Similarity coefficients: measures of co-occurrence
and association or simply measures of occurrence?
American Naturalist, 133(3):436–453.

Jahnke, J.H., 2004. Reverse engineering software architecture
using rough clusters. IEEE Annual Meeting of the
Fuzzy Information, p.4–9 Vol.1.

Kanellopoulos, Yiannis, Antonellis, Panos, Tjortjis, Christos,
Makris, Christos, 2007. k-Attractors: A Clustering
Algorithm for Software Measurement Data Analysis.
IEEE International Conference on Tools with Artificial
Intelligence, p.358–365.

Lakhotia, Arun, 1997. A unified framework for expressing
software subsystem classification techniques. Journal
of Systems and Software, 36(3):211–231.

Lesot, M-J., Rifqi, M., 2009. Similarity measures for binary
and numerical data : a survey. Int. J. Knowledge
Engineering and Soft Data Paradigms, 1(1).

Lung, Chung-Horng, Zaman, Marzia, Nandi, Amit, 2004.
Applications of clustering techniques to software parti-
tioning, recovery and restructuring. Journal of Systems
and Software, 73(2):227–244.

Lutellier, Thibaud, Chollak, Devin, Garcia, Joshua, Tan, Lin,
Rayside, Derek, Medvidovic, Nenad, Kroeger, Robert,
2015. Comparing Software Architecture Recovery Tech-
niques Using Accurate Dependencies. IEEE Inter-
national Conference on Software Engineering (ICSE),
p.69–78.

Maqbool, O., Babri, H. A., 2004. The weighted combined
algorithm: a linkage algorithm for software cluster-
ing. European Conference on Software Maintenance
and Reengineering, p.15-24.

Maqbool, Onaiza, Babri, H.A., 2007. Hierarchical Clustering
for Software Architecture Recovery. IEEE Transactions
on Software Engineering, 33(11):759–780.

Mitchell, Brian S., 2006. Clustering Software Systems to
Identify Subsystem Structures (Technical Report).

Mitchell, Brian S., Mancoridis, Spiros, 2006. On the au-
tomatic modularization of software systems using the
Bunch tool. IEEE Transactions on Software Engineer-
ing, 32(3):193–208.

une
dite
d



24 Naseem et al. / Front Inform Technol Electron Eng in press

Muhammad, Siraj, Maqbool, Onaiza, Abbasi, Abdul Qudus,
2012. Evaluating relationship categories for cluster-
ing object-oriented software systems. IET Software,
6(3):260.

Naseem, Rashid, Maqbool, Onaiza, Muhammad, Siraj, 2010.
An Improved Similarity Measure for Binary Features
in Software Clustering. International Conference on
Computational Intelligence, Modelling and Simulation,
p.111–116.

Naseem, Rashid, Maqbool, Onaiza, Muhammad, Siraj, 2011.
Improved Similarity Measures for Software Clustering.
European Conference on Software Maintenance and
Reengineering, Pakistan, p.45–54.

Naseem, Rashid, Maqbool, Onaiza, Muhammad, Siraj, 2013.
Cooperative clustering for software modularization.
Journal of Systems and Software (JSS), 86(8):2045–
2062.

Patel, Chiragkumar, Hamou-Lhadj, Abdelwahab, Rilling,
Juergen, 2009. Software Clustering Using Dynamic
Analysis and Static Dependencies. 2009 13th European
Conference on Software Maintenance and Reengineer-
ing, p.27–36.

Praditwong, Kata, 2011. Solving software module cluster-
ing problem by evolutionary algorithms. International
Joint Conference on Computer Science and Software
Engineering (JCSSE), p.154–159.

Praditwong, Kata, Harman, Mark, Yao, Xin, 2011. Soft-
ware Module Clustering as a Multi-Objective Search
Problem. IEEE Transactions on Software Engineering
(TSE), 37(2):264–282.

Saeed, M., Maqbool, Onaiza, Babri, H.A., Hassan, S.Z., Sar-
war, S.M., 2003. Software clustering techniques and
the use of combined algorithm. Seventh European
Conference on Software Maintenance and Reengineer-
ing, p.301–306.

Sartipi, Kamran, Kontogiannis, Kostas, 2003. On modeling
software architecture recovery as graph matching. Inter-
national Conference on Software Maintenance, p.224–
234.

Shah, Zubair, Naseem, Rashid, Orgun, MehmetA., Mah-
mood, Abdun Naser, Shahzad, Sara, 2013. Software
Clustering Using Automated Feature Subset Selection.
International Conference on Advanced Data Mining and
Applications, 8347:47–58.

Shtern, Mark, Tzerpos, Vassilios, 2010. On the Comparabil-
ity of Software Clustering Algorithms. 2010 IEEE 18th
International Conference on Program Comprehension,
p.64–67.

Shtern, Mark, Tzerpos, Vassilios, 2012. Clustering Method-
ologies for Software Engineering. Advances in Software
Engineering (ASE), 2012:1–18.

Shtern, Mark, Tzerpos, Vassilios, 2014. Methods for selecting
and improving software clustering algorithms. Software:
Practice and Experience, 44(1):33–46.

Siddique, Faiza, Maqbool, Onaiza, 2012. Enhancing compre-
hensibility of software clustering results. IET Software,
6(4):283.

Synytskyy, N., Holt, Richard C., Davis, I., 2005. Browsing
Software Architectures With LSEdit. International
Workshop on Program Comprehension, p.176–178.

Tonella, Paolo, 2001. Concept analysis for module restruc-
turing. IEEE Transactions on Software Engineering,
27(4):351–363.

Tzerpos, Vassilios, 2003. An optimal algorithm for MoJo
distance. IEEE International Workshop on Program
Comprehension, p.227–235.

Tzerpos, Vassilios, Holt, Richard C., 1999. MoJo: a distance
metric for software clusterings. Working Conference on
Reverse Engineering, p.187–193.

Tzerpos, Vassilios, Holt, Richard C., 2000. On the stability of
software clustering algorithms. International Workshop
on Program Comprehension, p.211–218.

Vasconcelos, Aline, Werner, Claudia, 2007. Architecture re-
covery and evaluation aiming at program understanding
and reuse. Software Architectures, Components, and
Applications, p.72–89.

Veal, Benjamin WG, 2011. Binary similarity measures and
their applications in machine learning. PhD thesis, Lon-
don, United Kingdom: London School of Economics.

Wang, Yuxin, Liu, Ping, Guo, He, Li, Han, Chen, Xin, 2010.
Improved Hierarchical Clustering Algorithm for Soft-
ware Architecture Recovery. International Conference
on Intelligent Computing and Cognitive Informatics,
p.247–250.

Wen, Zhihua, Tzerpos, Vassilios, 2004. An effectiveness
measure for software clustering algorithms. Proceed-
ings. 12th IEEE International Workshop on Program
Comprehension, 2004., p.194–203.

Wiggerts, T.A., 1997. Using clustering algorithms in legacy
systems remodularization. Working Conference on Re-
verse Engineering, p.33–43.

Wu, Jingwei, Hassan, A.E., Holt, Richard C., 2005. Compar-
ison of clustering algorithms in the context of software
evolution. IEEE International Conference on Software
Maintenance, p.525–535.

Xanthos, Spiros, Goodwin, North, 2006. Clustering Object-
Oriented Software Systems using Spectral Graph Parti-
tioning. Urbana, 51(1):1–5.

Xia, Chenchen, Tzerpos, Vassilios, 2005. Software Clustering
Based on Dynamic Dependencies. European Conference
on Software Maintenance and Reengineering, p.124–133.

Appendix

A Propositions for JCRR

Proposition A.1 Let the range of JCRR be z,
then

JCRR(Ei,Ej) =

8
>><

>>:

z = 2, if a = P

0 < z < 2, if 0 < a < P

z = 0, if a = 0

Proof. As JCRR is the combined function of four
quantities a, b, c, and d, as shown in Equation 12.
Substituting value of s = a + b + c.

JCRR(Ei,Ej) =
a(2(a+ b+ c) + d)

(a+ b+ c)((a+ b+ c) + d)
(15)

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 25

If all features are present in feature vectors of
Ei and Ej, that is, b = c = d = 0, and a = P, then
above equation reduces to

JCRR(Ei,Ej) =
a(2(a))

(a)((a))
= 2 (16)

Therefore, the maximum similarity value that
JCRR can create is 2
Now,
if no common feature is present in feature vectors of
Ei and Ej, that is, a = 0 and b + c + d � 0, then
Equation 15 reduces to

JCRR(Ei,Ej) =
0(2(0 + b+ c) + d)

(0 + b+ c)((0 + b+ c) + d)
= 0

(17)
Thus the minimum similarity value that JCRR can
create is 0.

Lastly, if there exist some common and absent
features in feature vectors of Ei and Ej, that is, if a =

x and b = c = d = y, where x, y > 0, then Equation
12 reduces to

JCRR(Ei,Ej) =
x(2(x+ y + y) + y)

(x+ y + y)((x+ y + y) + y)

Above equation simplifies to

JCRR(Ei,Ej) =
2x2 + 5xy

x2 + 5xy + 6y2
(18)

Equation 18 results in between 0 and 2, if x,
y>0, 8 Ei, Ej 2 F.

Proposition A.2 JCRR satisfies Definition 2.1
given in Section 2.2, which states that the domain
of a binary similarity measure is {0,1}p and range is
R+.

Proof. JCRR is the combined function of four quan-
tities a, b, c, and d, and all these quantities can be
calculated only using binary values in feature vector
of entities as defined in Section 2.2. Hence, the do-
main of JCRR measure is {0,1}p. Meanwhile, JCRR
results in a real value, that is, R+ as proved in Propo-
sition A.1.

JCRR(Ei,Ej) =

(
z > 0, if a � 1

z = 0, otherwise

Proposition A.3 JCJNM fulfills the properties of
Positivity and Symmetry of a similarity measure.

Proof. Positivity: It has been shown in the proof of
Proposition A.1, that JCRR creates similarity value
equal to or greater than 0, that is, JCRR(Ei,Ej) !
R+, 8 Ei, Ej 2 F.

Symmetry: It is obvious that

JCRR(Ei,Ej) = JCRR(Ej,Ei)

Proposition A.4 JCRR fulfills the property of
Maximality of a similarity measure.

Proof. Let us suppose that b + c = x and x is a
positive number; then Equation 12 of JCRR becomes

JCRR(Ei,Ej) =
a(2(a+ x) + d)

(a+ x)((a+ x) + d)

The above equation simplifies to

JCRR(Ei,Ej) =
a(2a+ 2x+ d)

a(a+ d+ 2x) + dx+ x2
(19)

To calculate similarity of an entity with itself,
that is, JCRR(Ei,Ei) then it is sure that x = 0, a, d

� 0. Using these quantities, Equation 19 of JCRR
reduces to:

JCRR(Ei,Ei) =
a(2a+ d)

a(a+ d)
(20)

Therefore, using Equations 20 and 19, 8 Ei, Ej
2 F, the following association will always be true for
any values of a, d, and x, where a + d + x = P:

a(2a+ d)

a(a+ d)
� a(2a+ 2x+ d)

a(a+ d+ 2x) + dx+ x2

B Propositions for JNMRR

Proposition B.1 Let the range of JNMRR be z,
then

JNMRR(Ei,Ej) =

8
>><

>>:

z = 1.5, if a = P

0 < z < 1.5, if 0 < a < P

z = 0, if a = 0

une
dite
d



26 Naseem et al. / Front Inform Technol Electron Eng in press

Proof. As JNMRR is the combined function of four
quantities a, b, c, and d, as shown in Equation 13,
substituting value of s = a + b + c.

=
a(3(a+ b+ c) + 2d)

(2(a+ b+ c) + d)((a+ b+ c) + d)
(21)

If all features are present in feature vectors of Ei
and Ej, that is, b = c = d = 0, and a = P, then the
above equation reduces to

JNMRR(Ei,Ej) =
a(3(a))

2(a)((a))
= 1.5 (22)

Therefore, the maximum similarity value that
JNMRR can create is 1.5
Now,
if no common feature is present in feature vectors of
Ei and Ej, that is, a = 0 and b + c + d � 0, then
Equation 21 reduces to

=
0(3(0 + b+ c) + 2d)

(2(0 + b+ c) + d)((0 + b+ c) + d)
= 0 (23)

Thus the minimum similarity value that JNMRR
can create is 0.

Lastly, if there exist some common and absent
features in feature vectors of Ei and Ej, that is, if a =

x and b = c = d = y, where x, y > 0, then Equation
12 reduces to

=
x(3(x+ y + y) + 2y)

(2(x+ y + y) + y)((x+ y + y) + y)

The above equation simplifies to

JNMRR(Ei,Ej) =
3x2 + 8xy

2x2 + 11xy + 15y2
(24)

Equation 24 results in between 0 and 1.5, if x,
y>0, 8 Ei, Ej 2 F.

Proposition B.2 JNMRR satisfies Definition 2.1
given in Section 2.2, which states that domain of a
binary similarity measure is {0,1}p and range is R+.

Proof. JNMRR is the combined function of four
quantities a, b, c, and d, and all these quantities
can be calculated only using binary values in feature
vector of entities as defined in Section 2.2. Hence,
the domain of JNMRR measure is {0,1}p. Mean-
while, JNMRR results in a real value, that is, z =
R+ as proved in Proposition B.1.

JNMRR(Ei,Ej) =

(
z > 0, if a � 1

z = 0, otherwise

Proposition B.3 JNMRR fulfills the properties of
Positivity and Symmetry of a similarity measure.

Proof. Positivity: It has been shown in the proof
of Proposition B.1, that JNMRR creates similar-
ity value equal to or greater than 0, that is, JN-
MRR(Ei,Ej) ! R+, 8 Ei, Ej 2 F.

Symmetry: It is obvious that

JNMRR(Ei,Ej) = JNMRR(Ej,Ei)

Proposition B.4 JNMRR fulfills the Maximality
property of a similarity measure.

Proof. Let us suppose that b + c = x and x is a pos-
itive number, then Equation 12 of JNMRR becomes

JNMRR(Ei,Ej) =
a(3(a+ x) + 2d)

(2(a+ x) + d)((a+ x) + d)

The above equation simplifies to

JNMRR(Ei,Ej) =
a(3a+ 3x+ 2d)

a(2a+ 3d+ 4x) + d2 + 3dx+ 2x2

(25)
To calculate the similarity of an entity with it-

self, that is, JNMRR(Ei,Ei) then it is sure that x =

0, a, d � 0. Using these quantities, Equation 25 of
JNMRR reduces to:

JNMRR(Ei,Ei) =
a(3a+ 2d)

a(2a+ 3d) + d2
(26)

Therefore, using Equations 26 and 25, 8 Ei, Ej
2 F, the following association will always be true for
any values of a, d, and x, where a + d + x = P:

a(3a+ 2d)

a(2a+ 3d) + d2
� a(3a+ 3x+ 2d)

a(2a+ 3d+ 4x) + d2 + 3dx+ 2x2

C Propositions for JCJNMRR

Proposition C.1 Let the range of JCJNMRR be
z, then

JCJNMRR(Ei,Ej) =

8
>><

>>:

z = 2.5, if a = P

0 < z < 2.5, if 0 < a < P

z = 0, if a = 0

une
dite
d



Naseem et al. / Front Inform Technol Electron Eng in press 27

Proof. As JCJNMRR is the combined function of
four quantities a, b, c, and d, as shown in Equation
14, substituting value of s = a + b + c.

=
a(5(a+ b+ c)2 + 5(a+ b+ c)d+ d2)

(a+ b+ c)(2(a+ b+ c)2 + 3(a+ b+ c)d+ d2)
(27)

If all features are present in feature vectors of Ei
and Ej, that is, b = c = d = 0, and a = P, then the
above equation reduces to

JCJNMRR(Ei,Ej) =
a(5(a2))

(a)(2a2)
= 2.5 (28)

Therefore, the maximum similarity value that
JCJNMRR can create is 2.5
Now,
if no common feature is present in feature vectors of
Ei and Ej, that is, a = 0 and b + c + d � 0, then
Equation 27 reduces to

=
0(5(0 + b+ c)2 + 5(0 + b+ c)d+ d2)

(0 + b+ c)(2(0 + b+ c)2 + 3(0 + b+ c)d+ d2)
= 0

(29)
Thus the minimum similarity value that JCJNMRR
can create is 0.

Lastly, if there exist some common and absent
features in feature vectors of Ei and Ej, that is, if a =

x and b = c = d = y, where x, y > 0, then Equation
12 reduces to

=
x(5(x+ y + y)2 + 5(x+ y + y)y + y2)

(x+ y + y)(2(x+ y + y)2 + 3(x+ y + y)y + y2)

The above equation simplifies to

=
5x3 + 25x2y + 31xy2

2x3 + 15x2y + 37xy2 + 30y3
(30)

Equation 30 results in between 0 and 2.5, if x,
y>0, 8 Ei, Ej 2 F.

Proposition C.2 JCJNMRR satisfies Definition
2.1 given in Section 2.2, which states that domain
of a binary similarity measure is {0,1}p and range is
R+.

Proof. JCJNMRR is the combined function of four
quantities a, b, c, and d, and all these quantities
can be calculated only using binary values in feature
vector of entities as defined in Section 2.2. Hence, the
domain of JCJNMRR measure is {0,1}p. Meanwhile,

JCJNMRR results in a real value, that is, z = R+ as
proved in Proposition C.1.

JCJNMRR(Ei,Ej) =

(
z > 0, if a � 1

z = 0, otherwise

Proposition C.3 JCJNMRR fulfills the proper-
ties of Positivity and Symmetry of a similarity mea-
sure.

Proof. Positivity: It has been shown in the proof
of Proposition C.1, that JCJNMRR creates similar-
ity value equal to or greater than 0, that is, JCJN-
MRR(Ei,Ej) ! R+, 8 Ei, Ej 2 F.

Symmetry: It is obvious that

JCJNMRR(Ei,Ej) = JCJNMRR(Ej,Ei)

Proposition C.4 JCJNMRR fulfills the Maximal-
ity property of a similarity measure.

Proof. Let us suppose that b + c = x and x is a
positive number, then the Equation 12 of JCJNMRR
becomes

=
a(5(a+ x)2 + 5(a+ x)d+ d2)

(a+ x)(2(a+ x)2 + 3(a+ x)d+ d2)
(31)

To calculate the similarity of an entity with it-
self, that is, JCJNMRR(Ei,Ei), then it is sure that x

= 0, a, d � 0. Using these quantities, Equation 31
of JCJNMRR reduces to:

JCJNMRR(Ei,Ei) =
a(5(a)2 + 5(a)d+ d2)

(a)(2(a)2 + 3(a)d+ d2)

The above equation simplifies to

JCJNMRR(Ei,Ei) =
5a2 + 5ad+ d2

2a2 + 3ad+ d2
(32)

Therefore, using Equations 32 and 31, 8 Ei, Ej
2 F, the following association will always be true for
any values of a, d, and x, where a + d + x = P:

5a2 + 5ad+ d2

2a2 + 3ad+ d2
� a(5(a+ x)2 + 5(a+ x)d+ d2)

(a+ x)(2(a+ x)2 + 3(a+ x)d+ d2)

une
dite
d


