
 

An Evaluation of EpiChord in OverSim 

Jamie Furness, Farida Chowdhury, Mario Kolberg 
 

Computing Science and Mathematics,  
Universty of Stirling, Stirling, Scotland 
{jrf,fch,mko}@cs.stir.ac.uk 

Abstract. EpiChord is a Distributed Hash Table (DHT) algorithm which supports 
data storage/retrieval in large scale distributed systems. It removes the typical 
O(logn)-state-per-node restriction imposed by the majority of other DHT 
topologies by employing a reactive routing state maintenance strategy that 
amortizes network maintenance costs into lookup queries. Under ideal condition, 
EpiChord’s lookup performance can approach O(1) hops - with maintenance 
costs comparable to traditional multi-hop DHTs. This paper presents an 
implementation of EpiChord in OverSim, and validates the performance of our 
model against the performance reported in the original EpiChord paper. We also 
present some adjustments to the algorithm to remove a discrepancy and then 
compare our modified results with the original ones. Finally, we present 
additional results showing the EpiChord algorithm is stable over time and 
performs well for larger networks. 

1   Introduction 
Distributed Hash Tables (DHTs) [2] supported Peer-to-Peer (P2P) applications are an 
ideal substrate for building large scale distributed systems because they are self-
organizing, adaptable and scalable and offer efficient routing between nodes within a 
bounded number of hops. EpiChord [1] is a DHT lookup algorithm which demonstrates 
that node state restrictions can be relaxed which were imposed by the majority of other 
DHT algorithms by using a reactive routing state maintenance strategy. Nodes 
piggyback additional network information on lookup queries to keep their routing state 
up-to-date. This makes EpiChord ideally suited to large scale environments. This paper 
discusses an implementation [24] of EpiChord within the OverSim Simulator [3]. The 
model is validated against the original EpiChord paper. Specifically, the contributions 
of the paper are as follows: 
 An independent evaluation of EpiChord, by comparing results from our simulation 

model to the results presented in the original EpiChord paper.  
 Performance evaluation in multiple scenarios, defined in the original paper, which 

test both the routing and maintenance algorithms of the model.  
 Amendments to the original model together with a comparison of the results 

obtained from our model against the corrected results from the original model.  
 Performance evaluation of EpiChord in larger networks and for longer simulations.  
 A freely available EpiChord model in OverSim. 
 A review of available simulators.  
The original implementation of EpiChord was a model for the SSFNet simulation 
framework [4] which is not publicly available. The authors are not aware of other 
EpiChord models which are publicly available. In other work [5] we have validated the 
models for both Chord and Pastry in OverSim. 
The remainder of the paper is structured as follows: Section 2 discusses related work, 
Section 3 provides an overview of the EpiChord DHT algorithm, Section 4 compares 



 

network simulators, Section 5 discusses implementation details of the EpiChord model 
in OverSim, Section 6 presents an evaluation of results after changes to the original 
EpiChord model. Section 7 presents validating results from our EpiChord model as 
well as results demonstrating EpiChord’s scalability. Section 8 concludes this paper. 

2 Related Work 

A large number of multi-hop structured Peer-to-Peer (P2P) algorithms have been 
proposed [2].  These algorithms are characterized by O(log N) hop count. Because each 
overlay hop translates to potentially many hops in the underlying network, multi-hop 
overlays have a relatively poor latency characteristic for connecting large numbers of 
peers. Consequently, systems have been developed to trade-off latency for larger 
routing tables. However these designs lead to increased network traffic for managing 
the larger routing tables. Thus efficient overlay maintenance in O(1)-hop (one-hop) 
overlays is an important research question. Two techniques have emerged [2] for 
maintaining routing tables in overlays: active stabilization where peers have fixed 
communication to maintain a target routing table accuracy, and opportunistic updating 
where routing table maintenance depends on lookup load and available bandwidth. 

An example active stabilization algorithm is EDRA (Event Detection and Reporting 
Algorithm) used in the D1HT one-hop overlay [8]. EDRA has been proposed to give 
reasonable message rate for high levels of routing table accuracy.  For example, D1HT 
has up to an order magnitude lower maintenance bandwidth usage compared to the 
OneHop [10], another active stabilization one-hop overlay. EDRA* [11] offers some 
improvements over EDRA. Examples of opportunistic overlay maintenance include 
EpiChord [1] (used in this paper) and Accordion [9]. 

Kelips [7] is a O(1)-hop overlay which uses an epidemic multicast protocol for 
exchanging overlay membership and other soft state between nodes. Such a protocol 
consists of two sub-protocols: a multicast data dissemination protocol and a gossip 
protocol to exchange message history for reliability purposes.  

Accordion [9] is a variable hop overlay, in which a peer limits its routing table 
update message level based on its available bandwidth. During periods of low 
bandwidth, routing table accuracy can approach that of multi-hop overlays while for 
higher bandwidth, routing table accuracy reaches one-hop.  Accordion uses recursive 
parallel lookups so as to maintain fresh routing table entries in its neighborhood of the 
overlay and reduce the probability of timeout. Note that recursive parallel lookups 
create more load on the target peer compared to iterative parallel lookups. 

3 EpiChord Background 

EpiChord [1] is a DHT algorithm which can achieve one-hop lookup performance 
under lookup intensive workloads, and at worst case O(log2(N)) hop, as offered in 
many multi-hop networks. As the name suggests, EpiChord is based on the Chord DHT 
[6]. Like Chord, EpiChord is organized in a one-dimensional circular address space 
where each node is assigned a unique node identifier. The node responsible for a key is 
the node whose identifier most closely follows the key. In addition to maintaining a list 
of k succeeding nodes, EpiChord also maintains a list of the k preceding nodes. Instead 
of maintaining a finger table, as in Chord, EpiChord maintains a cache of nodes. Nodes 



 

update their cache by observing lookup traffic, and add an entry anytime they learn of a 
node not already in the cache. Nodes in the cache each have a timeout, resulting in stale 
nodes being removed.  

In general terms EpiChord can be thought of as Chord with a cache of extra node 
addresses. As such the routing algorithm is similar to that in Chord. With a well 
populated cache this results in lookup performance of one hop. Under high churn the 
performance drops to that of Chord, O(log2(N)) hops in the worst case. 

3.1   Lookup Algorithm 

EpiChord uses an iterative lookup algorithm, as it avoids sending redundant queries 
when using parallel requests. It also allows the querying node to receive all information 
related to the query path, and hence updates its cache with new entries. To lookup a 
data item with the key id, a node will initiate p queries in parallel - to the node 
immediate succeeding id and to the p-1 nodes preceding id. When queried, a node will 
respond as follows (l and p are both system parameters): 
 If it owns id, it will return the value associated with id, and information on its 

predecessor and successor. 
 If it is a predecessor of id relative to the querying node, it will provide information 

about its successor and the l best next hops towards the destination. 
 If it is a successor of id relative to the querying node, it will provide information on 

its predecessor and the l best next hops towards the destination. 
When a reply is received, further queries are dispatched in parallel if the querying node 
learns about any node closer to the target id than the best successor and predecessor 
nodes that have already responded. 

3.2   Cache Invariant  

To guarantee worst case lookup performance of 
O(log2(N)) each node divides the address space into 
two sets of exponentially smaller slices, as seen in 
Fig. 1. Each node maintains their cache such that 
every slice contains at least ௝

ଵିఊ
 cache entries at all 

times, where j is a network parameter and γ is a 
local estimate of the probability that a cache entry is 
out-of-date. Nodes periodically check their cache 
slices to ensure that there are sufficient unexpired 
cache entries. To calculate γ, each node keeps track 
of np, the number of messages sent, and nt, the 
number of messages which timed out. γ is calculated 
using nt / np. In addition, np and nt are periodically 

(when the cache is flushed) multiplied by a network parameter δ to obtain 
exponentially weighted moving averages. 

  Fig. 1. Example of slicing of    
              address space for N8. 



 

3.3 Routing Table Updates 

Each node periodically probes their immediate neighbours to ensure that they are still 
alive. The delay between these stabilization attempts is calculated based on the 
observed lifetime of nodes in the finger cache. For this reason the finger cache also 
contains a map of dead nodes, and the observed lifetime is calculated by taking the 
time between first learning of the node (sstart) until learning of its death (send). The 
observed lifetime for each dead node is averaged, and the obtained estimate is then 
multiplied by the lifetime estimate multiplier, ω, to calculate when the next 
stabilization attempt should be scheduled. 

ݏ                                            = ∑ ௦೐೙೏ିୱೞ೟ೌೝ೟
௡

∙ 	߱                                                    (1) 
In case where the sample size, n, is less than 5, the stabilization interval is simply set to 
the network parameter s. 

With active propagation, nodes will inform their neighbours of any detected 
changes in the successor or predecessor lists as soon as they happen, rather than 
waiting for the next stabilization attempt. This increases the maintenance bandwidth 
when under high churn, however also results in more accurate successor and 
predecessor lists, and hence fewer false-negatives. 

If a node has an outdated view of the local key space that they are responsible for, 
they may fail to respond correctly to all queries. By including their believed 
predecessor and successor in the query response, the querying node can either make a 
step towards the destination or, if the believed predecessor does not respond, determine 
that the responsible node is dead. This false-negative detection allows the querying 
node to resolve the lookup correctly. If a false-negative is detected, the querying node 
will immediately inform the new responsible node that their predecessor has failed and 
now they should be responsible for the requested key. 

4   Review of Simulators 

Before deciding on OverSim, a detailed review of other available and active P2P 
network simulators was carried out. A summary of these tools is provided in Table 1.  
      PeerSim [6] is written in Java. Its main focus is to provide high scalability and can 
handle a network of up to 106 nodes. However, this scalability comes at the cost of not 
including a model of the behavior of the underlying communication network, e.g. 
TCP/IP stack and latencies. P2PSim [13] is a discrete event simulator for P2P overlays 
written in C++. It supports Chord, Accordion, Koorde, Kelips, Tapestry, and Kademlia. 
However, these implementations are specific to P2PSim and do not model all features 
of the protocols. P2PSim has been simulated with up to 3,000 nodes using the Chord 
implementation. This simulator is largely undocumented and therefore hard to extend. 
     Overlay Weaver [14] is a toolkit for P2P Overlays written in Java. It has been tested 
with tens of thousands of nodes (their website quotes 300,000). Chord, Kademlia, 
Pastry, Tapestry and Koorde are available. The simulations have to be run in real-time 
environments and there is no statistical output which makes its use very limited. 
PlanetSim [14] is a discrete event simulation framework for both structured and 
unstructured overlays, written in Java. It has a modular, well-structured architecture 
and services can be re-used for other overlays. Chord and Symphony models exist and 
can consist of up to 100,000 nodes. However, it provides rather limited support to 



 

collect statistics. It also has a very simplified underlying network layer without any 
consideration of bandwidth and latency costs. 
 
Table 1.  A comparison of available active P2P simulators. 

Simulator P2P Protocols       Network size Language 
PeerSim 

 
P2PSim 

 
Overlay 
Weaver 

PlanetSim 
NS2 

SSFNet 
OverSim 

 
PeerfactSim.Kom 

 
D-P2P-Sim+ 

Collection of internally 
developed P2P models 
Chord, Accordian, Koorde, 

Kelips, Tapestry, Kademlia 
Chord, Kademlia, Koorde, 

Pastry, Tapestry and FRT-Chord 
Chord, Symphony 

Gnutella 
Chord, EpiChord 

Chord, Kademlia, Pastry, 
Bamboo, Broose, Gia 

CAN, Chord, Kademlia, Gia, C-
DHT, Gnutella 0.4/0.6, Pastry  

Chord 

>106 
 

3000 
 

Tens of 
thousand 

100,000 
N/A 

33,000 
100,000 

 
50,000 

 
400,000 

Java 
 

C++ 
 

Java 
 

Java 
C++/OTcl 

Java/C++/DML 
C++ 

 
Java 

 
Java 

 

NS2 [16] is a discrete-event simulator that provides substantial support for 
simulation of lower layer protocols. Only one P2P protocol, Gnutella, is available in 
NS2. Simulations in NS2 are constructed using C++ and OTcl. It is mostly used for 
small networks and is generally unsuitable for large scale P2P overlay networks. 

SSFNet [4] is a discrete-event simulation framework written in Java and C++. This 
framework is built on the Scalable Simulation Framework (SSF) and uses the Domain 
Modelling Language (DML) to configure networks. Chord and EpiChord have been 
implemented in SSFNet. There is a claim that SSFNet manages to run models with 
33,000 nodes, however, the authors of the original EpiChord paper [1] and ourselves 
could not simulate networks with more than 10k nodes. 

OverSim [1] is an open-source P2P simulation framework for the OMNeT++ 
simulation environment. It provides a generic lookup mechanism and an RPC interface 
to facilitate additional protocol implementations. It allows large-scale simulations of 
simplified networks as well as complex heterogeneous underlay networks. Several P2P 
algorithms such as Chord, Kademlia, Bamboo, Broose, Koorde, NICE, NTree, Pastry, 
and GIA have been implemented in OverSim. Models can scale to over 100,000 nodes. 
More comprehensive surveys of P2P network simulators can be found in [19,20].  

PeerfactSim.Kom [17] is a discrete event based P2P simulator environment. Its 
focus is on being extendable and on large scale network models. This simulator offers 
the potential to model different types of peer-to-peer systems including distributed 
CDNs, streaming applications and overlay systems. It comes with a built-in churn 
generator. The simulator includes models of lower layers but does not yet include TCP. 

D-P2P-Sim+[18] is a distributed simulation environment which employs multi-
threading, asynchronous message passing and distributed environment with graphical 
user interface. There is little information on this simulator besides a short paper and 
poster. These report simulated network sizes of up to 400,000 nodes. It seems the only 
implemented overlay algorithm is Chord. However, the system is extendible and other 
algorithms could be implemented. Multiple computers running the simulator may be 
interconnected to achieve larger simulated network sizes. 

Based on this study OverSim was selected for our experimentation due to its 
flexibility with respect to underlay characteristics and possible high scalability. 



 

5   Oversim Implementation 

OverSim [3] is designed as a modular simulation framework, with many common 
overlay features implemented as part of a generic base overlay class. OverSim provides 
message passing using Remote Procedure Calls (RPC), and supports both iterative and 
recursive routing. Applications within OverSim are split into multiple tiers, allowing an 
application to sit on-top of another application. These applications are implemented as 
modules and interface with overlays through the Key-Based Routing (KBR) API [21], 
which represents basic capabilities common to all structured overlays. As mentioned 

above, OverSim provides a number of different 
network models, for both structured and 
unstructured overlays. The OverSim architecture 
is illustrated in Fig. 2. 
   At the lower layer OverSim provides multiple 
underlay models to allow for inclusion of specific 
underlay characteristics in the simulation (at a 
cost of scalability), or underlay abstraction for 
increased scalability. Using the simple model, 
data packets are sent directly from one node to 
another by using a global routing table. The INET 
underlay model includes simulation models for 
all network layers. The single host underlay 
allows for simulation of a single node, connected 
to other OverSim instances over a real network. 

      Below we discuss some alterations which we 
made to the original EpiChord protocol when implementing it as an OverSim module. 

5.1   Node Join Protocol 

In the original EpiChord algorithm, upon receipt of a join request a node will instantly 
update their predecessor list and finger cache to include the joining node. In our 
implementation we found this was occasionally causing messages to be routed to nodes 
who are still in the process of joining, and not yet ready to correctly handle requests. 
To solve this issue we implemented a three-way handshake. In our implementation the 
joining node will send a final acknowledgment when they are ready to handle requests, 
indicating they can now be safely added as a predecessor. 

5.2   Lookup Algorithm 

The OverSim framework provides modules for iterative and recursive routing, as can 
be seen in Fig. 2, with support for parallelism. While this makes implementation of 
many overlays easier and reduces duplicated code, only certain parts of the module can 
be easily overridden. This was a problem for EpiChord, primarily due to the non-linear 
order in which nodes are to be queried, and EpiChord’s ability to check for false 
negative responses. To implement these features we had to make changes to the 
iterative routing module, allowing us to override additional parts of the module with 
code specific to EpiChord. 

    Fig. 2. Oversim architecture  



 

6   Results - Changes to the Original Model 
6.1   Application layer Lookups 
In the original EpiChord model all lookup types (JOIN, MAINTENANCE, and 
APPLICATION) are included when calculating results. The KBRTestApp in OverSim 
only includes lookups it has initiated (APPLICATION) in the results. We feel this is 
actually a more useful metric for anyone wishing to build on-top of EpiChord, so we 
instead recalculated the results from the original model using only APPLICATION 
lookups. A comparison of the average path lengths can be seen in Fig. 3; the other 
metrics remained unchanged.  

 
Fig. 3. Comparison of average path length with APPLICATION lookups only vs. all lookup.  

In [22], authors proposed two generic classes of workloads: lookup intensive and churn 
intensive. These metrics were adopted by the EpiChord authors for experimentation. 
For the purposes of validating our model, we also adopt these two metrics. In the 
lookup intensive workload, node lifetimes are exponentially distributed with a mean of 
10 minutes, and each node performs lookups on average every 0.5 seconds. In this 
scenario the background maintenance traffic is negligible compared to the active 
lookup rate. In the churn intensive workload, node lifetimes are again exponentially 
distributed with a mean of 10 minutes, however this time each node only performs 
lookups on average every 100 seconds. In this scenario the lookup rate is so low, most 
of the lookups captured are lookups arising from node joins and cache maintenance. 

Fig 3 shows the average path length remains unchanged for the lookup intensive 
workload. This is to be expected, as the lookup intensive workload is dominated by 
APPLICATION lookups. In the churn intensive workload we see a rise in average hop 
count as the network size increases; this is because the result was originally dominated 
by JOIN and MAINTENANCE lookups, which tend to be for closer keys. 

6.2   Fixing p 

In the source of the original model we encountered a minor mistake1, which, in 
many cases, resulted in p+1 parallel requests being generated - rather than the 
supposed maximum of p. Results comparing the average path lengths and success rates 
when p=1 can be seen in Fig. 4.  

From these results we observe a rise in average path length, and a small decline in 
lookup success rate, for both workloads. We also observe a drop in the size of nodes 
cache tables, which increases with the network size. This is to be expected, as fewer 
queries are dispatched and hence fewer new nodes are discovered. 

1When receiving a timeout or negative response, further queries are dispatched while pending <= pmax, 
resulting in pmax+1 pending queries. 



 

 
Fig. 4. Average path length and success rate with fixed p. 

7   OverSim Results 

To match the original scenarios, lookups were performed throughout the entire 
simulation, with measurements taken from the very beginning. OverSim, by default, 
only starts performing lookups and recording measurements once the network has 
reached the desired size, however this is configurable in the settings.  

An overview of the simulation parameters can be found in Table 2. When we refer 
to results from the original model, we refer to the results generated after taking the 
changes in Section 6 into account. All results are averages of 5 simulation runs. 

             Table 2.  OverSim simulation parameters. 
Description Lookup Intensive Churn Intensive 
Lookup Interval 0.5s 100s 
Network Size {600,…..,2000} {600,…..,2000} 
Lifetime Mean 600s 600s 
Stabilize Delay 60s 60s 
Cache TTL 
Cache Flush Delay 
Cache Check Multiplier 
Measurement Time 
Neighbour list size 
Redundant nodes, l 
Parallelism, p 
Required nodes/slice, j 
Lifetime multiplier, ω 
Slice multiplier, δ 

120s 
20s 
3 

3000s 
4 
3 

1,3,5 
2 

0.5 
0.5 

120s 
20s 
3 

3000s 
4 
3 

1,3,5 
2 

0.5 
0.5 

 

7.1   Finger Cache State 

During simulation we measure the average finger cache size for each node, as well 
as the average accuracy of each node’s finger cache. The accuracy is a measure of how 
many nodes in the finger cache are actually still active within the network. 

We observe an average finger cache accuracy of 87% across all network sizes and 
both scenarios - almost identical to that of 87.5% reported in the original paper. 

As expected the finger cache size observed in the lookup intensive workload is 
much larger than that in the churn intensive workload, due to the extra node 
information received within lookup messages. The observed finger cache size for 
varying network sizes under a lookup intensive workload and churn intensive workload 
can be seen in Fig. 5. 



 

  
Fig. 5. Cache composition for p-way EpiChord under lookup intensive and churn intensive workload. 

7.2   Lookup Success Rate 

Every lookup performed can be classified into one of four categories: 

 Success: The node responsible for the requested key responds positively. 
 Failure: No positive response received and no more viable candidates, or reached 

the maximum hop/time limit 
 False-positive: A node has responded positively but is not responsible for the 

requested key. 
 False-negative: A node did not respond positively but should be responsible for 

the requested key. 

By using false-negative detection, described in Section 3.3, nodes can detect and 
handle false-negatives; ultimately they are treated as successful lookups. 

The observed success rate for both lookup intensive and churn intensive workloads 
is shown in Fig. 6. Here we use column diagram to show the success rate for p-way 
parallel queries (p=1,3,5) for different network sizes up to 2000 nodes. 

  
Fig. 6. Comparison of Success Rate for p-way EpiChord for varying network sizes under lookup intensive 
and churn intensive workload. 

As shown in Fig. 6, the lookup success rate is marginally higher for lookup intensive 
workload than for the churn intensive workload. This is expected as under the lookup 
intensive workload, the larger number of lookups helps to keep the routing state up-to-
date whereas for the churn intensive workload, the information propagation rate is 
lower. Increasing parallelism has only a very slight effect on the success rate. It appears 
that the lookup improvement is not worth the extra cost of the parallel lookups. The 
success rates for p=5 is marginally lower than for p=3. This rather counter intuitive 
behavior has also been observed in the original paper and is due to the 5-way network 
generating fewer cache-refreshing lookups than a 3-way EpiChord network.  



 

7.3   Lookup Path Length 

For each successful lookup performed we also measure the path length - the number of 
hops taken to find the final destination. Fig. 7 shows the observed path length for both 
lookup intensive and churn intensive workloads. We observe that in the lookup 
intensive workload, the hop count varies from 1.1 to 1.4 in both 3-way and 5-way 
EpiChord networks, which signifies that each node has almost complete routing table 
information and thus allows passing messages nearly in one hop. On the other hand, the 
hop count varies from 2.8 to 3 under churn intensive workloads with fewer lookups 
which also satisfies the O(log n)-hop lookup performance as depicted in the original 
paper. Again, the results suggest that an increased level of parallelism in the lookups 
only marginally improves the hop count, whereas the increased number of lookups 
issued in the lookup intensive workload has a much more pronounced positive effect. 

 
Fig. 7. Comparison of Lookup Path Length for p-way EpiChord for varying network sizes under Churn 
Intensive and Lookup Intensive workload. 

7.4   Stability and Scalability 

We measured the stability of the EpiChord model in OverSim. Fig. 8(a) shows the 
measurement phase vs. success ratio graph for p=1, 3, 5. In OverSim, during the 
measurement phase, the statistics are collected. Our model has been tested up to 
100,000s and demonstrates that the model is stable after an initial period of between 
10000s (for p=1) and 20000 (for p=3,5). EpiChord also has been tested for scalability 
in terms of network size for scenarios with 5,000 - 20,000 nodes. Fig. 8(b) shows the 
results for lookup success ratio for different network sizes. This set of results means 
that the network size does not affect the success rate of EpiChord. As before, p only 
improves the performance in a rather minor way.  

 
Fig. 8. a) Success Ratio of EpiChord for varying measurement times for p=1,3,5 demonstrating the stability 
of the model; b) Average Success Ratio of EpiChord for networks with 5,000 to 20,000 nodes.  



 

8   Conclusion 
This paper presented our OverSim EpiChord model, and validated it by comparing our 
results against the performance of the original EpiChord model. The results for our 
model closely match those from the original model, supporting the claim that our 
model is a valid implementation of the EpiChord algorithm. We have then presented 
amendments to the model and investigated the effects on the performance of the model. 
Furthermore we have shown that EpiChord and our model in OverSim is stable over an 
extended period of time. We have also demonstrated that EpiChord achieves excellent 
results for larger networks. EpiChord’s performance is strongly influenced by the 
number of lookups issued by the nodes as routing table information is attached to 
lookup return messages. Thus an increased number of lookup message improve the 
performance of the network, whereas an increased level of parallelism only marginally 
improves performance. Due to its excellent lookup performance for large scale 
networks, EpiChord appears well suited to support large distributed environments.   

Separately, we have used this model to simulate the effect of different lookup traffic 
setups, and high node churn to investigate EpiChord’s suitability for use in mobile 
networks [23]. 

References 
1. B. Leong, B. Liskov, and E. D. Demaine. EpiChord: Parallelizing the Chord Lookup 

Algorithm with Reactive Routing State Management. Computer Communications, Elsevier 
Science, Vol. 29, pp. 1243-1259. 

2. K. Dhara, Y. Guo, M. Kolberg, X. Wu, Overview of Structured Peer-to-Peer Overlay 
Algorithms, Handbook of Peer-to-peer Networking, Springer, 2009. 

3. I. Baumgart, B. Heep, S. Krause. OverSim: A Flexible Overlay Network Simulation 
Framework. 10th IEEE Global Internet Symposium (GI ’07), May 2007. 

4. The SSFNet project. Accessed 01-August-2012. [Online]. Available:http://www.ssfnet.org/ 
5. J. Furness, M. Kolberg, Considering complex search techniques in DHTs under churn, in: 

2011 IEEE Consumer Communications and Networking Conference (CCNC), IEEE, 2011. 
6. I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, H. Balakrishnan. Chord: A Scalable 

Peer-to-Peer Lookup Service for Internet Applications. Conf on Applications, technologies, 
architectures, and protocols for computer communications (SIGCOMM ’01), 2001. ACM. 

7. I. Gupta, K. Birman, P. Linga, A. Demers, R. van Renesse. Kelips: Building an efficient and 
stable P2P DHT through increased memory and background overhead.  2nd Intl. Workshop 
on Peer-to-Peer Systems (IPTPS ’03), 2003. 

8. L. Monnerat, C. Amorim. D1HT: A Distributed One Hop Hash Table. 20th IEEE 
International Parallel & Distributed Processing Symposium (IPDPS), April 2006. 

9. J. Li, J. Stribling, R. Morris, M. F. Kaashoek. Bandwidth-efficient management of DHT 
routing tables. Symposium on Networked System Design and Implementation (NSDI) 2005. 

10. A. Gupta, B. Liskov, R. Rodrigues. Efficient routing for peer-to-peer overlays.  1st 
Symposium on Networked Systems Design and Implementation (NSDI), 2004. 

11. J. Buford, A. Brown, M. Kolberg. Analysis of an Active Maintenance Algorithm for an 
O(1)-Hop Overlay. IEEE Globecom 2007. 

12. PeerSim P2P Simulator. Accessed 05-Jan-2013. http://peersim.sourceforge.net. 
13. P2Psim: A Simulator for Peer-to-Peer (P2P) Protocols.  http://pdos.csail.mit.edu/p2psim/ 
14. K. Shudo, Y. Tanaka, S. Sekiguchi. Overlay Weaver: An Overlay Construction Toolkit, 

Computer Communications,Vol.31, Issue2, pp. 402-412 (2007). 
15. PlanetSim: An Overlay Network Simulation Framework.  http://planet.urv.es/planetsim 
16. The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/ 



 

17. D. Stingl, C. Groß, J. Rückert, L. Nobach, S. Kovacevic, R. Steinmetz. PeerfactSim.KOM: 
A Simulation Framework for Peer-to-Peer Systems, Intl. Conf. on High Performance 
Computing & Simulation (HPCS), 2011. 

18. S. Sioutas, K. Tsichlas, G. Papaloukopoulos, Y. Manolopoulos, E. Sakkopoulos. A novel 
Distributed P2P Simulator Architecture: D-P2P-Sim. ACM Intl. Conf. on Information and 
Knowledge Management (CIKM), Hong Kong, 2009 

19. A. Brown and M. Kolberg. Tools for peer-to-peer network simulation. Internet-Draft 
Version 00, IETF, January 2006. 

20. S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai. A Survey of Peer-to-Peer Network 
Simulators. In The Seventh Annual Postgraduate Symposium, Liverpool, UK, 2006. 

21. F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz. Towards a Common API for Structured 
Peer-to-Peer Overlays. Peer-to-Peer Systems II, 2735:33–44, 2003. 

22. J. Li, J. Stribling, F. Kaashoek, R. Morris, and T. Gil. A Performance vs. Cost Framework 
for Evaluating DHT Design Tradeoffs under Churn. In INFOCOM, 2005. 

23. F.Chowdhury, M.Kolberg. An Investigation of EpiChord with high Node Churn. Submitted. 
24. J. Furness, F. Chowdhury, M. Kolberg. EpiChord model for OverSim. 

http://www.cs.stir.ac.uk/~fch/EpiChord_Model/ 


