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Abstract

This paper proposes a methodological improvement to empirical studies of herd be-

havior based on investor transactions. By developing a simple model of trading

behavior, we show that the traditionally used herding measure produces biased re-

sults. As this bias depends on characteristics of the data, it also affects the robustness

of previous findings. We derive a new measure that is unbiased and shows superior

statistical properties for data sets commonly used. In an analysis of the German

mutual fund market, our measure provides new insights into fund manager herding

that would have been undetected under the traditional statistic.
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1 Introduction

It is a commonly held view that investors (particularly in equity markets) have a tendency

to flock together in their trading decisions, thus acting like a herd. This type of behavior

is then typically associated with apparently ‘irrational’ market movements and supposedly

threatens financial market stability. In financial economics, however, herd behavior is less

easy to grasp let alone to evaluate. Theoretical models can explain herd behavior both

with rational decision-making and with behavioral assumptions. A rich empirical literature

therefore analyzes investor behavior and the consequences thereof on financial markets,

aiming to judge whether common wisdom on the destabilizing role of investor herding

holds true. However, the empirical analysis to detect, measure and evaluate herding in

financial markets turns out to be challenging.

The aim of this paper is to evaluate and improve upon the standard methodology of

detecting and measuring herd behavior introduced in Lakonishok, Shleifer, and Vishny

(1992).1 By developing a simple structural model of investor transactions and herding,

we show that the traditional herding measure is a valid test statistic for the existence of

herding among investors. However, we also show that the measure may produce biased

results which are thus more difficult to interpret and may also distort sample comparisons.

We therefore use our simple model of trading to suggest a new, unbiased measure of

herding based on observed trading behavior. We contrast the properties and advantages

of our new measure to the traditional measure both theoretically and by means of Monte

Carlo simulations.

Having derived our new measure of herding and its properties, we illustrate the im-

portance of our analysis using data for German mutual fund managers. The empirical

results confirm that conclusions drawn from the two measures may differ considerably,

both in terms of the absolute level of herding as well as the structure of herding between

sub-groups of stocks. Additionally, we show that the variables affecting the bias in the

traditional measure explain the differences in our empirical findings.

Theory provides various explanations for herding which differ in causes and in their con-

sequences for market stability (see Devenow and Welch, 1996, Bikhchandani and Sharma,

2000, or Hirshleifer and Teoh, 2003, for overviews). At the same time, several issues make

1In what follows, we use the term ‘herding’ to capture any type of behavior that leads to correlated

trading behavior. This broader use also includes what is termed ‘clustering’ in Graham (1999), ‘uninten-

tional’ or ‘spurious’ herding in Bikhchandani and Sharma (2000), or ‘grouping’ in Hirshleifer and Teoh

(2003).
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empirical work on herding particularly difficult. First, there are many variants of herding:

herding that is based on the observation of other market participants’ actions; ‘simultane-

ous’ herding in the decision to focus on a specific set of information or in the decision to

adopt a new but risky strategy; and herding based on sentiment or stock characteristics

which is prone to more or less sudden changes. Second, detecting herding ideally requires

the observation of actions and potentially private information — a challenge for data col-

lection, particularly when herding is used to hide relevant information. Third, even when

one does detect herding, it might be impossible to identify the causes or the consequences

thereof.

One of the most influential studies in the empirical herding literature has been the

analysis by Lakonishok et al. (1992). The authors introduce a statistic for herding among

a subset of investors within a given time period that became one of the standard measures

of herding.2 Grinblatt, Titman, and Wermers (1995) and Wermers (1999) are key papers on

the US mutual fund market which apply and adjust the traditional herding measure. Over

time, the measure has been applied at the stock level in many countries (see for example

Choe, Kho, and Stulz, 1999 for South Korea, Kyrolainen and Perttunen, 2003, for Finland,

Voronkova and Bohl, 2005, for Poland, Wylie, 2005, for the UK, Lobao and Serra, 2006,

for Portgugal, Walter and Weber, 2006, for Germany), to herding in investment styles (see

Choi and Sias, 2009, and Andreu, Ortiz, and Sarto, 2009) and in other securities (see Oehler

and Goeth-Chi Chao, 2002, on bond markets). All these studies find significant evidence

of herding among investors. In many of these markets (particularly the US and the UK

markets), levels are considered relatively low (although some less developed markets seem

to have higher levels of herding). Additionally, no evidence is found for destabilizing effects

of herding on financial markets.

To the best of our knowledge, a model-based evaluation of the traditional herding mea-

sure has not been done before in the literature — even though the measure has been

adopted in a great number of studies. This is all the more surprising as alternative ap-

proaches to herding are clearly model-based in their empirical approach (see Welch, 2000,

Hwang and Salmon, 2004, Cipriani and Guarino, 2014, or Dasgupta et al., 2011b, for ex-

ample). On the other hand, other aspects of the measure have been critically reviewed. In

2By focusing on within-period herding among investors, we neglect other prominent areas where herding

has been studied, in particular herding among security analysts (such as the work by Graham, 1999, Welch,

2000, or Hong, Kubik, and Solomon, 2000), among investment newsletter (see Jaffe and Mahoney, 1999)

or intertemporal analyses of herding (see Sias, 2004, Choi and Sias, 2009, or Dasgupta, Prat, and Verardo,

2011a,b).
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their overview article, Bikhchandani and Sharma (2000) mention several shortcomings of

empirical measures of herding in general and of the traditional herding measure specifically.

Generally, most herding measure are based on a purely statistical approach and are not

linked to theoretical models of herding directly. Hence, such an approach is initially un-

able to differentiate between unintentional or intentional herding, or between the different

potential models of herding. Therefore, more recent papers have started to incorporate

herding measures into more detailed (regression) analyses in order to link observed herding

to theoretical models (see, for example, Kim and Wei 2002a,b, Chan, Hwang, and Mian

2005, Massa and Patgiri 2005, Zhou and Lai 2009, or Brown, Wei, and Wermers 2014).

However, such analyses require measures of herding to be sufficiently robust. Our analysis

implies that the use of the traditional measure may distort empirical findings. Our sug-

gested modifications to measuring herding thus provide a means to improve (and test) the

robustness of herding analyses.

Further drawbacks of the traditional herding measure mentioned in Bikhchandani and

Sharma (2000) are the lack of an inter-temporal dimension of herding as well as the mea-

sure’s use of a binary measure of buys versus sells, rather than the size of the transaction.

Sias (2004), Choi and Sias (2009), Andreu et al. (2009), and Gavriilidis, Kallinterakis, and

Ferreira (2013) provide alternative approaches which focus on intertemporal aspects in fund

managers’ trading behavior. One way to account for different transaction sizes, would be

to focus only on transactions of sufficient size (see Andreu et al., 2009, who also provide

other means to also account for transaction size, as well as Hu, Meng, and Potter, 2008, in

a slightly different context). However, we show that the traditional herding measure’s bias

varies with the number of transactions used in the analysis, and different filtering rules

would thus distort the measure differently. This distortion does not arise in the alternative

measure we suggest, such that filtering transactions would yield more robust results.3

Wylie (2005) identifies biases inherent in the traditional herding measure which arise be-

cause the (implicitly stated) underlying model may be misspecified. In particular, he argues

that short-selling constraints and heterogeneity in money manager’s trading propensities

can induce the traditional measure to find herding where there is none. We will recon-

3There also exists a literature strand on measuring herding based on asset pricing models and observed

prices following the work of Christie and Huang (1995). This strand of the literature considers herding

within a market overall, rather than among a set of investors (see, for example, the international analyses

of Chang, Cheng, and Khorana, 2000, Economou, Kostakis, and Philippas, 2011, or Balcilar, Demirer, and

Hammoudeh, 2013). As both the focus and methodology of this strand of the literature differ from ours,

we abstain from a more extensive discussion of this literature.
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sider these aspects in a separate discussion towards the end of the paper. While Wylie’s

criticism has to be taken into account, we believe that our analysis is at least as relevant:

Given that basically all analyses confirm the existence of herd behavior, it is important

to understand the causes and consequences of herding. However, more detailed analyses

of herding require a measure of herding levels that is statistically more robust than the

traditional measure. Our paper aims to fill this important gap in the empirical literature.

The remainder of the paper is structured as follows. The next section presents our

approach to modeling trading behavior and to the measurement of herding. We present

the traditional and our alternative herding measure, comparing their statistical properties

both theoretically and in Monte Carlo simulations. In section 3, we use our new measure to

analyze the German mutual fund market and contrast our findings with those that would

arise under the traditional measure. In section 4, we show how our new measure applies

to a more general setting. Section 5 concludes the analysis.

2 Methodological approach

2.1 A simple model of herding as excess dispersion

Our aim is to develop a model of herd behavior in investor transactions that reflects the

existing empirical literature’s approach. As there is no explicit model given in the literature

so far, we use the information implicit in the earlier analyses. Specifically, we make use of

the interpretation of estimated herding parameters for the traditional, standard measure

of herding developed in Lakonishok et al. (1992). The authors, p. 30, explain their overall

herding measure of 0.027 for US pension funds as follows:

... it implies that if p, the average fraction of changes that are increases, was

0.5, then 52.7% of the money managers were changing their holdings of an

average stock in one direction and 47.3% in the opposite direction.

This original interpretation has been adopted by almost all papers using the traditional

herding measure. Additionally, it is always assumed that under the null hypothesis of

no herding, buy (versus sell) transactions are binomially distributed with equal success

probabilities for all stock in a given time period.

With this information at hand, we construct the following simple model: Consider stock

s during quarter q (henceforth called stock-quarter qs). Let the probability that this stock
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is bought (versus sold) by a fund manager active in qs be

πqs = πq + ιqsδqs (1)

where

ιqs =

{

1 with Prob = 0.5

−1 with Prob = 0.5
. (2)

In (1), πq denotes the overall probability of buys in quarter q for all stocks (determined

by new money flows, for example), δqs is the degree of herding in stock-quarter qs and ιqs

is an unobservable (latent) variable indicating whether herding in the stock-quarter is on

the buy (ιqs = 1) or sell side (ιqs = −1). Furthermore, assumption (2) is a normalizing

constraint such that herding is defined as the deviation from the overall buy probability in

the quarter (see section 4 for a more general model). To complete the model, consider the

behavior of all n fund managers trading stock s in q: We assume that the buy probability

πqs as specified in (1) applies to all n fund managers. The number of buys is then the

result of n draws from a Bernoulli distribution with success (buy) probability of πqs. (Note

that the latent variable ιqs is thus also identical for any fund manager active in qs.)

This model of trading behavior is compatible with the earlier empirical literature: (i)

under the null hypothesis of zero herding, the probability of buys corresponds to the overall

probability of buys during a period (with buys binomially distributed); (ii) herding is

defined as a deviation from the overall buy probability during a period (as in the standard

interpretation); (iii) the parameter ιqs allows for herding to be either on the buy or on the

sell side (again, as in the standard interpretation).

Basically, the above model defines herding as excess dispersion in either buy or sell prob-

abilities in a single stock-quarter — in excess of what would be expected for the overall

period. This can be interpreted as a trading environment where all investors receive three

types of signals: (i) an overall signal for the trading period which determines the overall

propensity to buy (πq); (ii) a stock-quarter specific signal (ιqs) which tilts buy probabili-

ties away from the overall mean – either increasing the buy propensity (buy herding) or

decreasing it (sell herding); (iii) another stock-quarter specific signal which determines the

strength of herding (δqs).
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2.2 Herding statistics

2.2.1 Traditional herding statistics

Among the various approaches to detecting and measuring herd behavior in the financial

and economic literature, the measure introduced by Lakonishok et al. (1992) stands out

because of its intuitive approach and interpretation. The interpretation presented in the

preceding section already revealed the basic idea of this measure: Trading activity in a stock

(the decision to either buy or sell) or similar binary decisions are randomly distributed —

with equal distribution for all categories (i.e. stocks in a quarter) when there is no herding.

Any activity in a stock excessively on either the buy or sell side can then be interpreted as

herd behavior. Consequently, the herding measure is constructed as a measure of excess

dispersion in the observed distribution of buy and sell transactions.

Consider an individual stock-quarter qs and a total of S stocks traded in quarter q.

The traditional herding statistic for s in q is given by

H
qs

|1| =

∣
∣
∣
∣

bqs

nqs
− π̂q

∣
∣
∣
∣
− E

[∣
∣
∣
∣
∣

b̃qs

nqs
− π̂q

∣
∣
∣
∣
∣
; b̃qs ∼ B(π̂q, nqs)

]

︸ ︷︷ ︸

AF qs

(3)

where bqs is the number of buy transactions and nqs the total number of transactions in

stock s during quarter q.4 The parameter π̂q =
∑S

s=1
bqs

∑S
s=1

nqs
gives the average proportion of

buys to total transactions in all S stocks in the quarter and thus the expected probability

of a buy under the null hypothesis of no herding. The left-hand term in the Hqs

|1| expression

will be positive even under the null hypothesis: some degree of dispersion is to be expected

given a finite number of stochastic transactions (normal dispersion). The second term, the

adjustment factor AF qs, corrects for this expected dispersion. E[.; b̃qs ∼ B(π̂q, nqs)] thus

is the expected value of the expression in square brackets when the number of buys b̃qs is

distributed binomially with probability π̂q and nqs independent draws. Overall, a positive

herding statistic thus captures excessive dispersion on the buy or sell side at stock-quarter

level. To measure herd behavior in a sample, the herding statistic for stock-quarter qs

is then aggregated and averaged for all stock-quarters. Alternatively, the stock-quarter

measures may be averaged for sub-groups (for example sub-periods or sub-groups of stocks).

Although the structural model above has been developed to match the past use and

interpretation of the traditional herding measure, the H|1| measure has some drawbacks

4We use the subscript |1| in order to highlight that this measure uses the first absolute moment, whereas

the alternative measure presented below uses the second moment which will be denoted by subscript 2.
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if transactions were generated by the model in (1) and (2). Generally, when there is no

herding (δqs = 0), the H|1| measure correctly produces an expected measure of zero. Under

herding, it produces a positive measure in expectations. However, unless the number of

transactions in a stock-quarter is extremely large, the expected value of the measure is

biased downwards relative to the true herding parameter δqs. Due to the functional form

of the binomial distribution, we have to revert to numerical evaluation to show this bias.5

To illustrate the mechanisms behind theHqs

|1| statistic, figure 1 depicts the expected value

of the statistic (denoted EH1) and its two components, the expected absolute dispersion

when there is herding in stock s (denoted EADH) and the adjustment factor (denoted AF),

as functions of the number of trades in the stock. The analysis shows first that without the

adjustment factor, the herding statistic would overstate the true level of herding since some

degree of dispersion always results from the stochastic nature of trading behavior. However,

one can also see that the adjustment factor overcorrects for the excess dispersion and leads

to an understatement of herding. With the adjustment factor converging towards zero

and the expected absolute dispersion with herding converging towards the true parameter

for increasing number of trades in a stock, the H
qs

|1| statistic approaches the true value.

However, the bias becomes negligible only for very high numbers of trades in a stock.

Our later simulation results show that for the number of trades found in typical empirical

studies, the size of the bias is non-negligible. For example, in Wermer’s analysis of US

mutual funds, less than one third of the stocks are traded by 20 or more fund managers

during a quarter in any of the years reported (see Wermers, 1999, Table I, Panel D).

It is less the bias inherent in the traditional herding statistic which makes its use as a

measure of herding problematic, but rather the variability of this bias, most significantly in

the number of trades and the true underlying herding.6 This is illustrated in figure 2 which

shows that the bias decreases with higher numbers of trades in a stock and increases with

5In the appendix, we describe the technical details of this analysis. Bellando (2010) confirms our results

using a slightly different approach.
6Wylie (2005), p. 391, implicitly acknowledges the bias inherent in the H

qs

|1| statistic:

When pt = 0.58 and the number of managers trading is 25, a herding figure of 9.0% corre-

sponds approximately to 19 managers buying...

With 19 out of 25 managers buying when the expected number of buys under the null is 14 or 15 (14.5),

then 19 managers buying implies a true herding parameter of 0.16 to 0.2. Given the approximations due

to rounding, this is fully in accordance with our numerical evaluations of the expected herding statistic.

However, Wylie (2005) neither explicitly acknowledges this bias nor its variability, but focuses on biases

which might arise when the model is misspecified.
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the true level of herding. At the same time, the decrease in the bias is more pronounced

when true herding is higher. As a consequence, patterns of herding found among subsets of

the data might be affected solely by the functional form of the bias: an increase in herding

measured between two samples might be due to an increase in the number of trades, such

that true herding does not necessarily increase — true herding might even decrease as the

analysis in 3.2 will suggest. For example, herding among sub-groups of mutual funds are

often reported to be lower than herding for the total sample (where all transactions are

summed up); see Lakonishok et al. (1992), Grinblatt et al. (1995), or Wermers (1999).

Similarly, Choe et al. (1999) find that herding among foreign investors decreased during

the 1997 Korean crisis; however, the authors also note that foreign investors’ trading also

decreased during that period. Without further information on the trading activity in the

pre-crisis versus crisis period, interpreting a falling H|1| statistic appears difficult.

On the other hand, taking into account the traditional statistic’s bias would reinforce

the pattern of herding if herding is found to decrease for an increasing number of trades. For

example, the slight decrease in herding in Table 3 of Wermers (1999) when the minimum

number of trades rises would be even more pronounced in the underlying herding parameter

of our model. Similarly, Kim and Wei (2002a) show that offshore funds have lower herding

measures in the Korean market while their trading intensity is lower. In this case, the

potential bias also reinforces their result.

More generally, any comparison among sub-samples may be affected by the bias due

to sample differences in trading activities — the most obvious being differences by the

number of active funds itself (as is standard in most herding analyses) or grouping of

stocks by size (larger stocks are traded more often). But also differentiating stocks by past

returns may be affected if extreme performance leads to higher trading activity (due to

momentum or contrarian trading strategies). Finally, more recent analyses have used the

traditional herding statistic in regression analyses (see for example Kim and Wei, 2002a,b,

Chan et al., 2005, Massa and Patgiri, 2005, or Brown et al., 2014) — either to determine

the effect of herding on stock prices (see also Grinblatt et al., 1995) or to distinguish

determinants of herding behavior (and thus theoretical explanations of herding). Using

the biased herding statistic and not accounting for its dependency on trading activity (as

well as the proportion of buys) may distort regression results. Given all these issues arising

under the use of the H|1| herding statistic, we proceed by offering an alternative, modified

measure and by comparing its statistical properties with the traditional measure.
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2.2.2 Alternative measure

While it is generally possible to calculate the bias inherent in the H|1| measure, we now

propose a different measure of herding which provides a consistent estimate for the true

herding parameter δ. This statistic adopts the basic idea of the H|1| statistic to measure

the excess dispersion of trades on either the buy or sell side. But instead of using the

first absolute moment, we revert to the second (central) moment — being the traditional

measure for dispersion in statistics with well-documented statistical properties.7 As before

we estimate in a first step the probability of buys in a quarter by π̂q. Our suggested

measure of herding in stock s during quarter q is

H
qs
2 =

(bqs − π̂qnqs)2 − nqsπ̂q(1− π̂q)

nqs(nqs − 1)
, (4)

where the numerator is the empirical variance minus the expected variance of a binomial

distribution with parameters nqs and π̂q. This formula is the complement to the traditional

measure (now for the second moment), except for the normalization in the denominator

which leads to more desirable statistical properties.8

The H2 measure may be aggregated over stock-periods: Let the set of aggregated stock-

periods be labeled A. The aggregate’s measure of herding is then given by

H
A
2 =

1

#A

∑

qs∈A

H
qs
2 . (5)

Finally, in order to make the level of the new herding measure comparable to the traditional

measure we use the square root of the aggregated herding measure

HA
2 ≡

√

H
A
2 . (6)

In contrast to the H|1| measure, we can derive the following statistical properties of the H2

measure (and its variants) in closed form.

7The literature on absolute moments of discrete distributions is rather sparse (see for example Katti,

1960).
8The complementarity of the two measures can be seen most easily by transformation of the new

measure and by omitting all superscripts. Then, the two measures are:

H|1| =

∣
∣
∣
∣

b

n
− π̂

∣
∣
∣
∣
− E

[∣
∣
∣
∣
∣

b̃

n
− π̂

∣
∣
∣
∣
∣

]

H2 =





(
b

n
− π̂

)2

− E





(

b̃

n
− π̂

)2







n

n− 1

where E[.] denotes the expected value under the null of no herding.
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1. H
qs
2 is an unbiased estimator of (δqs)2.

2. H
A
2 is an unbiased estimator of (δA)2, as defined above.

3. HA
2 is a consistent estimator of δA (that is, for #A approaching infinity).

The formal derivation of these as well as further statistical properties of the alternative

measure are provided in a web-appendix.

2.3 Comparing the two measures

So far, we have argued that the traditional herding measure H|1| and the new H2 measure

(the square root of H2) differ in terms of accurateness in estimating δ. However, it is not

clear which of the two measures performs statistically better in our model. By means of

Monte Carlo simulations, we will thus illustrate further differences in the two measures’

properties.

Our scenario considers the estimation of herding for a single stock with several quarters

of trading. It is representative for other (potentially larger) aggregates like quarters or

groups of stocks. To simplify matters we assume that all parameters be identical for all

observations.9 The simulation covers combinations of parameters that are characteristic

for the existing literature. For the number of portfolio managers trading a stock simulta-

neously — denoted n in the tables — we chose 5, 25 and 50. The true herding parameter δ

varies between 0.00 (no herding) and 0.30 (strong herding).10 The number of observations

q (for a single stock, this is equal to the number of stock-quarters) grows from 20 to 100

and 1000 for a very large aggregation. The parameter π of overall buy propensity remains

at 0.50 throughout the simulation study.11

In table 1 we report the means and standard deviations of the two measures for each

combination of the parameters above. Treating them as estimators of the true herding

parameter δ we compute the mean square error (mse) in table 2. The mse equals the sum

of the squared bias and standard deviation of the estimator, and we report both along

9We also studied a more realistic environment. As the results confirm our simple analysis, we do not

report them here but make them available upon request.
10To increase readability of the tables we report δ and all estimators thereof in percentage points but

omit the percentage signs.
11We performed the whole simulation study for different levels of π (0.45, 0.55, 0.60) which resulted in

no substantial differences to the results reported here. While the size of the bias of the H|1| measure varies

with π, the absolute size of this variation is limited.
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with the mse. The means and standard deviations of estimated errors follow in table 3.

As it is desirable that the mean of the estimated error is an unbiased estimate of the true

standard deviation of the estimator, we show the latter for comparison. Table 4 shows the

power of the test for δ equal to zero at the 95% confidence level (including additionally the

H2 measure). Figures 3 and 4 illustrate the results for mean squared errors and statistical

power graphically.

Generally, we identify two basic applications for any herding measure: (i) to test

whether there is herding in the sample under investigation; (ii) to measure the extent

of herding (if it exists). The H|1| measure is very well suited for the first task. Under

the null hypothesis of no herding (δ = 0), H|1| is unbiased with a low standard error as

shown in table 1. Moreover, its estimated standard error is an unbiased estimate of its true

standard deviation regardless of δ — which can be seen from table 3. Quite the opposite

is true for our new measure: it is no reliable test statistic under the null hypothesis. For

small samples with a low number of transactions (n), a downward bias occurs that stems

from the non-linearity of applying the square root to the unbiased estimator H2. Still, a

viable alternative to H|1| is H2 as a test statistic. Table 4 clearly shows that both H|1|

and H2 are valid tests, whereas H2 does not conform to the chosen confidence level. Note,

however, that figure 4 suggests a small advantage of H|1| in small samples compared to H2.

Table 2 can be used to infer which of the statistics is suitable to measuring the level of

herding. For δ=0.15, H2 is superior to H|1| in terms of the mean square error (Mse) for as

little as only 20 observations and five portfolio managers trading a stock. Even for δ as low

as 0.05, the new measure excels for 1000 observations of five portfolio managers trading (or

100 observations for 20 trades per stock-period, or 20 observations for 50 trades). Hence,

the advantage of the new measure increases drastically with the number of observations,

as illustrated in figure 3. In contrast, the Mse of H|1| does not improve significantly with

increased numbers of observations as it is dominated by the bias (which is unaffected by

the number of observations).

The results of the Monte Carlo analysis suggest a two step approach to using these

herding measures in empirical applications: In a first step, existence of herd behavior should

be tested using either the H|1| or our H2 statistic. If significant herding is confirmed, the

level of herding can be estimated consistently by H2.
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3 Application to German mutual funds

So far, we argued that using the traditional herding statistic to measure herding may lead

to false conclusions. As a way out, we also showed that our suggested new measure has

certain advantages in measuring herding. This section uses data from the German mutual

fund industry to illustrate how the two measures perform and differ in their results in a

real data set.

3.1 The data

For our empirical study, we use a version of the hand-collected database introduced by

Walter and Weber (2006) that has been extended to cover the period from 1998 to 2004.

Our data contains portfolio holdings of mutual funds specializing in German stocks. The

universe of funds consists of those funds managed by German investment companies and

investment companies of German provenance domiciled in other countries.12 Passively

managed funds were excluded from the analysis.

Trading activity is inferred from changes in semi-annual portfolio holdings of each fund.

A stock being purchased, increased, decreased, or sold by at least three funds in a given

period is defined as a stock-period.13 Since we are exclusively interested in portfolio changes

that result from trades, we exclude all stock-periods induced by passive trading, for example

due to stock splits. Trading data from the period preceding the closure of a fund is also

excluded.

The mutual fund holdings database is supplemented with data on stock prices and

market capitalization from Datastream. We sort stocks by their returns in each quarter

into five return quintiles. We also use 2005 information on stock market capitalization to

split the total market capitalization of stocks in the data set in quintiles.14

12See Walter and Weber (2006) for a detailed description of the data and the collection procedure as

well as on the specifics of the German mutual fund market.
13Three trades is the minimum number of transactions imposed by our theoretical model in order to

technically identify the herding parameter. The higher the number of trades, the higher is the precision of

our measure, as illustrated in our simulations.
14Splitting total market cap into five groups of equal-sized total market cap has the advantage of retaining

a sufficiently large number of observations in the small cap group of stocks. On the other hand, it leads

to fewer, but highly traded stocks in the other groups.
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3.2 Empirical analysis

In what follows, we analyze the herding behavior of institutional investors in the German

stock market using our new measure of herding. By contrasting our results with those that

would arise under the traditional herding measure, we highlight both some new patterns

not discernible under the traditional measure and the significance of the bias effect in the

H|1| measure.

3.2.1 Herding and trading intensity

We start with the standard presentation of the overall herding measure with different

thresholds for the minimum number of transactions in a stock. Table 5 presents the re-

sults for both herding measures as well as information on the number of observations and

trading activity in each sample. As expected, the herding measured by our new statistic is

considerably higher than under the traditional statistic — on average, the new measure is

2.8 times higher than the traditional measure of herding. Even more important than the

pure level effect, however, is the structure of herding when the number of trades in a stock

varies: whereas the traditional measure would suggest that herding monotonically increases

when more fund managers trade in a stock, the comparison with our new measure shows

that the monotonicity is partially induced by the bias inherent in H|1|. As a consequence,

higher levels of herding when fewer fund managers are active in a stock are only detected

with our new measure of herding.

As a confirmation of our earlier formal analysis and simulation study we also find two

structures in the data: First, the relative bias between the H2 and the H|1| measure in

table 5 decreases as expected with higher trading activity. Second, while the standard

errors of our estimates are higher under the new measure, (unreported) t-values suggest

that the precision of our estimates has increased. Given the high number of observations

in the sub-groups, this accords well with the statistical properties derived in our Monte

Carlo simulation study.15 Additionally, while the absolute values of herding and differences

between the class estimates increase under our new measure (see the standard deviation of

the estimates), it is worth noting that the relative variation around the mean herding level

decreases. Hence, while the new measure suggests significantly higher levels of herding and

15Consider for example the simulation with parameters n = 5, q = 100, π = 0.5 and δ = 15% — a

representation that is still unfavorable towards H2 compared to the available data. Even then, our new

measure already achieves higher relative precision than the H|1| measure (see table 1).
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a different structure among the sub-sets, we also find that the relative differences between

classes of stocks is less pronounced than under the traditional measure.

Since the results in table 5 are influenced by aggregation, it is instructive to consider

non-overlapping sub-groups of the total sample differing in trading activity, as is done in

table 6. The results for the H2 measure reinforce the u-shaped structure of herding with

respect to trading activity of table 5, whereas the results for the traditional measure are

less clear-cut.

3.2.2 Herding and stock size

Another important analysis of herding among money managers centers on whether herd

behavior differs among stocks of different sizes. For example, higher herding among small

stocks might be attributed to less information available and hence to managers being

more inclined to follow others or the consensus. Among large stocks, on the other hand,

one might observe informational herding as these companies are closely followed by a

large number of analysts and money managers, all relying on the same (publicly available)

information. Generally, preferences towards/against one or the other class of stocks as

reported in Falkenstein (1996) may increase the correlation in trading decisions.

Table 7 reports herding parameters for sub-groups of stocks sorted by market capital-

ization such that total market capitalization is divided into quintiles. According to the

traditional herding measure, herding among smaller stocks appears to be below average,

while large stocks show the highest levels of herding. However, the number of fund man-

agers trading a stock is positively related to its market capitalization — as already stressed

by Wermers (1999). Consequently, we would expect higher levels of herding measured by

H|1| for larger stocks simply due to the lower bias. This effect is confirmed in our data: first,

while being generally at higher levels, herding among small stocks is at a higher level than

among the largest stocks which show the second-highest herding levels. Second, looking

at the relative bias reported in table 7, the relationship between the different results and

the level of trading activity is apparent: higher trading activity in larger stocks reduces

the bias in the herding measured with H|1| — as in the previous tables 5 and 6. As a con-

sequence, our new measure leads to a structure of herding very similar to the comparison

along activity levels: herding is also u-shaped when stocks are grouped by their size.
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3.2.3 Herding in sub-periods

Table 8 analyzes the changes in fund manager herding over time. Unlike in the tables

before, there is no clear-cut trend in the average number of trades per stock between sub-

periods — the range of 9.4 to 11 trades per stock is fairly narrow. Similarly, the relative

deviation between herding measured by our new and the traditional measure — albeit

significant in terms of its level – remains fairly constant. As a consequence, the pattern

of changes in herding is similar for both measures: the highest levels of herding can be

observed at the height and during the bursting of the so-called ‘internet bubble’ (2000 and

2001) with a sharp drop in herding levels in the post-bubble period (2002 onwards).

Given that trading activity over the years did not vary a lot, it is interesting to note that

the relationship between the two measures is still as we expect it to be from our theoretical

analysis: looking at the years 2001 to 2003 (all with approximately eleven transactions

per stock), the relative difference between the two measures decreases with the estimated

level of true herding as measured by H2. Finally, note that while our data set shows

stability of trading activity over time, this need not be the case for other data sets or

longer periods. During the period of 20 years studied by Wermers (1999), for example,

there is a considerable increase in the number of transactions per stock. Similarly, Choe

et al. (1999) note that liquidity (and consequently trading activity) decreased markedly

during the 1997 Korean crisis. Comparisons of the crisis period with other periods might

then be distorted by changes in the expected bias in the traditional measure.

3.3 How important are differences in the two measures’ findings?

In a last step, we consider again the results of our preceding analyses for the German

mutual fund market. Specifically, we look at common or diverging structures between the

traditional and our new herding measure for the five analyses in tables 5 to 8. Panel A

of table 9 presents the results from regressing the absolute difference between H2 and H|1|

(the absolute bias) on an intercept, trading activity (the mean number of trades per stock),

the level of H2 (as the supposedly ‘true’ level of herding) and the number of observations

in the sub-sample.16 The results from these regression are highly similar and can all be

explained by our earlier formal and simulation analyses of the two measures. First, the

parameter for the number of trades per stock is significant and negative — an increase in

16In table 9, we also report the R-Square of each regression. Of course, these numbers are highly inflated

due to the very low numbers of observations.
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trading activity increases the H|1| measure towards the true level of herding measured by

H2. Second, an increase in H2 (as the true level of herding) increases the absolute bias of

the traditional measure. Finally, the number of observations does not have any significant

influence on the bias — most probably due to a sufficiently high number of stock-periods

in each of our sub-samples.

Panel B of table 9 reconsiders again whether the two measures diverge in their ranking

of sub-samples given the herding measured. Here, the rank correlation coefficients paint a

more diverse picture: For the first three analyses (herding depending on trading activity

and stock size), the two measures differ greatly in their results. This repeats our earlier

comments that the traditional herding measure is greatly influenced by the level of trading

activity in these analyses. As a consequence, conclusions drawn from either of the two

measures will differ considerably. It is only for the last analysis (years) that the rank

correlation coefficient is both significant and fairly close to one. Hence, only in this last

analysis does the use of either of the two measures not materially affect the results.

4 Discussion: Herding as excess dispersion

In what follows, we show that our suggested new measure can be applied to a more gen-

eralized model of trading behavior under herding. We then discuss how the criticism of

Wylie (2005) may be addressed within our theoretical structure.

4.1 A generalized model of trading behavior

Consider again our simple model of trading behavior as specified in section 2.1. Due to the

random variable ιqs, the buy probability πqs is itself a random variable, with moments

E[πqs] = πq and Var[πqs] = δ2 . (7)

The essential feature of this model is that buy probabilities vary over stock-quarters but are

identical within stock-quarters. This feature is shared by the more general Lexian sampling

scheme (see Johnson, Kotz, and Kemp, 1992). Lexian sampling describes a specific appli-

cation of the binomial distribution where the success (buy) probabilities vary across throws

(in our case stock-quarters) but remain constant within throws.17 The heterogeneity of the

17The opposite would be Poissonian binomial sampling which is discussed in the following subsection.

See Johnson et al. (1992), chapter 3, for more details on both samplings of the binomial distribution.
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success probability is represented by the between-throw variance σ2
b . Then, the following

assumptions for the probability of a buy in a stock-quarter qs define a more generalized

model of herding:

πqs ∈ [0, 1] , E[πqs] = π̄ and Var[πqs] = σ2
b . (8)

This contains the model of section 2.1 as a special case. As a consequence, the assumptions

in our simple model of trading are more restrictive than necessary. The variance for the

Lexian sampling of the binomial distribution is increased by n(n − 1)σ2
b compared to the

case of homogeneity with a parameter of π̄. Measuring the excess dispersion is the idea

underlying our new measure. Given the properties of the Lexian sampling, H2 provides an

unbiased estimate of the between-throw variance σ2
b . Hence, our new measure remains a

valid estimator in this more general setting.18

4.2 Heterogeneity and short-selling constraints

Wylie (2005) identifies two critical assumptions implicit in the traditional H|1| measure:

no short-selling constraints and identical buy probabilities for fund managers in any stock-

quarter. By simulation, he shows that introducing short-selling constraints and hetero-

geneity in buy probabilities within stock-quarters biases the H|1| measure under the null

hypothesis of no herding.

In our theoretical structure, heterogeneity of buy probabilities within a stock-quarter

could be captured by the Poissonian binomial sampling. Under Poissonian sampling,

within-throw variance of the success probabilities actually decreases the overall variance of

the number of successes. As a consequence, any measure of herding as excess dispersion

which does not take heterogeneity in buy probabilities into account underestimates the full

extent of the between-throw variance. For the H|1| measure, Wylie (2005) confirms this

downward bias in his simulation study (see table 4 in his analysis), and a similar effect

might be expected for our new measure.

Starting from our model of trading, the effect of short-selling constraints can be decom-

posed into two opposing mechanisms: First, when differences in initial stock holdings differ

18Bellando (2010) argues that our measure provides a biased measure of herding in her slightly more

general model. However, this difference is due to a different definition of herding. Her numerical results

actually confirm that our measure exactly captures the variance of the buy probabilities implied by her

model.
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mostly between stocks (some stocks are generally held more than others), then buy prob-

abilities are heterogeneous across different stock-quarters. This would be captured by the

aforementioned Lexian sampling and thus potentially inflates the herding levels measured.

Second, however, fund managers may differ in their holding of a stock at the beginning

of a quarter. For example, the simulation by Wylie (2005) assigns different probabilities

for buys and sells depending on the initial holding of a fund manager, thus introducing

heterogeneity of buy probabilities within a stock-quarter. As discussed above, this Poisso-

nian sampling would distort measured herding levels downwards. Overall, we thus identify

competing biases for short-selling constraints. The fact that Wylie (2005) finds an overall

inflating effect of short-selling constraints on the H|1| measure suggests that the former

effect (heterogeneity in initial holdings across stock-quarters) dominates in the UK data

set.

5 Conclusion

Understanding the causes of herd behavior in financial markets and its effects on asset prices

and thus market stability is of high relevance to both academics and decision-makers in the

area of market regulation. Direct observations of investors’ trading behavior is a promising

basis for empirical analyses on herding. The past literature has already suggested that

herding among investors can be observed. The observed herd behavior so far is either

considered negligible low or turns out not to be destabilizing.

This paper argues that when measuring the degree of herding (either in terms of abso-

lute levels, in mean comparisons among samples or in regression analyses), relying on the

traditional herding statistic introduced in Lakonishok et al. (1992) may produce results

that are difficult to interpret. While a general distortion in the traditional measure might

not matter a lot, we show that the bias interacts with other parameters in a data set and

might thus mislead researchers in their conclusions. For this reason, we use a model of

trading behavior and herding to derive alternative means to estimate herding that possess

superior statistical properties. Mohamed Sr., Bellando, Ringuede, and Vaubourg (2011)

and Merli and Roger (2012) apply our new measure to analyze herding among French in-

vestors, while Frot and Santiso (2011) use our approach to measure herding in the context

of foreign aid allocation.

Our results are all based on a simple theoretical structure of trading behavior which is

influenced by herd behavior. While we believe that this model already captures previous
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studies’ approach to herding, it is also an obvious starting point for further development.

Fruitful areas for further analysis would be proper specifications of buy versus sell herding

measures, including a more thorough incorporation of the issues raised in Wylie (2005),

for example. Another direction of future research is to extend the model by incorporating

those variables that typically explain the amount of herding. Postulating a model of trading

behavior and herding appears to be a necessary prerequisite to properly analyze herd

behavior. In this sense, we consider our analysis as a step in a direction that will further

improve our understanding of investor behavior in financial markets.
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Appendix

Numerical evaluation of the H|1| statistic

This appendix illustrates how the expected value of the H|1| measure is derived when

trading in a stock follows the (binomial) model in (1).19 Consider a specific stock-period

qs with herding δ (assuming ι = 1) and overall buy probability π̄ (ignore superscripts qs

in what follows). Let n be the number of transactions in the stock. Then, the probability

that there are b ∈ [0;n] buy transactions is

Prob(b; (n, π)) =

(
n

b

)

πb(1− π)n−b (A.1)

where π = π̄ + δ. Then, the expected value of the absolute deviation of the proportion of

buys from the average proportion (π̄) is
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which is the expected value of the first term in the H|1| measure (see (3)). The adjustment

factor is then the same expression with π = π̄. Hence, the expected H|1| measure is

E[H|1|] = 0.5 · E
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(A.3)

The above expressions are then used to calculate the expected H|1| measures, its com-

ponents and biases plotted in figures 1 to 2. The specific parameters used were:

• For figure 1: n = 2, ..., 40, π̄ = 0.5 and δ = 0.1

• For figure 2: n = 2, ..., 40, π̄ = 0.5 and δ ∈ {0.05, 0.1, 0.15, 0.2}

19In what follows we will use the notation E[.; (π, n)] to denote the expected value when the number of

buys is binomially distributed with probability π and n draws.

25



Table 1: MC study: mean and standard deviation of herding measures
True herding δ (in percent)

0.0 5.0 15.0 30.0

n q H|1| H2 H|1| H2 H|1| H2 H|1| H2

5 20 Mean −0.0 −0.4 0.3 1.1 3.3 12.1 12.6 29.6

Stddev 2.7 11.8 2.7 11.8 3.1 10.2 3.3 4.5

100 Mean −0.0 −0.1 0.3 2.1 3.3 14.5 12.6 29.9

Stddev 1.2 7.9 1.2 7.8 1.3 3.7 1.5 2.0

1000 Mean 0.0 −0.0 0.3 3.9 3.3 14.9 12.6 29.9

Stddev 0.3 4.4 0.3 3.7 0.4 1.0 0.4 0.6

20 20 Mean 0.0 −0.2 0.8 2.9 7.0 14.7 21.1 29.9

Stddev 1.5 5.6 1.6 5.7 2.0 2.7 1.9 2.0

100 Mean −0.0 −0.0 0.8 4.2 7.0 14.9 21.1 29.9

Stddev 0.6 3.7 0.7 3.0 0.9 1.2 0.8 0.9

1000 Mean 0.0 0.0 0.8 4.9 7.0 15.0 21.1 29.9

Stddev 0.2 2.1 0.2 0.7 0.2 0.3 0.2 0.2

50 20 Mean 0.0 −0.1 1.3 4.1 9.4 14.9 24.4 29.9

Stddev 0.9 3.5 1.1 3.0 1.4 1.6 1.2 1.2

100 Mean −0.0 −0.0 1.3 4.8 9.4 14.9 24.3 29.9

Stddev 0.4 2.3 0.5 1.0 0.6 0.7 0.5 0.5

1000 Mean −0.0 −0.0 1.3 4.9 9.4 15.0 24.3 29.9

Stddev 0.1 1.3 0.1 0.3 0.2 0.2 0.1 0.1

Notes : This table reports the mean and the standard deviation (Stddev) of the two herding mea-
sures H|1| and H2. Monte Carlo simulation study includes 10,000 repetitions for each parameter
combination. Parameter π is set to 0.5 in all simulations.
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Table 2: MC study: bias, standard deviation, and mean square error
True herding δ (in percent)

0.0 5.0 15.0 30.0

n q H|1| H2 H|1| H2 H|1| H2 H|1| H2

5 20 Bias −0.0 −0.4 −4.6 −3.8 −11.6 −2.8 −17.3 −0.3

Stddev 2.7 11.8 2.7 11.8 3.1 10.2 3.3 4.5

Mse 7.3 140.2 28.8 155.6 145.4 112.9 311.3 20.8

100 Bias −0.0 −0.1 −4.6 −2.8 −11.6 −0.4 −17.3 −0.0

Stddev 1.2 7.9 1.2 7.8 1.3 3.7 1.5 2.0

Mse 1.4 63.1 23.0 69.9 138.1 13.9 302.3 4.0

1000 Bias 0.0 −0.0 −4.6 −1.0 −11.6 −0.0 −17.3 −0.0

Stddev 0.3 4.4 0.3 3.7 0.4 1.0 0.4 0.6

Mse 0.1 19.9 21.5 15.2 136.7 1.0 300.0 0.3

20 20 Bias 0.0 −0.2 −4.1 −2.0 −7.9 −0.2 −8.8 −0.0

Stddev 1.5 5.6 1.6 5.7 2.0 2.7 1.9 2.0

Mse 2.3 32.2 19.7 37.3 68.0 7.6 81.3 4.1

100 Bias −0.0 −0.0 −4.1 −0.7 −7.9 −0.0 −8.8 −0.0

Stddev 0.6 3.7 0.7 3.0 0.9 1.2 0.8 0.9

Mse 0.4 14.2 17.5 9.8 64.8 1.4 78.2 0.8

1000 Bias 0.0 0.0 −4.1 −0.0 −7.9 0.0 −8.8 −0.0

Stddev 0.2 2.1 0.2 0.7 0.2 0.3 0.2 0.2

Mse 0.0 4.5 17.1 0.4 64.0 0.1 77.6 0.0

50 20 Bias 0.0 −0.1 −3.6 −0.8 −5.5 −0.0 −5.5 −0.0

Stddev 0.9 3.5 1.1 3.0 1.4 1.6 1.2 1.2

Mse 0.9 12.7 14.6 10.1 32.8 2.6 32.9 1.6

100 Bias −0.0 −0.0 −3.6 −0.1 −5.5 −0.0 −5.6 −0.0

Stddev 0.4 2.3 0.5 1.0 0.6 0.7 0.5 0.5

Mse 0.1 5.7 13.6 1.2 31.0 0.5 31.8 0.3

1000 Bias −0.0 −0.0 −3.6 −0.0 −5.5 0.0 −5.6 −0.0

Stddev 0.1 1.3 0.1 0.3 0.2 0.2 0.1 0.1

Mse 0.0 1.7 13.3 0.0 30.7 0.0 31.5 0.0

Notes : This table reports the bias, standard deviation (Stddev) and the mean square error
(Mse) of the two herding measures H|1| and H2. Monte Carlo simulation study includes 10,000
repetitions for each parameter combination. Parameter π is set to 0.5 in all simulations. The
Mse is multiplied by 10,000 equivalent to δ displayed in percent.
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Table 3: MC study: standard error analysis
True herding δ (in percent)

0.0 5.0 15.0 30.0

n q H|1| H2 H|1| H2 H|1| H2 H|1| H2

5 20 Mean Stderr 2.6 7.2 2.7 7.3 3.0 7.2 3.3 4.5

Stddev Stderr 0.4 3.7 0.4 3.7 0.4 2.8 0.3 0.6

Stddev 2.7 11.8 2.7 11.8 3.1 10.2 3.3 4.5

100 Mean Stderr 1.2 5.8 1.2 5.8 1.3 3.4 1.5 1.9

Stddev Stderr 0.0 2.9 0.0 2.9 0.0 1.0 0.0 0.1

Stddev 1.2 7.9 1.2 7.8 1.3 3.7 1.5 2.0

1000 Mean Stderr 0.3 3.7 0.3 3.1 0.4 1.0 0.4 0.6

Stddev Stderr 0.0 2.3 0.0 2.0 0.0 0.0 0.0 0.0

Stddev 0.3 4.4 0.3 3.7 0.4 1.0 0.4 0.6

20 20 Mean Stderr 1.5 4.4 1.6 4.5 2.0 2.6 1.9 2.0

Stddev Stderr 0.2 3.1 0.2 2.9 0.3 0.4 0.3 0.2

Stddev 1.5 5.6 1.6 5.7 2.0 2.7 1.9 2.0

100 Mean Stderr 0.6 3.3 0.7 2.6 0.9 1.1 0.8 0.9

Stddev Stderr 0.0 2.5 0.0 1.8 0.0 0.0 0.0 0.0

Stddev 0.6 3.7 0.7 3.0 0.9 1.2 0.8 0.9

1000 Mean Stderr 0.2 1.9 0.2 0.6 0.2 0.3 0.2 0.2

Stddev Stderr 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0

Stddev 0.2 2.1 0.2 0.7 0.2 0.3 0.2 0.2

50 20 Mean Stderr 0.9 2.9 1.1 2.5 1.4 1.5 1.2 1.2

Stddev Stderr 0.1 2.4 0.1 1.6 0.2 0.2 0.2 0.1

Stddev 0.9 3.5 1.1 3.0 1.4 1.6 1.2 1.2

100 Mean Stderr 0.4 2.1 0.5 1.0 0.6 0.7 0.5 0.5

Stddev Stderr 0.0 1.8 0.0 0.2 0.0 0.0 0.0 0.0

Stddev 0.4 2.3 0.5 1.0 0.6 0.7 0.5 0.5

1000 Mean Stderr 0.1 1.2 0.1 0.3 0.2 0.2 0.1 0.1

Stddev Stderr 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0

Stddev 0.1 1.3 0.1 0.3 0.2 0.2 0.1 0.1

Notes : This table reports the mean and the standard deviation of the estimated standard error
(Mean Stderr and Stddev Stderr, respectively) in the simulation. For comparison it reports again
the standard deviation (Stddev) for each of the two herding measures H|1| and H2. Monte Carlo
simulation study includes 10,000 repetitions for each parameter combination. Parameter π is
set to 0.5 in all simulations.
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Table 4: MC study: statistical power of herding test
True herding δ (in percent)

0.0 5.0 15.0 30.0

n q H|1| H2 H2 H|1| H2 H2 H|1| H2 H2 H|1| H2 H2

5 20 power 95% 5.2 8.6 32.1 4.8 7.0 31.3 14.5 10.0 52.5 95.3 93.0 99.8

100 power 95% 5.0 6.1 33.1 5.0 4.9 33.9 66.4 64.6 93.2 100.0 100.0 100.0

1000 power 95% 5.2 5.2 32.5 14.5 14.7 51.8 100.0 100.0 100.0 100.0 100.0 100.0

20 20 power 95% 5.9 10.2 34.0 6.5 5.6 36.4 90.9 86.4 99.4 100.0 100.0 100.0

100 power 95% 4.9 6.0 32.8 19.3 16.6 59.5 100.0 100.0 100.0 100.0 100.0 100.0

1000 power 95% 5.2 5.1 32.6 95.7 97.1 99.8 100.0 100.0 100.0 100.0 100.0 100.0

50 20 power 95% 5.8 10.8 34.2 15.8 9.6 55.9 100.0 99.9 100.0 100.0 100.0 100.0

100 power 95% 5.1 6.7 33.4 75.0 73.7 96.3 100.0 100.0 100.0 100.0 100.0 100.0

1000 power 95% 4.8 5.1 32.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Notes : This table reports the power at 95% confidence level of the test with the null hypothesis of no herding or δ=0. All tests
are t-tests applied to H|1|, H2 and H2. Monte Carlo simulation study includes 10,000 repetitions for each parameter combination.
Parameter π is set to 0.5 in all simulations.
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Table 5: Herding and trading intensity (aggregated)

FM trading H|1| H2

H2−H|1|

H2

Number of stock-periods Average number of trades

n ≥3 0.0443 0.1597 72% 1865 10.2

(0.0032) (0.0072)

n ≥5 0.0477 0.1532 69% 1245 13.6

(0.0035) (0.0064)

n ≥10 0.0477 0.1404 66% 790 17.7

(0.0040) (0.0065)

n ≥15 0.0506 0.1417 64% 587 19.6

(0.0045) (0.0073)

n ≥20 0.0577 0.1471 61% 288 22.2

(0.0064) (0.0095)

n ≥25 0.0788 0.1734 55% 39 25.7

(0.0190) (0.0224)

Mean of estimate 0.0545 0.1526 64% 802 18.2

Stddev of estimate 0.0127 0.0125

Relative Stddev 0.2339 0.0820

Notes : The top part of this table reports herding measures H|1| and H2 for Germany for various minimum
thresholds for the number of transactions per stock. Corresponding standard errors are given in parentheses
below the estimates. The relative bias, number of stock-periods and average number of trades per stock in
each class are also reported. The bottom part of the table presents means of the estimated parameters, the
relative bias, number of stock-periods and average number of trades per stock. The last two rows report
the standard deviation of the class estimates in absolute terms as well as relative to the mean estimate.

Table 6: Herding and trading intensity (sub-samples)

FM trading H|1| H2

H2−H|1|

H2

Number of stock-periods Average number of trades

3 ≤ n ≤ 4 0.0375 0.1720 78% 620 3.4

(0.0064) (0.0165)

5 ≤ n ≤ 9 0.0476 0.1733 73% 455 6.4

(0.0068) (0.0125)

10 ≤ n ≤ 14 0.0393 0.1364 71% 203 12.2

(0.0081) (0.0144)

15 ≤ n ≤ 19 0.0438 0.1363 68% 299 17.2

(0.0064) (0.0111)

20 ≤ n ≤ 24 0.0544 0.1426 62% 249 21.7

(0.0067) (0.0105)

n ≥25 0.0788 0.1734 55% 39 25.7

(0.0190) (0.0224)

Notes : This table reports herding measures H|1| and H2 for Germany for various minimum thresholds for
the number of transactions per stock. Corresponding standard errors are given in parentheses below the
estimates. The relative bias, number of stock-periods and average number of trades per stock in each class
are also reported.
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Table 7: Herding and stock size

Market cap quintile H|1| H2

H2−H|1|

H2

Number of stock-periods Average number of trades

1 (largest stocks) 0.0691 0.1625 57% 108 19.7

(0.0112) (0.0158)

2 0.0468 0.1371 66% 137 20.0

(0.0093) (0.0157)

3 0.0319 0.1239 74% 220 16.3

(0.0081) (0.0188)

4 0.0453 0.1565 71% 492 10.6

(0.0059) (0.0132)

5 (smallest stocks) 0.0434 0.1715 75% 908 5.9

(0.0050) (0.0113)

Notes : This table reports herding measures H|1| and H2 for Germany for sub-samples of stocks according
to market capitalization. Total market capitalization of all stocks is split into quintiles, with stocks in
quintile 1 having the largest market cap and stocks in quintile 5 having the smallest market cap. The
reference year for classification was 2005. Corresponding standard errors are given in parentheses below
the estimates. The relative bias, number of stock-periods and average number of trades per stock in each
sub-sample are also reported.

Table 8: Herding in sub-periods

Year H|1| H2

H2−H|1|

H2

Number of stock-periods Average number of trades

1998 0.0474 0.1690 72% 164 9.4

(0.0112) (0.0240)

1999 0.0379 0.1534 75% 233 10.2

(0.0088) (0.0215)

2000 0.0563 0.1875 70% 275 9.7

(0.0084) (0.0170)

2001 0.0740 0.2026 63% 271 10.8

(0.0087) (0.0160)

2002 0.0215 0.0871 75% 273 11.0

(0.0075) (0.0289)

2003 0.0475 0.1681 72% 291 11.0

(0.0079) (0.0161)

2004 0.0301 0.1328 77% 358 9.3

(0.0071) (0.0197)

Notes : This table reports herding measures H|1| and H2 for Germany for sub-periods (years). Correspond-
ing standard errors are given in parentheses below the estimates. The relative bias, number of stock-periods
and average number of trades per stock in each sub-sample are also reported.
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Table 9: Analysis of the difference between H2 and H|1|

Trading intensity

(aggregated)

Trading intensity

(sub-samples)

Size Years

A. Regression Analysis

Mean Dependent Variable

(H2-H1)

0.0981 0.1054 0.1030 0.1163

Intercept 0.0469 0.0424 0.0782 0.0744

(0.0118) (0.0061) (0.0102) (0.0407)

Mean no. of trades per stock -0.0009 -0.0013 -0.0009 -0.0050

(0.0007) (0.0001) (0.0005) (0.0036)

H2 0.4140 0.4815 0.1841 0.5611

(0.0437) (0.0314) (0.041) (0.0695)

No. of stock-periods 0.000006 0.000020 0.000026 0.000001

(0.000006) (0.000006) (0.000009) (0.000045)

No. of Observations 6 6 5 7

R-Square 0.9980 0.9983 0.9986 0.9610

B. Correlation Analysis

Spearman Rank Correlation

Coefficient

0.0857 0.4857 0.5571 0.9643

Prob(Zero Correlation) 0.8717 0.3287 0.3293 0.0005

Notes : A. Results from OLS regression of difference in herding statistics (H|1| −H2) in tables 5 to 8 on intercept, average number of trades in
sub-groups, value of H2 and number of stock-periods in sub-group. Standard errors are given in parentheses. B. Rank correlation analysis of
the sub-groups with respect to H|1| and H2.
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Figure 1: Expected H
qs

|1| statistic and components

Notes : The figure shows (in percentages) a stock’s expected H|1| measure (EH1) and
its two components, the expected absolute dispersion (EADH) and the adjustment
factor (AF) as functions of the number of trades in the stock. It also shows the true
underlying herding parameter of 10%. See appendix 5 for information on calculations
and parameter inputs.

Figure 2: Expected H
qs

|1| statistics and true herding parameters

Notes : The figure shows (in percentages) the expectedH|1| measure (EH1) for various
levels of true herding (δ) as functions of the number of trades in the stocks, as well as
the levels themselves. See appendix 5 for information on calculations and parameter
inputs.
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Figure 3: Mean Square Errors for H|1| and H2
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Notes : The graph shows the mean square error for H2 (the solid lines) and H|1| (the dashed lines) on the vertical axis with number of
observations on the horizontal. We apply a log-log transformation to the axis. Symbols indicate the number of portfolio managers trading at
each observations: Asterisk (∗) n=5, plus (+) n=20, circle with dot (⊙) n=50. True herding parameter δ varies from 0 (top left), 0.05 (top
right), 0.15 (bottom left) to 0.30 (bottom right). Monte Carlo simulation study includes 10,000 repetitions for each parameter combination.
Parameter π is set to 0.5 in all simulations.
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Figure 4: Statistical power of H|1| and H2
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Notes : The graph above displays the power curve for the test of no herding at a 95% confidence level. δ is on the horizontal axis, whereas the
probability of rejection of the null of δ = 0 is on the vertical axis. One can distinguish the results using H|1| (the solid black lines) and H2 (the
dashed gray lines). Symbols indicate the number of portfolio managers trading at each observation: Asterisk (∗) n=5, plus (+) n=20, circle
with dot (⊙) n=50. The number of observations q increases from top left (q=10) to bottom right (q=1000) and is shown at the head of each
panel. Monte Carlo simulation study includes 10,000 repetitions for each parameter combination. Parameter π is set to 0.5 in all simulations.
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