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Abstract 

Background 

Gyrodactylus salaris Malmberg, 1957 has had a devastating impact on wild Norwegian 

stocks of Atlantic salmon Salmo salar L., and it is the only Office International des 

Epizooties (OIE) listed parasitic pathogen of fish. The UK is presently recognised as G. 

salaris-free, and management plans for its containment and control are currently based on 

Scandinavian studies. The current study investigates the susceptibility of British salmonids to 

G. salaris, and determines whether, given the host isolation since the last glaciation and 

potential genetic differences, the populations under test would exhibit different levels of 

susceptibility, as illustrated by the parasite infection trajectory over time, from their 

Scandinavian counterparts. 

Methods 

Populations of S. salar, brown trout Salmo trutta L., and grayling Thymallus thymallus (L.), 

raised from wild stock in UK government hatcheries, were flown to Norway and 

experimentally challenged with a known pathogenic strain of G. salaris. Each fish was lightly 

anaesthetised and marked with a unique tattoo for individual parasite counting. A single 

Norwegian population of S. salar from the River Lærdalselva was used as a control. Parasite 

numbers were assessed every seven days until day 48 and then every 14 days. 

Results 

Gyrodactylus salaris regularly leads to high mortalities on infected juveniles S. salar. The 

number of G. salaris on British S. salar rose exponentially until the experiment was 

terminated at 33 days due to fish welfare concerns. The numbers of parasites on S. trutta and 

T. thymallus increased sharply, reaching a peak of infection on days 12 and 19 post-infection 

respectively, before declining to a constant low level of infection until the termination of the 

experiment at 110 days. 

Conclusions 

The ability of S. trutta and T. thymallus to carry an infection for long periods increases the 

window of exposure for these two hosts and the potential transfer of G. salaris to other 

susceptible hosts. This study demonstrates that G. salaris can persist on S. trutta for longer 

periods than previously thought, and that the role that S. trutta could play in disseminating G. 

salaris needs to be considered carefully and factored into management plans and epidemics 

across Europe. 

Keywords 

Parasite, Salmo salar, Atlantic salmon, Salmo trutta, Brown trout, Thymallus thymallus, 

Grayling, Susceptibility, Monogenea, Pathogen 



Background 

There are over 430 described species of Gyrodactylus, small ectoparasitic monogenean 

worms principally infecting fish [1]. While most species of Gyrodactylus cause relatively 

little harm to their hosts, other species such as Gyrodactylus salaris Malmberg, 1957 which is 

an OIE (Office International des Epizooties) listed pathogen, has had a notable catastrophic 

impact on Norwegian populations of juvenile Atlantic salmon, Salmo salar L. [2,3]. This 

parasite species was introduced to Norway on at least three separate occasions [4] and to date 

has been recorded from 49 Norwegian rivers, and the effects on the S. salar populations have 

necessitated extreme measures to control the parasite. These include the use of the biocide 

rotenone to kill-out complete river systems in order to remove the entire resident fish and, 

consequentially, the G. salaris population [3,5]. Given the impact that G. salaris has had in 

Scandinavia and Russia [6-9], Norway and the UK have surveillance programmes screening 

species of native salmonids that may serve as potential hosts for G. salaris. In the UK, this 

includes monitoring resident populations of potential hosts such as brown trout Salmo trutta 

L., Arctic charr Salvelinus alpinus (L.), grayling Thymallus thymallus (L.) and S. salar, whilst 

in Norway farmed rainbow trout Oncorhynchus mykiss (Walbaum) and both farmed and wild 

S. salar populations are screened. 

The reports of G. salaris in Poland [10] and Italy [11] purportedly linked to the movement of 

salmonid stocks across borders emphasise the biosecurity risk this pathogen poses to 

countries with resident salmonid populations. 

Great Britain and Northern Ireland (forming the United Kingdom), and some selected 

watersheds in Finland, are currently recognised G. salaris-free following the studies of 

Platten et al. [12], Shinn et al. [13], and on-going government-based surveillance 

programmes (www.scotland.gov.uk for Scotland; www.cefas.defra.gov.uk for England and 

Wales). Given the value of the UK’s recreational S. salar and S. trutta fishing, which is worth 

in excess of £350 million [14], it is important that the UK’s G. salaris-free status is upheld. 

Coarse and game angling figures for Scotland in 2010 were estimated at over £100 million 

(www.scotland.gov.uk), whilst recreational and commercial S. salar and S. trutta fisheries in 

England and Wales in 2001 (last figures available) had a capital value of £130 million 

(www.cefas.defra.gov.uk). 

Other than S. salar, G. salaris has been demonstrated to colonise and reproduce on a large 

number of salmonids [15-21], and, under experimental studies, on a number of non-salmonid 

species as well [22-25]. The lack of clinical signs of disease on some of these hosts may 

allow G. salaris infections to go undetected. This is well demonstrated by the study of 

Paladini et al. [11], where the examination of formalin-preserved material in farm archives 

indicated that G. salaris had been in Italy on O. mykiss for at least nine years prior to 

discovery. Such asymptomatic hosts may represent a serious problem in that they can serve 

as reservoirs playing an important role in the epidemiology and dispersal of G. salaris across 

Europe [26-28]. 

Existing UK dispersion models [29] and management plans for the containment of G. salaris 

are based on the assumption that in the worst-case scenario, British stocks of S. salar would 

be vulnerable to G. salaris and therefore at risk [30,31], as would all the salmonids within an 

area occupied by S. salar, which may act as reservoir hosts. No assumptions are made for 

other salmonids in the UK. Although S. trutta have a widespread distribution throughout 



England and Wales, it is mainly towards the west of the country where their occurrence 

overlaps with the natural habitat range of wild S. salar. Likewise, many O. mykiss 

aquaculture sites in the UK are in close proximity to resident S. trutta populations; it is 

assumed that British populations of S. trutta would be entirely resistant to G. salaris infection 

and unaffected [15,32,33]. The natural distribution of T. thymallus populations in the UK 

overlaps with both S. salar and S. trutta. From previous studies, it is suggested that T. 

thymallus would be relatively resistant to G. salaris infection, although it has been 

demonstrated that the parasite can survive and reproduce on Scandinavian T. thymallus for 

143 days [16,34]. 

Following models determined for Scandinavian populations of S. trutta and T. thymallus [3], 

these hosts are thought to harbour low-level infections of G. salaris for a few weeks, not 

displaying the exponential increase in numbers seen on S. salar, although they may act as 

reservoirs of infection. Native UK stocks of S. trutta and T. thymallus, however, have been 

separated from their Scandinavian counterparts since the last period of glaciation [35-37], and 

their relative patterns of susceptibility and/or resistance may therefore differ from those 

predicted from Norwegian studies. Assumptions that UK S. salar are susceptible to G. salaris 

are derived from a few earlier studies which tested the susceptibility of two Scottish 

populations of S. salar (i.e. from the Rivers Shin and Conon) to G. salaris originating from 

the River Figga, county Nord-Trøndelag, Norway [31,38,39]. The experimental exposure of 

other British salmonids (i.e. S. trutta, T. thymallus, etc.) to G. salaris has not been conducted 

to date. 

The current study determines for the first time the responses of different English and Welsh 

salmonids to a pathogenic strain of G. salaris and sets out to make a contribution, not only to 

existing UK national G. salaris management planning, but also to disease risk management 

across Europe. The findings from this study highlight the importance of reservoir hosts in the 

risk of establishment and spread of G. salaris, increasing its rapid spread and placing greater 

pressure on parasite detection and management approaches. The study also discusses the 

extent to which laboratory conditions might affect the results of infection experiments, and 

gauge whether extrapolation from existing results is appropriate for UK management policy. 

Methods 

All experimental procedures and husbandry practices involving animals were conducted in 

compliance with the Animals Scientific Procedures Act 1986 (Home Office Code of Practice. 

HMSO: London, January 1997), in accordance with EU regulation (EC Directive 

86/609/EEC), and approved by the Animal Ethics and Welfare Committee of the University 

of Stirling, UK. The experimental work was also approved by the Norwegian Animal 

Research Authority (NARA). 

Origin of experimental salmonid populations 

Populations of S. salar, S. trutta and T. thymallus supplied for this study were obtained from 

registered Environment Agency fish farms located in England and Wales. Wild adult 

broodstock of each species were captured by means of electrofishing and transported live to 

hatchery facilities. The fish were subsequently held, stripped of eggs and milt, and the off-

spring reared under the conditions described. This work was authorised and conducted by 



staff of the Environment Agency under the statutory duty to maintain, improve and develop 

fisheries in England and Wales. 

i) Salmo salar from the River Dee, Wales 

In 2010/2011, eggs from wild S. salar caught in the River Dee, Northern Wales, were 

stripped, fertilised and reared to 0+ parr in the Environment Agency’s (EA) Maerdy 

Hatchery, Corwen, Conwy, Wales (52°59’18.18” N; 3°27’48.18” W). The eggs began 

hatching around mid-January 2011. The fish were reared on ambient water (av. 2.7°C) from 

the Afon Ceirw using a natural photoperiod regime and a 1% body wt day
−1

 daily feed ration 

(Skretting Nutra Parr 02). The fish had a mean total length of 67.0 ± 0.2 mm and a mean 

weight of 3.4 ± 0.3 g at the time they were transported to Norway. 

ii) Salmo trutta from the River Tyne, England 

In November 2010, adult S. trutta broodstock were collected from the River Rede, a tributary 

of the River Tyne, Northumberland, England. The ripe female fish were stripped and 

fertilised, and the eggs maintained at the EA’s Kielder Hatchery (55°14’00.45” N; 

2°34’39.69” W). Egg hatching occurred over the period March to April 2011. The eggs and 

juvenile fish were maintained at ambient water temperatures (0–18.5°C), with natural 

photoperiod conditions and a 0.1–2.8% body wt day
−1

 daily feed ration (Skretting Emerald 

Fry 00, 01 and 02 crumb) over a period of 303–316 days, until they were transported to 

Norway. The 0+ parr had a mean total length of 85.2 ± 0.5 mm and a mean weight of 4.45 ± 

0.4 g at the time of transportation. 

iii) Thymallus thymallus from the River Nidd, England 

Thymallus thymallus broodstock originating from the River Nidd, Knaresborough, England 

were stripped and the eggs reared in the EA’s Calverton Fish Farm (53°02’01.43” N; 

1°03’05.95” W). Egg hatching began in April 2011. The fish were reared on borehole water 

(mean 10 ± 1°C) and a constant natural photoperiod (05.00-21.30 without adjustment). First 

ad libitum feed was Artemia salina for approximately two weeks, followed by a gradual 

weaning onto Coppens TroCo Crumble Top and Crumble HE feed. Throughout the rearing 

phase, the dried diet was supplemented by gamma-radiated chironomids. The 0+ T. thymallus 

had a mean total length of 111.7 ± 0.7 mm and weight 12.7 ± 0.5 g at the time of their 

transportation to Norway in January 2012. 

iv) Salmo salar from the River Lærdalselva, Norway, control group 

The S. salar juveniles (age 0+, mean total length 90.5 ± 0.5 mm, mean weight 5.5 ± 0.5 g) 

used as a control for this trial originated from the River Lærdalselva (61°02’ N; 7°36’ W), 

western Norway, and were obtained from the Ljøsne hatchery, near Lærdal. The fish were 

reared on ground water, heated to 11°C during the first week post-hatching, and subsequently 

on heated ground water at 9°C for the rest of the culture period until their transfer to the 

Norwegian Veterinary Institute (NVI) in Oslo. Fish were fed ad libitum with a commercial 

pellet diet (Skretting Nutra Plus 01). The fish were transported to the NVI in oxygenated 

water, using the same methodology described in the section below (“Transportation of 

salmonids to Norway”) to ensure similar conditions for both control and experimental fish. 

Upon arrival at the fish holding department, the fish were immediately transferred to a 



holding tank (60 × 60 × 70 cm) and acclimated in laboratory water at 11°C for seven days 

prior to the start of the experiment. A single tank of 10 fish was used during the trial. 

Transportation of salmonids to Norway 

In January 2012, 70 S. salar originating from the Welsh River Dee, 70 S. trutta from the 

English River Tyne, and 70 T. thymallus from the English River Nidd were transported from 

Environment Agency fish farms to the secure research aquarium facility within the NVI in 

Oslo. Each population of fish was prepared by EA staff at the hatchery, by double-bagging 

the fish in oxygenated polyethylene bags and placing them on chill packs, to ensure a stable 

temperature during transportation. These were sealed in International Air Transport 

Association (IATA)-approved robust polystyrene boxes, each of which measured 65 cm 

(depth) × 58 cm (length) × 49 cm (width). The polystyrene boxes were then placed inside a 

double-walled cardboard box to ensure protection during transportation. The relevant 

permissions from the Chief Veterinary Officer in the UK and in Norway, from the Norwegian 

authorities (The Directorate for Nature Management and the Food Safety Authorities) and 

from the NVI, were obtained before the fish were shipped. The project was also monitored by 

senior government officials and fish biologists within Defra (Department of the Environment, 

Fisheries and Rural Affairs), London; the EA (Environment Agency), National Fisheries 

Laboratory, Brampton; and, at Cefas (Centre for Environment, Fisheries & Aquaculture 

Science), Weymouth Laboratory, UK. The fish were transported using the specialist live 

animals courier, Gulf Agency Company (GAC) Logistics, through Manchester International 

airport to Gardermoen Airport, Oslo, Norway. Once a visual health inspection of the fish and 

their welfare by the on-duty veterinary surgeon at Oslo had been made and were cleared as fit 

to continue their onward journey, the fish were transported immediately to the NVI, Oslo 

research facility. The fish, still within their plastic bags, were transferred to 0.6 m (diameter) 

× 0.7 m (depth) fibreglass tanks supplied with a constant 11 ± 1°C water flow rate of 200 ml 

min
−1

 and additional aeration; the temperature of the water in the bags was allowed to adjust 

to that of the tank, before the bags were opened and the fish released. No fish were lost 

during the 6 h transportation exercise, i.e. from the time they were packed to the time they 

were released in their tanks at NVI. The fish were left to acclimate for a further seven days 

before the infection trial was started. The source of the water used within the aquarium was 

from the Oslo city domestic supply, which passes through a particle filter (Structural C-2160-

F7 composite, 310 L) and an activated carbon filter (GAK 170) prior to use. 

Source of Gyrodactylus salaris used for the trial 

The G. salaris strain used in the experiment, i.e. mitochondrial haplotype A [4], was obtained 

from wild S. salar juveniles, sampled by electrofishing in the River Fusta, northern Norway 

(65°54'9.57"N 13° 9'50.92"E). This particular strain of G. salaris has previously been tested 

experimentally and shown to be pathogenic to S. salar [40]. 

Gyrodactylus salaris infection procedure 

Thirty fish from each population were randomly selected, using the simple random sample 

(SRS) method [41], and then infected by transferring them to a static 30 L tank with aeration 

into which approximately 3,000 G. salaris had been added by gently scraping the excised fins 

of heavily infected aquarium-held fish. This approach has been used effectively in the past 

[16,32,42] to ensure an infection of 50–80 parasites fish
−1

 over a 24 h exposure period, and it 

assumes that 50% of parasites will successfully transfer to the new host. Following the 



exposure period, each fish, which was tattooed with a unique mark using alcian blue (40 mg 

ml
−1

), was lightly anaesthetised in metacain Finquel® Vet. (50 mg L
−1

), and the total number 

of G. salaris on each fin and body zone was counted under a Leica MZ7.5 dissecting 

microscope at × 4 magnification. This anaesthetic has also been used in previous experiments 

[43,44], as it does not affect Gyrodactylus survival. Alcian blue marking was preferred as a 

rapid, reliable, easy, and long-lasting method [45], rather than fin clipping, as fins are the 

preferred microhabitat of G. salaris [3]. 

Each fish was then randomly assigned to one of three experimental tanks (10 L circular; 

flow-through 200 ml min
−1

). Each population was tested in triplicate (each replicate n = 10 

juvenile fish), with the exception of the River Lærdalselva Norwegian S. salar control, which 

was already a standardised model previously tested in several trials by the same research 

aquarium, and for which only a single tank of 10 fish was infected. The S. trutta population, 

however, was highly aggressive when separated into the three small tanks of 10 fish each. For 

this reason, a single 0.6 × 0.7 m fibreglass tank (30 L; flow-through 200 ml min
−1

) containing 

all 30 fish was used for the S. trutta trial. 

Seven days later, each tank of fish was anaesthetised and the number of G. salaris on each 

individually marked fish was determined by manual counting parasites with the aid of a Leica 

MZ7.5 stereo-microscope. The fish were sampled approximately every seven days thereafter 

until day 48 and then every 14 days. The fish were fed with a commercial pelleted diet 

(Skretting Nutra Parr 1.8) once a week. 

Results 

The dynamics of G. salaris infection on each of the three salmonid populations originating 

from England and Wales were compared against an infection of G. salaris on Norwegian S. 

salar over trials lasting up to 110 days. The parasite numbers on each individually marked 

fish and the mean of each replicate are shown in Figures 1 and 2, while the mean parasite 

burden and the range for each population of fish, at each sampling time point, are presented 

in Table 1. The initial G. salaris infection burdens, 24 h post-infection (p.i.), were: 87.0 

parasites fish
−1

 (28–215) on the Welsh S. salar from the River Dee; 79.6 parasites fish
−1

 (46–

108) on the Norwegian control; 59.7 parasites fish
−1

 (32–107) on S. trutta; and, 59.8 parasites 

fish
−1

 (28–146) on T. thymallus (see Table 1). 

Figure 1 Gyrodactylus salaris Malmberg, 1957 on two strains of Atlantic salmon Salmo 

salar L. Experimental infection of G. salaris (Fusta strain, haplotype A) on (A) S. salar (n = 

30; three replicates of 10 fish each), from the River Dee in Wales, UK; and (B) the control 

group of S. salar (n = 10) from the River Lærdalselva, Norway. The growth on the two hosts 

(Welsh and Norwegian S. salar populations) is shown on the same scale for direct 

comparison. Grey dotted lines represent the number of parasites assessed on each 

individually marked fish; mean intensity of infection is shown in blue line, including standard 

error of the mean (SEM). 

Figure 2 Gyrodactylus salaris Malmberg, 1957 on brown trout Salmo trutta L. and 

grayling Thymallus thymallus (L.). Experimental infection of G. salaris (Fusta strain, 

haplotype A) on a population of (A) S. trutta (n = 30), from the River Tyne in England, UK; 

and (B) T. thymallus (n = 30; three replicates of 10 fish each), from the River Nidd in 

England, UK. The growth on S. trutta and T. thymallus is shown on the same scale for direct 



comparison. Grey dotted lines represent the number of parasites assessed on each 

individually marked fish; mean intensity of infection is shown in blue line, including standard 

error of the mean (SEM). 



Table 1 Intensity of Gyrodactylus salaris Malmberg, 1957 infection on Salmo salar L. from the River Dee, Wales and from the 

Laerdalselva, Norway (control group), from Salmo trutta L. from the River Tyne, England and from Thymallus thymallus (L.) from the 

River Nidd, England 

Time points (days) Salmo salar Salmo salar (control) Salmo trutta Thymallus thymallus 

(R. Dee, Wales) Laerdalselva, Norway (R. Tyne, England) (R. Nidd, England) 

1 87.0 ± 8.2 (28–215) 79.6 ± 6.6 (46–108) 59.7 ± 3.5 (32–107) 59.8 ± 4.3 (28–146) 

5 157.4 ± 11.2 (76–314) 183.4 ± 17.0 (114–291) 90.1 ± 8.5 (39–280) 93.4 ± 7.5 (37–251) 

12 343.6 ± 21.3 (151–615) 349.1 ± 35.8 (184–544)
a
 145.9 ± 13.4 (55–305) 182.5 ± 8.4 (94–310) 

19 581.6 ± 28.6 (200–923) 560.4 ± 35.3 (385–679) 74.0 ± 7.2 (20–191) 252.6 ± 11.7 (144–385) 

26 1043.5 ± 54.1 (511–1812) 1003.1 ± 73.2 (714–1284) 52.0 ± 5.6 (9–137) 206.7 ± 14.8 (77–436) 

33 1741.5 ± 93.1 (810–2890) 1459.7 ± 111.5 (1114–2165) 37.3 ± 5.5 (4–138) 151.1 ± 13.3 (34–293)
d
 

40 - - 20.7 ± 4.4 (1–133) 66.1 ± 7.8 (5–158) 

49 - - 13.1 ± 2.8 (0–84) 29.7 ± 4.9 (0–115) 

63 - - 11.8 ± 2.4 (0–63) 16.9 ± 2.7 (0–48) 

77 - - 14.5 ± 3.0 (0–70)
b
 8.5 ± 1.9 (0–38)

e
 

100 - - 10.6 ± 1.8 (0–39)
c
 2.1 ± 0.8 (0–21)

f
 

110 - - 0.9 ± 0.3 (0–6) 0.3 ± 0.2 (0–5) 

Footnotes: Fish mortalities throughout the duration of the experiment. Parasite numbers were assessed on dead individuals. 

Control S. salar: 
a
three dead fish not linked with G. salaris infection. 

Salmo trutta: 
b
five dead fish due to power outage and temporary cessation in water flow on day 69; 

c
further two dead fish due to the stress 

derived by the previous power outage. 

Thymallus thymallus: 
d
one dead fish; 

e
further five dead fish due to power outage and temporary cessation in water flow on day 69; 

f
further six 

dead fish due to the stress derived by the previous power outage. 

The mean intensity ± standard error of the mean (SEM) and the range in parentheses are presented for each time point post-infection (p.i.) and 

host. 



The results obtained demonstrate that the Welsh S. salar are highly susceptible to G. salaris 

infection (mean intensity ~1,742 parasites fish
−1

 in 33 d; see Figure 1A), when compared 

against the Norwegian control tank of fish which had a mean infection intensity of ~1,460 

parasites fish
−1

 over the same time period (Figure 1.B). These fish were unable to initiate a 

successful defence against the parasite and the experiment was terminated on day 33 p.i. due 

to concerns for fish welfare, following the classical initial symptoms of parasitic disease, e.g. 

flashing, eroded fins, increased mucus production giving the fish a grey colouration. 

The infections of G. salaris on the S. trutta from the River Tyne peaked after ~12 days (mean 

intensity 145.9 parasites fish
−1

; Figure 2A), whilst those on the River Nidd T. thymallus 

peaked after ~19 days (mean intensity 252.6 parasites fish
−1

; Figure 2B). Thereafter, the 

extent of parasite infection decreased on both hosts. The G. salaris infection had almost 

disappeared on both sets of fish by the time the experiment was terminated on day 110 p.i. 

The population of G. salaris on three of the 30 T. thymallus that were tested appeared to 

display two peaks of infection on days 19 (av. 238.0 ± 49.4 parasites fish
−1

) and 33 (av. 250.3 

± 62.2 parasites fish
−1

) p.i., with a subsequent steady decrease in parasite numbers from day 

26 p.i. until the experiment was terminated on day 110 p.i. Salmo trutta showed a similar 

response, with three S. trutta displaying two peaks of infection on days 12 (av. 119.3 ± 14.2 

parasites fish
−1

) and 26 (av. 83.0 ± 10.1 parasites fish
−1

) p.i., with a subsequent steady 

decrease in numbers from day 19 p.i. onwards. By day 110 p.i., the infection on most fish had 

disappeared; only seven of the S. trutta were still infected (range 1–6 parasites fish
−1

; see 

Figure 2A), and only two of the 30 T. thymallus were infected (i.e. one with one parasite, the 

other with five G. salaris; see Figure 2B). 

The experiment was terminated on day 110 p.i. out of welfare concerns for the fish and that 

sufficient data had been collected to inform the likely response of these populations of fish to 

G. salaris (haplotype A) infection. Prolonging the infection was unlikely to result in 

additional information and would incur additional unnecessary operational costs. 

A power outage on day 69 p.i., which resulted in an overnight temporary cessation in water 

flow to the T. thymallus and S. trutta tanks, resulted in the loss of five S. trutta and five T. 

thymallus. In the following two parasite counts, an increase in parasite number was observed 

on 23 of the 30 S. trutta and on two of the 30 T. thymallus. The parasites on the dead fish 

were counted immediately on the discovery of the fish mortalities, and were included in the 

total count. After the power outage, the number of parasites on each of the five dead S. trutta 

were counted following their removal. Only the parasite number on one fish had increased 

(i.e. from one to eight G. salaris fish
−1

), whilst on the other four fish the number had 

decreased (i.e. from 63 to 12; from 28 to 11; from 17 to two; and from 16 to two G. salaris 

fish
−1

). The number of G. salaris on the dead T. thymallus were also determined and in each 

case the number of parasites had decreased. 

The remaining pools of fish from the Rivers Dee (n = 40), Lærdalselva (n = 10), Nidd (n = 

40) and Tyne (n = 10) that were brought in for the experiment but not subjected to 

experimental infection were maintained in separate tanks throughout the duration of the 

experimental trial. There were no mortalities in these tanks of fish over the 110 day trial 

period, and were confirmed free of an existing Gyrodactylus infection by visual examination. 

Figure 3 shows the average distribution of G. salaris across the body and fins of each fish 

species throughout the experimental infection, and the graphs illustrate the importance of the 

fins as the preferred site of infection. The distribution of G. salaris on the two S. salar 



populations (Figure 3A–B) suggests that pectoral, caudal and pelvic fins are the preferred 

sites of colonisation, where the parasites are evenly distributed over time. The number of G. 

salaris on the Welsh S. salar was also seen to increase on the eyes throughout the duration of 

the trial, although not given as a specific category in Figure 3A. The distribution of G. salaris 

on S. trutta and T. thymallus indicates that parasites have a preference towards occupying the 

caudal fin during the first 19 days of infection, and following this period, pectoral fins are the 

preferred site of colonisation on both hosts (Figure 3C–D). After 19 days, the parasite 

numbers on S. trutta increased also on the pelvic fins, whilst the third most colonised body 

part for T. thymallus was the dorsal fin (Figure 3C–D). 

Figure 3 Distribution of Gyrodactylus salaris Malmberg, 1957 on the fins and body of 

the four salmonids. The distribution of G. salaris (Fusta strain, haplotype A) on the fins and 

body of a population of: (A) Atlantic salmon Salmo salar L. from the River Dee, Wales, UK 

(n = 30); (B) the S. salar control from the River Lærdalselva, Norway (n = 10); (C) brown 

trout Salmo trutta L. from the River Tyne, England, UK (n = 30); and (D) grayling Thymallus 

thymallus (L.) from the River Nidd, England, UK (n = 30). The growth on the two S. salar 

populations, and on S. trutta and T. thymallus is shown on the same scale for direct 

comparison. 

Discussion 

The infection of Welsh S. salar from the River Dee followed the expected infection trajectory 

with fish being highly susceptible to G. salaris infection. The trial found infections rapidly 

rose to ~1,742 parasites per fish in just 33 days. This finding is in close agreement with the 

response of S. salar (Atlantic strain) populations from elsewhere, including those tested from 

Scotland [31]. 

The increasing number of G. salaris observed on the eyes of the Welsh S. salar may be 

explained in that the eye represents an immunologically-privileged site [46,47] and therefore 

the immune response to parasitic infection is believed to be lower on this organ [48]. The 

observed increase in the number of parasites may reflect parasites moving away from skin 

and fin sites to avoid the host’s immune response, as has been suggested by other researchers 

[49-51]. 

The River Tyne S. trutta and the River Nidd T. thymallus were both responsive to G. salaris 

infection, with parasite numbers increasing and then subsequently declining to near extinction 

over the 110 days the trial was run. 

Differences in the mean length of fish between species may affect parasite infection 

dynamics, as shown in other gyrodactylid model systems [52,53]. Although every attempt 

was made to provide similar sized fish from the available stocks for the start of the 

experimental trial and although there were differences in the length and weights of each host, 

the infection protocol resulted in similar starting infections (see Figure 2A–B; Table 1). The 

intra-variability in G. salaris infections shown by S. trutta and T. thymallus may be due to 

different susceptibilities within the same host species [54]. The different initial infection 

numbers seen on the four hosts may be due to the individual behaviour of the fish during the 

infection period, although all the fish were treated the same. There were no mortalities as a 

direct result of parasitic infection and there was no discernible change in fish behaviour. The 

S. trutta population was initially divided into three small groups of 10 fish each, but soon 



after the split, the fish showed highly aggressive behaviour causing losses of half of the 

population. The aggressive behaviour, including biting, chasing and fighting, in juvenile S. 

trutta has been previously documented [55] as a consequence of territoriality and competition 

for food in confined spaces. It is not clear, however, why aggression levels in the current trial 

increased dramatically with fish being split up into smaller groups, since the fish densities in 

the three small tanks with 10 fish each and in the single large tank containing 30 fish were the 

same. The lack of habitat enrichment within the tanks, i.e. features within which fish can hide 

or avoid aggression, may be a causal factor independent of stocking density. 

The distribution of G. salaris on S. trutta and T. thymallus changed over time from the caudal 

fin in the first three weeks post infection, to the pectoral fins thereafter (Figure 3C–D). The 

shift in host sites may be a result from localised host immune reactions induced by the 

parasites [51,56]. 

Five S. trutta and five T. thymallus were lost due to a power outage on day 69 p.i., which 

temporarily stopped the water flow in the tanks. The stress imposed on the remaining fish, 

coupled with the possibility of parasite transfer from dead hosts due to fish cannibalism [57], 

are possible explanations for the observed small increase in parasite numbers on day 77 p.i. 

There was no marked variance, however, in parasite numbers between dead and live fish, 

therefore the average G. salaris intensity of infection on S. trutta and T. thymallus in the 

following counts are not considered to be due to parasites moving off the dead fish and 

colonising new hosts. 

Although every precaution was taken to ensure fish welfare was upheld throughout the 

duration of the susceptibility trial, the level of stress placed upon each population of fish 

during their transportation from the UK to Norway and in their experimental tanks is not 

known. Whilst the 110 day period of infection may not accurately reflect how British 

populations of S. trutta in the wild would respond to G. salaris, if introduced into the UK, the 

trial has shown that the River Tyne population of S. trutta are able to manage infections and 

keep numbers to a low level, even under periods of anticipated stress. Although there were no 

G. salaris-related S. trutta or T. thymallus mortalities, the concern is that populations of these 

two species under stress may extend the period over which individuals can carry an infection 

of G. salaris, therefore, increasing the possible risk of parasite transfer to other fish species. 

Currently, 18 G. salaris mitochondrial haplotypes (strains) have been identified by 

cytochrome oxidase I (COI) analysis [4,11,58-64]. Most of the previous experimental 

findings (see Table 2), however, are based on studies using G. salaris “originating” from the 

River Lierelva (Norway), i.e. haplotype F according to the study of Hansen et al. [4]. This 

haplotype has been commonly found on O. mykiss and S. salar [4,58], and is also found on 

Arctic charr [64]. The study conducted by Bakke & MacKenzie [31] on Scottish S. salar, 

however, used a strain of G. salaris originating from the River Figga, Norway (Table 2), 

most likely corresponding to haplotype A (though not stated, this is interpreted from the map 

of haplotype distribution presented in Hansen et al. [4]). The strain of G. salaris used in the 

current study was derived from the River Fusta in the Vefsna region of Norway and 

corresponds to haplotype A, which has been demonstrated to be pathogenic to a Norwegian 

strain of S. salar [40]. 



Table 2 Gyrodactylus salaris Malmberg, 1957 haplotypes used in previous experiments ascertaining the susceptibility of different strains 

of Salmo salar L. (A = Atlantic strain; B = Baltic strain) 
Reference Origin of S. salar tested in previous studies (rivers) Origin of the G. salaris strain G. salaris 

haplotype 

Parasite population 

dynamics 

Host response1 

Bakke [53] A: Alta, Lone, Drammenselva and Lierelva (Norway) R. Drammenselva F exponential growth susceptible 

 B: Neva (Russia) R. Drammenselva F declining after 3 weeks responding 

Bakke & MacKenzie 

[31] 

A: Conon and Shin (Scotland) and Lierelva (Norway) R. Figga A* exponential growth susceptible 

Bakke et al. [30] A: Alta and Lone (Norway) R. Drammenselva F exponential growth susceptible 

 B: Neva (Russia) R. Drammenselva F declining after 3 weeks innately resistant and 

responding 

Bakke et al. [65] A: Akerselva (Norway) unknown unknown exponential growth susceptible 

Bakke et al. [32] A: Alta (Norway) R. Lierelva F exponential growth susceptible 

 ♀A × ♂ Salmo trutta hybrids: Alta (Norway) × Fossbekk 

(Norway) 

R. Lierelva F declining after 3 weeks innately resistant and 

susceptible 

 ♂A × ♀ S. trutta hybrids: Alta (Norway) × Fossbekk 

(Norway) 

R. Lierelva F elimination in 2 weeks innately resistant 

Bakke et al. [26] A: Lierelva (Norway) R. Rauma A exponential growth susceptible 

 A: Lierelva and Batnfjordselva (Norway) R. Batnfjordselva and 

Steinkjerselva 

A and A* exponential growth susceptible 

 A: Namsen and Alta (Norway) R. Lierelva F exponential growth susceptible 

 A × B hybrids: Imsa (Norway) × Neva (Russia) R. Lierelva F declining after 4 weeks responding 

 B: Neva (Russia) R. Lierelva F declining after 3 weeks responding 

Bakke et al. [66] A: Lierelva (Norway) R. Figga A* exponential growth susceptible 

 B: Indalsälv (Sweden) R. Figga A* slightly declining after 4 

weeks 

responding and susceptible 

Cable et al. [42] A: Alta and Lierelva (Norway) R. Lierelva F exponential growth susceptible 

 B: Neva (Russia) R. Lierelva F declining after 3 weeks innately resistant and 

responding 

Dalgaard et al. [38] A: Conon (Scotland) R. Lærdalselva F exponential growth susceptible 

 B: Lule (Sweden) R. Lærdalselva F declining after 6 weeks responding 

Dalgaard et al. [39] A: Conon (Scotland), Skjern (Denmark) and Bristol Cove 

(Canada) 

R. Lærdalselva F exponential growth susceptible 

 B: Mörrum (Sweden) R. Lærdalselva F exponential growth susceptible 

Jansen et al. [67] A: Imsa (Norway) R. Lierelva F exponential growth susceptible 

 ♀A × ♂B hybrids: Imsa (Norway) × Neva (Russia) R. Lierelva F exponential growth susceptible 

current study A: Dee (Wales), Lærdalselva (Norway) R. Fusta A exponential growth susceptible 

Footnotes: 1Host response presented using the three categories defined by Bakke et al. [26], i.e. susceptible, responding or innately resistant. 

*Haplotypes tentatively proposed based on their geographic origin and their relative proximity to defined strains [4]. 



The importance of including brown trout Salmo trutta in the current trial 

One of the most interesting findings from the current trial arises from the infection of G. 

salaris on the population of S. trutta from the River Tyne. Prior to this study, S. trutta had 

been considered resistant to G. salaris infection. Jansen & Bakke [15], for example, infecting 

both individual and pooled (i.e. 50 fish per tank) samples of S. trutta with the strain of G. 

salaris from the River Lierelva (haplotype F), found that fish could carry an infection for up 

to 50 days. The current study found that when a pool of S. trutta were each given an initial 

infection of ~70 G. salaris per fish, then the G. salaris infections on these fish persisted for at 

least 110 days, when the experiment was terminated. Of these, seven of the 30 fish were still 

infected with between one and six parasites each. 

Salmo trutta parr naturally infected with G. salaris at low intensities have been reported by a 

number of authors [68-71]. The studies by Tanum [68] and Mo [69] also demonstrated that S. 

trutta were able to maintain their G. salaris infections when cohabited with infected S. salar. 

A study by Bakke et al. [32] found that S. trutta exposed to infected fins of S. salar for 24 h 

and subsequently held in isolation eliminated their G. salaris infections in less than two 

weeks, suggesting that they could be innately resistant. Harris et al. [33] also considered S. 

trutta to be innately resistant to G. salaris when, after exposing groups of fish to infected S. 

salar fins for 24 h, the fish lost their infections within 42 days. In a survey by Jansen & 

Bakke [15], anadromous S. trutta from the River Lierelva were cohabited with heavily 

infected S. salar from the Lierelva for five days, and then either isolated and held 

individually or maintained as a group. In both cases, the infections of G. salaris on the S. 

trutta persisted for approximately 49 days p.i. In a repeat trial using a stock of S. trutta from 

Lake Tunhovd, Norway, the infection of G. salaris on the isolated S. trutta (n = 21) persisted 

for 28 days, whilst the infection on grouped fish (n = 21) lasted for 21 days p.i. These trials 

suggested that S. trutta can serve as a carrier for disseminating the parasite, although it is not 

able to support an infection with G. salaris for long periods [15]. 

The current study, however, found that English S. trutta can carry an infection of G. salaris 

for at least 110 days, and this finding appears to contradict those of previous studies 

[15,32,33]. This might be explained by genetic differences between each population of S. 

trutta, as also shown in a study [72] using three-spined sticklebacks, Gasterosteus aculeatus 

L. artificially infected with Gyrodactylus gasterostei Gläser, 1974, or by a potential different 

pathogenicity between G. salaris haplotypes (Table 2), i.e. Jansen & Bakke [15], Bakke et al. 

[32] and Harris et al. [33] who used haplotype F, while the current experiment used 

haplotype A. Additional studies, therefore, are required to elucidate this further. 

The importance of including grayling Thymallus thymallus in the current trial 

English and Welsh grayling are commonly infected with Gyrodactylus thymalli Žitňan, 1960, 

a congener morphologically and genetically similar to or conspecific with G. salaris 

[60,61,67,73,74]. Previous experimental studies, however, suggested that the Lierelva strain 

of G. salaris (haplotype F) is unable to show high pathogenicity on the Scandinavian T. 

thymallus, although infections could persist for anything between 35 [16] and 143 days [34]. 

In both studies, the experiments were terminated with a low number of parasites still on their 

hosts. Likewise, the infections of G. salaris on T. thymallus in the current study were not 

completely outside the expected response, with a low level of parasites remaining on fish for 

the duration of the 110-day experiment. Only two out of the 30 T. thymallus, however, were 

still infected at the end of the trial. The finding that English T. thymallus can carry infections 



for long periods of time gives cause for concern in that they may play a role in extending the 

infection window for other more susceptible hosts. Given the debate regarding their 

conspecificity, that G. thymalli exists within the UK and that the UK has been separated from 

mainland Europe for ~200,000 years [37], the inclusion and experimental exposure of British 

T. thymallus to G. salaris was important. 

The experimental infection procedure 

The period of experimental exposure used in the current study was 24 h and follows the 

methodology used in other G. salaris infection trials [16,32,42]. There is, however, no 

standard exposure period, and the times reported in the scientific literature appear to vary 

markedly, e.g. 48 h as used by Jansen et al. [66], Bakke et al. [75] and Dalgaard et al. [39], 

72 h as employed by Bakke & MacKenzie [31], and up to two weeks in the study by Bakke et 

al. [30]. The experimental exposure period used in the current trial, however, was shown to 

be effective, resulting in a 100% prevalence of infection. 

Conclusions 

The findings from this trial are significant in that they demonstrate: 1) that Welsh S. salar, as 

with Scottish S. salar, are also susceptible to G. salaris; 2) that T. thymallus respond in a 

similar manner to their Scandinavian counterparts and carry infections for up 110 days; and, 

3) that English S. trutta are responsive to a G. salaris infection, but can harbour infections for 

longer than those reported for Norwegian populations, i.e. 110+ days as opposed to 50 days. 

The differences in S. trutta susceptibility observed in the present study and compared with 

previous Scandinavian trials [15,32,33], may suggest that potential genetic differences have 

been accumulated in S. trutta strains following their isolation since the last period of 

glaciation. These extended windows of infection and the interpretation of “resistance” need to 

be considered carefully in terms of the role that S. trutta could play within the context of 

national management planning and subsequent management in the event of a G. salaris 

outbreak. 

Current national surveillance programmes for G. salaris in the UK focus on areas where S. 

salar are dominant, with relevant sites being sampled on a regular basis, i.e. at least once a 

year. Other sites, perhaps through limitations of manpower and other resources, are sampled 

less frequently. The demonstration from this study that G. salaris can persist on S. trutta for 

long periods would suggest that surveillance of S. trutta farms and of watercourses inhabited 

by S. trutta, especially where the two salmonids co-exist, should be increased. Given the 

suggested association of O. mykiss movements and emerging G. salaris infections, it is also 

recommended that during a suspected outbreak, S. trutta in and around O. mykiss sites are 

carefully monitored. While standard operating procedures (SOPs) for the processing and 

identification of G. salaris were recently addressed by Shinn et al. [76], based on the 

information from the present study, current national management plans, which already do not 

allow any fish movements in the event of a suspected outbreak, may benefit from a 

clarification of the potential role that S. trutta could play in the spread of G. salaris. The 

findings from this study demonstrate that G. salaris can persist on S. trutta for longer periods 

than previously thought and that reservoir hosts, such as S. trutta and T. thymallus, for G. 

salaris may play a more significant role in epidemics than previously believed. 
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