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Abstract 35 

Relative to essential amino acids (EAA), carbohydrate (CHO) ingestion stimulates a delayed 36 

response of net muscle protein balance (NBAL). We investigated if staggered ingestion of CHO and 37 

EAA would superimpose the response of NBAL following resistance exercise, thus resulting in 38 

maximal anabolic stimulation. Eight recreationally-trained subjects completed two trials, combined 39 

(COMB; drink one- CHO plus EAA, drink two- placebo) and separated (SEP; drink one- CHO, 40 

drink two- EAA) postexercise ingestion of CHO and EAA. Drink one was administered 1 h 41 

following an acute exercise bout and was followed by drink two 1 h later. A primed, continuous 42 

infusion of L-[ring-
13

C6]-phenylalanine was combined with femoral arteriovenous sampling and 43 

muscle biopsies for the determination of muscle protein kinetics. Arterial amino acid concentrations 44 

increased following ingestion of EAA in both conditions. No difference between conditions was 45 

observed for phenylalanine delivery to the leg (COMB: 167±23 µmol/min/100mL leg vol*6 h; SEP: 46 

167±21 µmol/min/100mL leg vol*6 h, P>0.05). In the 1
st
 hour following ingestion of the drink 47 

containing EAA, phenylalanine uptake was 50% greater for SEP than COMB. However, 48 

phenylalanine uptake was similar for COMB (110±19 mg) and SEP (117±24 mg) over the 6 h 49 

period. These data suggest that whereas separation of CHO and EAA ingestion following exercise 50 

may have a transient physiological impact on NBAL, this response is not reflected over a longer 51 

period. Thus, separation of CHO and EAA ingestion is unnecessary to optimize post-exercise 52 

muscle protein metabolism. 53 

 54 

Key words: Nutrient Timing, Resistance Exercise Recovery, Muscle Protein Balance, Muscle 55 

Protein Synthesis. 56 

57 
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Introduction 58 

Nutritional strategies aimed at maximizing the anabolic response of muscle to resistance exercise 59 

interest individuals who would benefit from muscle growth (Rennie and Tipton 2000; Tipton and 60 

Ferrando 2008; Wolfe 2002; Wolfe 2006). The provision of nutrients in close proximity to exercise 61 

is required to switch net muscle protein balance (NBAL) - the metabolic basis for changes in 62 

muscle mass - from negative to positive (Biolo et al. 1997; Tipton et al. 1999). Multiple factors, 63 

including nutrient timing (Tipton et al. 2001; Tipton et al. 2007), modulate the acute post-exercise 64 

response of muscle protein metabolism to nutrition. For the maximal stimulation of NBAL, careful 65 

timing of nutrient provision in relation to exercise should be considered (Churchward-Venne et al. 66 

2012; Tipton and Witard, 2007). Hence, timing of nutrient intake in relation to exercise and the 67 

provision of other nutrients may be important for maximising NBAL.  68 

 69 

Essential amino acids (EAA) (Borsheim et al. 2002; Borsheim et al. 2004a; Tipton et al. 1999) and, 70 

to a lesser extent, carbohydrates (CHO) (Borsheim et al. 2004b Miller et al. 2003;) influence the 71 

response of NBAL following resistance exercise. The independent ingestion of EAA after 72 

resistance exercise results in a rapid and profound improvement in NBAL, primarily by stimulation 73 

of muscle protein synthesis (MPS) ( Borsheim et al. 2002; Drummond et al. 2008a; Miller et al. 74 

2003; Tipton et al. 1999). Less pronounced is the impact of post exercise CHO ingestion on muscle 75 

protein metabolism ( Borsheim et al. 2004a; Borsheim et al. 2004b; Miller et al. 2003). Whereas 76 

CHO alone has little, if any, impact on MPS following exercise ( Borsheim et al. 2004b; Miller et 77 

al. 2003) post exercise NBAL is improved (Borsheim et al., 2004b), primarily due to insulin-78 

mediated attenuation of muscle protein breakdown (MPB) following exercise (Biolo et al. 1999; 79 

Glynn et al. 2010a).  80 
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Relative to amino acids, not only is the magnitude of the response of NBAL to CHO less (Miller et 81 

al. 2003), but the onset of improved NBAL with CHO ingestion is delayed (Borsheim et al. 2004b) 82 

during postexercise recovery. Despite rapid increases in arterial plasma insulin concentrations 83 

following CHO ingestion, there is no improvement in NBAL during the first hour after CHO intake 84 

(Borsheim et al. 2004b; Miller et al. 2003). However, NBAL is increased during the second and 85 

third hours after CHO intake ( Borsheim et al. 2004b; Miller et al. 2003). Hence, peak NBAL post 86 

exercise does not appear to coincide with its peak insulin concentration; rather the action of insulin 87 

on NBAL is delayed (Borsheim et al. 2004b). Thus, taken together with the immediate response of 88 

NBAL to EAA ingestion (Borsheim et al. 2002; Borsheim et al. 2004a; Miller et al. 2003; Tipton et 89 

al. 2001) a nutritional strategy that coordinates the differing time-related responses of NBAL to 90 

CHO and EAA may result in an additive effect that may prove beneficial for maximizing NBAL.  91 

 92 

The co-ingestion of CHO with a source of EAA postexercise is known to increase NBAL (Miller et 93 

al., 2003; Borsheim et al., 2004a; Glynn et al., 2010a). All past studies that have examined the 94 

impact on NBAL of co-ingesting CHO and amino acids have administered the nutrients 95 

simultaneously (Borsheim et al. 2004a; Koopman et al. 2007; Miller et al. 2003). Given that the 96 

response of NBAL to insulin from CHO ingestion appears to be delayed (Borsheim et al. 2004b; 97 

Miller et al. 2003), we propose that postponing the intake of EAA relative to CHO could amplify 98 

the response of NBAL during exercise recovery. That is, provision of EAA such that the peak 99 

responses of CHO and EAA are superimposed should enhance the overall response of NBAL 100 

following exercise. Since Borsheim et al. demonstrated NBAL does not begin to increase until ~1 h 101 

after CHO ingestion (Borsheim et al. 2004b), we chose to administer a drink containing 15 g of 102 

EAA 1 h after a drink containing 50 g of CHO. The chosen doses of CHO and EAA were intended 103 

to provide a robust response of NBAL based on previous work that demonstrated stimulation of 104 
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NBAL by ingestion of 50 g of CHO (Miller et al. 2003) and a maximal stimulation of MPS with 10 105 

g of EAA (Cuthbertson et al. 2005). Thus, the primary aim of the present study was to investigate 106 

whether the timing of EAA ingestion in relation to CHO ingestion impacts the response of amino 107 

acid uptake, representative of NBAL, to resistance exercise. We hypothesized that the staggered 108 

post exercise ingestion of CHO and EAA would elicit a greater anabolic response of muscle during 109 

exercise recovery compared with the simultaneous post exercise ingestion of CHO and EAA.  110 

 111 

Materials and Methods  112 

Subjects  113 

Eight (5 males, 3 females) recreationally-active volunteers (age: 29.8 ± 2.5 yr; BMI: 25.3 ± 4.4 kg / 114 

m
2
; leg volume: 10.0 ± 0.8 L) were recruited to participate in this study. Individuals who 115 

participated in regular exercise 1-3 times per week, but abstained from regular resistance training or 116 

competitive sports were eligible to participate. This study was conducted according to the 117 

guidelines laid down in the Declaration of Helsinki and all procedures involving human subjects 118 

were approved by the Institutional Review Board and the General Clinical Research Center 119 

(GCRC) of the University of Texas Medical Branch, Galveston. All subjects completed a series of 120 

medical screening tests for the purpose of disclosing any pre-existing medical or physical 121 

conditions that would preclude participation in the study. The study design, purpose, and possible 122 

risks were explained to each subject before written consent was obtained. Participants were 123 

reminded of their right to withdraw from the study at any time without provision of reason.     124 

 125 

Study overview  126 

This experimental protocol was designed to quantify the response of NBAL, as represented by 127 

phenylalanine balance across the leg following ingestion of EAA and CHO during recovery from an 128 
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intense resistance exercise bout. Each participant completed two trials within a single-blinded, 129 

randomized study design (Figure 1). The response of NBAL was determined following exercise 130 

when the ingestion of CHO and EAA were combined (COMB) or separated (SEP). In COMB, 131 

participants consumed a drink containing CHO and EAA 1 h following exercise followed by a 132 

placebo drink 1 h later. In SEP, a drink containing only EAA was ingested 1 h following 133 

consumption of a drink containing CHO only. Trials were separated by at least 1 wk and no more 134 

than 2 mos. Since previous studies showed no differences in the anabolic response to EAA 135 

ingestion at 1 and 3h following exercise (Rasmussen et al. 2000), any differences detected between 136 

treatments in the present study could be attributed to the composition of the ingested solutions. 137 

Pretesting 138 

Anthropometric measures 139 

Leg volume was estimated using an anthropometric approach as previously described (DEMPSTER 140 

et al., 1964).  141 

One repetition maximum (1RM) exercise test 142 

At least five days prior to the study protocol, a 1RM test of bilateral leg strength on leg extension 143 

was determined for each subject as previously described (Mayhew et al. 1995). The mean 1RM 144 

value achieved was 92.1±11.9 kg. 145 

Experimental protocol 146 

Subjects were admitted to the GCRC the night before each infusion study, given a standardized 147 

meal and then allowed only water (ad libitum) until the commencement of the study the following 148 

morning. At ~05:45, an 18-gauge, polyethylene catheter was inserted into a vein on the forearm to 149 

allow blood sampling. Additionally, a polyethylene catheter (Cook, Inc., Bloomington, IN) was 150 

inserted into the femoral vein and femoral artery under local anaesthesia. Both femoral catheters 151 

were used for blood sampling. In addition, the femoral arterial catheter was used for indocyanine 152 
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green (ICG) infusion for determination of leg blood flow as per Tipton et al. (2003) (Tipton et al., 153 

2003). Systemic concentration of ICG was measured from a peripheral vein. Patency of all catheters 154 

was maintained by saline infusion. A blood sample was taken prior to an intense, leg resistance 155 

exercise bout and NBAL was determined over a 6 h period following ingestion of the first drink. A 156 

primed (2 µmol·kg
-1

) L-[ring-
13

C6]-phenylalanine tracer (infusion rate: 0.05 µmol·kg
-1

·min
-1

) was 157 

continuously infused from time point -180 min for 9 h (until time point 360 min).  158 

Exercise protocol 159 

The exercise bout consisted of 10 sets of 8 repetitions of leg extensions at 80% 1RM, interspersed 160 

by a 2 min rest interval between sets, which was completed in ~25 min. We have previously utilized 161 

this routine to increase blood flow and muscle protein metabolism (8, 9). 162 

Drink composition and timing schedule 163 

Subjects consumed two drinks in each trial, drink 1 at 1 h post exercise and drink 2 at 2 h post 164 

exercise. In SEP, drink 1 contained 50g of sucrose and drink 2 contained 15g of EAA. In COMB, 165 

drink 1 contained 50g of sucrose plus 15g of EAA and drink 2 was a placebo drink, comprising of 166 

an artificial sweetener. The amino acid content of the EAA drink was based on the composition of 167 

muscle protein (in percent wt:wt): His, 10.9; Iso, 10.1; Leu, 18.6; Lys, 15.5; Meth, 3.1; Phe, 15.5 168 

(including 3.8% L-[ring-
13

C6]-phenylalanine; Thr, 14.7; Val, 11.5). All drinks were dissolved in 500 169 

mL of water.  170 

Blood sampling 171 

At ~06:00 (- 180 min), background blood samples for amino acid enrichment and ICG 172 

concentration were taken. Thereafter, arteriovenous (A-V) samples were collected at -12 and -8 min 173 

for the post exercise/pre-drink period, and at 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 140, 174 

160, 180, 210, 240, 270, 300, 330 and 360 min for the measurement of the amino acid enrichments 175 

and concentrations.  176 
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Muscle biopsies 177 

Four biopsies per trial were collected from separate incisions during the post exercise period; biopsy 178 

one (B1) - immediately pre drink 1, biopsy two (B2) - 1 h post drink 1 and immediately pre drink 2, 179 

biopsy three (B3) – 2 h post drink 1 and 1 h post drink 2, biopsy four (B4) – 6 h post drink 1 and 5 h 180 

post drink 2. Muscle biopsies were taken from the lateral portion of the vastus lateralis muscle ~10-181 

15 cm above the knee using a 5 mm Bergstrom biopsy needle (Depuy, Warsaw, IN). Under local 182 

anesthetic (1% lidocaine), a sample of ~50-100 mg of muscle tissue was extracted from the vastus 183 

lateralis. The sample was rinsed quickly, blotted and divided into two or three pieces before being 184 

frozen in liquid nitrogen and stored at -80°C for future processing.  185 

Blood flow 186 

Leg blood flow was determined using  ICG dilution, as previously described (Biolo et al. 1995; 187 

Phillips et al. 1997). Briefly, a continuous ICG infusion (IR=0.5 mg•min
-1

) was initiated at -25 min 188 

and was maintained until -10 min for the measurement of leg blood flow prior to drink ingestion. 189 

Thereafter, blood flow was determined for five different measurement periods (19-29 min, 59-69 190 

min, 165-180 min, 255-270 min and 340-355 min) designed to characterize changes in leg blood 191 

flow following exercise and drink ingestion. Leg plasma flow was calculated from steady-state 192 

values of dye concentration and converted to blood flow using hematocrit values (Biolo et al. 1997; 193 

Elliot et al. 2006; Tipton et al. 2004).  194 

Analyses 195 

Blood 196 

The enrichment of phenylalanine in whole blood was measured by Gas Chromatography-Mass 197 

Spectrometry (GC-MS; model 5989B, Hewlett-Packard, Palo Alto, CA) (see Table S1). Briefly, 198 

500 µL of the sulfosalicylic extract was passed over a cation exchange column (Dowex AG 50W-199 

8X, 100-200 mesh H+ form; Bio-Rad Laboratories, Richmond, CA) and dried under vacuum using 200 
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a Speed Vac (Savant Instruments, Farmingdale, NY). The amino acids were converted to their tert-201 

butyldimethylsilyl (t-BDMS) derivative. Isotopic enrichments were calculated as a tracer-to-tracee 202 

ratio (t/T).  203 

Concentrations of phenylalanine and leucine were determined using an internal standard solution 204 

and GCMS analysis, as previously described (Biolo et al. 1995). The internal standards used were 205 

[U-
13

C9-
15

N] phenylalanine (50 µmol/L) and L-[
13

C6]leucine (115 µmol/L), added in a ratio of ~100 206 

µL/mL of blood. Because the tube weight and the amount of blood were known, the blood amino 207 

acid concentration could also be determined from the internal standard enrichments measured by 208 

GCMS, based on the amount of blood and internal standard added. Leg blood flow was determined 209 

by spectrophotometrically measuring the ICG concentration in serum from the femoral vein and the 210 

peripheral vein as described previously (Biolo et al. 1997; Elliot et al. 2006). Leg plasma flow was 211 

calculated from steady-state values of dye concentration, and converted to blood flow using the 212 

hematocrit (2,3). Serum insulin levels were determined by radioimmunoassay (Diagnostic Products 213 

Corporation, Los Angeles, CA). Intraassay coefficient of variation (CV) was 10%. Plasma glucose 214 

concentrations were determined by the glucose oxidase method using a glucose auto-analyzer 215 

(Beckman Instruments, Brea, CA). 216 

Muscle tissue 217 

Biopsies (~30 mg) were analyzed for mixed protein-bound and free intracellular amino acid 218 

enrichment (see Table S2), as previously described (Biolo et al. 1995; Phillips et al. 1997). Briefly, 219 

tissue was weighed and protein precipitated with 0.5 mL of 10% perchloric acid. The tissue was 220 

then homogenized and centrifuged, and the supernatant (intracellular) was collected. This procedure 221 

was repeated two more times, and the pooled supernatant (~1.3 mL) was processed as described in 222 

Blood. Intracellular enrichment was determined by correction for extracellular fluid on the basis of 223 

the chloride method (Bergstrom et al. 1974). Intracellular amino acid concentrations were measured 224 
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with the internal standard method, with corrections for the contribution of extracellular fluid and for 225 

overlapping spectra, as described in Blood. 226 

The remaining pellet of muscle tissue was used to determine the enrichment of protein-bound L-227 

[ring-
13

C6]phenylalanine using GC-MS (model 5973; Hewlett-Packard) with a splitless injection 228 

and positive electron-impact ionization, as previously described (Phillips et al., 1997; Tipton et al., 229 

1999). Briefly, the pellet was further washed before being placed overnight in an oven at 50°C. The 230 

dried pellet was hydrolyzed at 110°C for 24 h with 6 N hydrochloric acid before being passed over 231 

a cation exchange column (Dowex AG 50W-8X, 100-200 mesh H+ form; Bio-Rad Laboratories, 232 

Richmond, CA), dried by a Speed Vac, and derivatized with t-BDMS, as described for Blood. 233 

Mass-to-charge ratios 237 and 240 were monitored. Enrichment from the protein-bound samples 234 

was determined with a linear standard curve of known m + 6-to-m + 3 ratios and corrected back to 235 

the absolute change in m + 6 enrichment over selected incorporation periods. 236 

Calculations 237 

Glucose uptake 238 

Glucose uptake was calculated at each time point following drink 1 as the A-V difference in glucose 239 

concentration multiplied by the mean blood flow over a specified period of time. Thus:  240 

Glucose uptake = (Ca – Cv) × BF 241 

where Ca = arterial glucose concentration, Cv = venous glucose concentration, and BF = leg blood 242 

flow.  243 

Phenylalanine and leucine delivery to the leg 244 

Phenylalanine and leucine delivery to the leg were calculated at each time point as the femoral 245 

arterial concentration multiplied by the mean blood flow over a specified period of time. Thus;  246 

Amino acid delivery = Ca × BF 247 
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where Ca = arterial amino acid concentration and BF = leg blood flow. Phenylalanine and leucine 248 

delivery to the leg also were calculated as area under the curve (AUC) over a 6 h period following 249 

ingestion of drink one in each drink condition.  250 

Net muscle protein balance (NBAL) 251 

Because phenylalanine is not oxidized in muscle, phenylalanine net balance across the exercised leg 252 

was chosen to represent NBAL. NBAL was calculated at each time point from the difference 253 

between the femoral arterial and venous phenylalanine concentrations multiplied by the mean blood 254 

flow over a specified time period. Thus; 255 

NBAL = (Ca – Cv) × BF 256 

where Ca = arterial phenylalanine concentration, Cv = venous phenylalanine concentration and BF = 257 

leg blood flow.  258 

 259 

The primary endpoint of this study is the comparison of the NBAL over a 6 h recovery period in 260 

COMB and SEP. NBAL (mg) was calculated from the area under the curve (AUC) of NBAL over 261 

the entire 6 h period following ingestion of drink 1 in both drink conditions. AUC of NBAL also 262 

was calculated for 1 and 3 h periods following ingestion of the EAA-containing drink (i.e., drink 263 

1for COMB, drink 2 for SEP) to provide information about the immediate physiological response to 264 

EAA ingestion. Baseline was set as the value prior to the drink in the corresponding condition for 265 

both measurement periods. Positive values represented net uptake (anabolism) and negative values 266 

represented net release (catabolism).  267 

Fractional Synthesis Rate (FSR) 268 

The fractional synthesis rate (FSR) of mixed muscle protein was determined by the rate of 269 

incorporation of L-[ring-
13

C6]phenylalanine over time using the free intracellular muscle L-[ring-270 

13
C6]phenylalanine enrichment as precursor as shown below: 271 
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    FSR (%·h
-1

) = (EM2 – EM1)/(EP·t) × 60 × 100   272 

where EM1 and EM2 = the enrichments of the protein-bound L-[ring-
13

C6]phenylalanine at the start 273 

and end of the chosen sampling period, respectively, EP = the average intracellular L-[ring-274 

13
C6]phenylalanine enrichment over the incorporation period and t = time in min. FSR was 275 

determined for the first hour after EAA ingestion and the entire six hour period of assessment. 276 

 277 

Data presentation and statistical analysis 278 

Due to technical difficulties, muscle intracellular phenylalanine and leucine concentrations are 279 

shown for five subjects. All other data are presented as means ± SE (n = 8) and statistical analyses 280 

were performed using Statistical Package for Social Sciences (SPSS) 15.0 for Windows (SPSS Inc., 281 

Chicago, IL). Significance was set at P < 0.05.  282 

Primary endpoints 283 

NBAL and FSR were compared between COMB and SEP using a two-tailed Paired Student’s t-test.  284 

These comparisons between conditions were made for two time periods each - the first h after 285 

ingestion of the EAA-containing drink (drink one in COMB and drink two in SEP) and the entire 6 286 

h period (5 h after drink two).  287 

Secondary endpoints 288 

Serum insulin concentrations, glucose uptake, plasma and muscle intracellular phenylalanine and 289 

leucine concentrations, phenylalanine delivery to the leg and phenylalanine NBAL across the leg 290 

were analyzed using two-way (drink and time) analysis of variance (ANOVA) with repeated 291 

measures (time-point). Where a significant main effect of drink condition, time or drink condition ×  292 

time interaction was detected, a least significance difference (LSD) post hoc test was performed to 293 

locate the paired-wise differences. Phenylalanine and leucine delivery to the leg over the 6 h period 294 
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following ingestion of drink 1 expressed as AUC were compared between COMB and SEP using a 295 

two-tailed Paired Student’s t-test.   296 

 297 

Results 298 

Insulin and glucose concentrations and glucose uptake 299 

The response of arterial insulin concentrations during COMB and SEP were virtually identical 300 

(Figure 2) peaking at ~65 µU/mL at 20 min following ingestion of either the CHO only or CHO + 301 

EAA drink (drink 1 in both conditions) and returning to baseline by 160 min after ingestion of drink 302 

1 in both COMB and SEP. In both COMB and SEP, a marked increase in glucose concentration and 303 

glucose uptake relative to baseline following CHO ingestion (P < 0.05) was followed by a return to 304 

baseline 120 min later, with no differences detected between conditions (P > 0.05, data not shown).  305 

INSERT FIGURE 2 HERE 306 

Blood amino acid concentrations  307 

Arterial phenylalanine and leucine concentrations for COMB and SEP are shown in Fig. 3. Leucine 308 

concentration declined by ~30% 40-50 min following ingestion of CHO alone compared with 309 

baseline (P < 0.05). Mean phenylalanine concentration also decreased following ingestion of CHO 310 

alone (drink 1, SEP), however this decline failed to reach statistical significance (P > 0.05). 311 

Phenylalanine and leucine concentrations increased immediately in response to ingestion of the 312 

EAA-containing drink (i.e., drink 1 for COMB and drink 2 for SEP) and peaked 30 min following 313 

EAA ingestion for both. Phenylalanine and leucine concentrations remained increased above 314 

baseline for 180 min following the CHO + EAA drink one and 100 min following the EAA drink 315 

two in COMB and SEP, respectively (P < 0.05).  316 

INSERT FIGURE 3 HERE 317 

Muscle intracellular amino acid concentrations 318 
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Intracellular concentrations of phenylalanine and leucine (Table 1) were similar between COMB 319 

and SEP prior to drink ingestion (Biopsy 1) (P > 0.05). Increases in intracellular phenylalanine and 320 

leucine concentrations were observed following ingestion of the EAA-containing drink (Biopsy 2 in 321 

COMB and Biopsy 3 in SEP) (P < 0.05). Phenylalanine concentrations were higher for COMB 322 

compared with SEP 1 h post drink 1 (Biopsy 2) (~110%, P < 0.05) and 2 h post drink 1 (Biopsy 3) 323 

(~58%, P < 0.05). The >2 fold higher mean intracellular leucine concentration in COMB vs. SEP 1 324 

h post drink 1 (Biopsy 2) failed to reach statistical significance (P > 0.05). No difference in leucine 325 

concentration was observed 2 h (biopsy 3) or 6 h (biopsy 4) following drink 1.   326 

INSERT TABLE 1 HERE 327 

Blood flow and amino acid delivery to the leg 328 

Figure 4 shows blood flow for each time period in COMB and SEP. A main effect of time was 329 

observed whereby blood flow was lower 4, 5 and 6 h post drink ingestion vs. pre drink (P < 0.05). 330 

No difference in blood flow was observed between drink conditions (P > 0.05).     331 

INSERT FIGURE 4 HERE 332 

Phenylalanine and leucine delivery to the leg expressed over time is shown in Fig. 5. The general 333 

pattern of delivery was similar for both amino acids. Amino acid delivery decreased from post 334 

exercise values following ingestion of CHO alone (drink 1, SEP), however this decline failed to 335 

reach statistical significance (P > 0.05) A marked increase in amino acid delivery to the leg was 336 

observed in both COMB and SEP following ingestion of the EAA-containing drink (drink 1 in 337 

COMB, drink 2 in SEP). Amino acid delivery to the leg was increased above baseline from 1-2 h 338 

post drink 1 in COMB (P < 0.05). For SEP, amino acid delivery increased above baseline from 30-339 

150 min following EAA (drink 2) ingestion (P < 0.05). No difference between test-drink conditions 340 

was observed for AUC of phenylalanine (COMB: 167 ± 23 µmol/min/100mL leg vol*6 h; SEP: 167 341 

± 21 µmol/min/100mL leg vol*6 h, P > 0.05) or leucine (COMB: 301 ± 33 µmol/min/100mL leg 342 
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vol*6 h; SEP: 290 ± 36 µmol/min/100mL leg vol*6 h, P > 0.05) delivery to the leg when expressed 343 

as AUC over a 6 h period following ingestion of drink 1.   344 

INSERT FIGURE 5 HERE 345 

NBAL across the leg  346 

NBAL over time only is presented in Fig. 6. A biphasic response of NBAL in response to post 347 

exercise drink ingestion was observed for COMB. NBAL switched from negative to positive values 348 

immediately following ingestion of CHO + EAA-containing drink 1 for COMB: mean NBAL 349 

values peaked at 20 min, but declined markedly by ~60 min post drink 1. NBAL peaked a second 350 

time 70-80 min following drink 1 (=10 and 20 min following drink 2), returned to baseline levels 351 

from 120 min and remained at baseline for the remainder of the sampling period. NBAL remained 352 

negative throughout the entire 60 min period following ingestion of CHO-containing drink 1 in 353 

SEP. Immediately following ingestion of the EAA-containing drink 2, NBAL increased markedly; 354 

mean NBAL values peaked at ~40 min post drink 2 (100 min post drink 1). Phenylalanine NBAL 355 

returned to baseline values 120 following drink 2 (180 min following drink 1) and remained at 356 

baseline thereafter.  357 

INSERT FIGURE 6 HERE 358 

Fig. 7 displays net uptake of phenylalanine, i.e. AUC of NBAL, over 1h, 3h and 6h (overall) post 359 

drink periods for COMB and SEP trials. Net uptake of phenylalanine determined 1 h following 360 

ingestion of the EAA-containing drink (i.e., drink 1 in COMB and drink 2 in SEP) was ~50% 361 

higher in SEP vs. COMB (P < 0.05). Net uptake of phenylalanine over the 3 h and entire 6 h period 362 

following ingestion of drink 1 was not different between COMB and SEP (P > 0.05).  363 

INSERT FIGURE 7 HERE 364 

Mixed muscle protein fractional synthetic rate 365 
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Mixed muscle protein FSR, determined over a one hour incorporation period following ingestion of 366 

EAA-containing drink (i.e., drink 1 in COMB and drink 2 in SEP), was not different between 367 

COMB (0.110 ± 0.050  % / h) and SEP (0.109 ± 0.022 % / h, P > 0.05). FSR, determined over the 368 

total 6 h incorporation period, was similar between COMB (0.086 ± 0.007 % / h) and SEP (0.089 ± 369 

0.009 % / h, P > 0.05). 370 

 371 

Discussion 372 

The present study was novel in comparing the response of NBAL to the combined (COMB) 373 

vs. separated (SEP) timed ingestion of EAA in relation to CHO after resistance exercise. EAA 374 

ingested either simultaneously with CHO or delayed by 1h following CHO ingestion resulted in 375 

positive NBAL. NBAL during the 1st hour following ingestion of EAA was ~50% greater when 376 

CHO was ingested 1h prior than when both nutrients were ingested concurrently. However, this 377 

difference in NBAL was not evident when the response was determined over longer time periods, 378 

i.e., for 3h and 6h following EAA ingestion. Thus, any physiological increase in NBAL due to 379 

delayed ingestion of EAA relative to CHO following resistance exercise seems to be transient and 380 

thus unlikely to be important from a practical standpoint.  381 

The increase in postexercise NBAL when EAA ingestion is delayed relative to CHO likely 382 

is a result of superimposing the response of NBAL to each nutrient. It is well established that there 383 

is a robust and immediate response of NBAL to EAA ingestion following – and prior to – resistance 384 

exercise (Borsheim et al. 2002; Drummond et al. 2008a; Tipton et al. 1999; Tipton et al., 2001). 385 

Whereas, there is a response of NBAL to hyperinsulinemia (Borsheim et al. 2004b) from ingestion 386 

of CHO alone following resistance exercise, the magnitude of the response is less than that for EAA 387 

(Borsheim et al. 2004b; Miller et al. 2003). Our results support the results of studies that 388 

demonstrated greater NBAL when EAA and CHO are ingested concurrently compared to CHO 389 
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alone ( Borsheim et al. 2004a; Miller et al. 2003). However, our current results also extend the prior 390 

results by demonstrating that the response to temporal separation of the ingestion of these nutrients 391 

increases NBAL by ~50%, at least initially. This greater response of NBAL in the first hour after 392 

ingestion of EAA in SEP than COMB is likely the result of the immediate response to EAA 393 

superimposed with the delayed response to CHO. 394 

Our data do not allow us to determine the metabolic determinants of the increased NBAL in 395 

both SEP and COMB following EAA ingestion. However, previous studies clearly indicate that the 396 

increase in NBAL from EAA ingestion primarily is due to increased MPS (Borsheim et al. 2002; 397 

Glynn et al. 2010b; Tipton et al. 2001). Our FSR data seem to support this contention. Whereas we 398 

have no measurement of basal MPS in the present study, the mixed muscle FSR determined 1 and 399 

6h after EAA ingestion are ~2X previously reported basal mixed FSR values (Biolo et al. 1995; 400 

Biolo et al. 1997; Dreyer et al. 2006; Drummond et al. 2008a) and are consistent with mixed FSR 401 

reported in response to resistance exercise and hyperaminoacidemia in other studies (Biolo et al. 402 

1997; Burke et al. 2012; Dreyer et al. 2008). Thus, our data suggest that MPS is increased and is a 403 

major contributing factor to the increased NBAL with EAA ingestion following resistance exercise. 404 

Increased MPS, in turn, seems to be associated with the increased delivery of amino acids to the 405 

muscle. Previous work suggests that the increased delivery of amino acids to the muscle and the 406 

subsequent increased transport of amino acids into the muscle may be a critical factor for 407 

stimulation of MPS and NBAL (Biolo et al. 1995; Biolo et al. 1997; Tipton et al. 1999; Tipton et al. 408 

2001). Whereas there was a substantial increase in amino acid delivery to the muscle with EAA 409 

ingestion (Figure 4), we found no overall differences in amino acid delivery to the leg between 410 

drink conditions. Thus, the difference in NBAL in the first hour after EAA ingestion must be due to 411 

factors other than delivery of amino acids to the muscle. These delivery data are supported by the 412 

FSR data for the first hour after EAA ingestion. We noted no differences between trials suggesting 413 
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that increased MPS does not explain the differences in NBAL between COMB and SEP. Previous 414 

work has shown CHO ingestion improves NBAL via an insulin-mediated attenuation of the increase 415 

in MPB following resistance exercise (Borsheim et al. 2004b; Miller et al. 2003). Whereas it is clear 416 

that hyperinsulinemia from CHO ingestion does not impact post-exercise MPS (Koopman et al. 417 

2007; Staples et al. 2011), a decrease in MPB may contribute to the differences in NBAL in the first 418 

hour after ingestion of the EAA in each condition. That is, the delay in the response of NBAL with 419 

CHO ingestion seems to be due primarily to a delayed response of MPB to the CHO ingestion ( 420 

Borsheim et al. 2004b; Miller et al. 2003). Thus, whereas increased NBAL seems likely to be 421 

attributable to an increase in MPS in response to EAA ingestion, the delayed response of MPB to 422 

CHO may contribute to the initial difference in NBAL with separate ingestion of CHO and EAA 423 

compared to simultaneous ingestion of the nutrients.  424 

This study was designed to determine if the physiological response to a temporal separation 425 

of CHO and EAA ingestion was different than that to a simultaneous ingestion of CHO and EAA 426 

following resistance exercise. However, it is possible that our results may be limited to the timing 427 

and amount of ingested nutrients. It is possible that the results simply reflect differences due to 428 

timing of EAA ingestion in relation to the resistance exercise bout rather than in relation to CHO. 429 

We cannot dismiss the possibility that ingestion of EAA 2h following exercise could be more 430 

effective for stimulation of NBAL than 1h following exercise. However, previous data show no 431 

difference in the response of NBAL between 1h and 3h (Rasmussen et al. 2000). Thus, it seems 432 

unlikely that the difference between trials in net uptake in the first hour following ingestion of EAA 433 

is attributable to the timing of EAA ingestion in relation to the exercise bout. Moreover, our results 434 

may be limited to the timing of ingested nutrients chosen for this study. Previously, the peak 435 

response of NBAL seemed to be ~2-3h following CHO ingestion (Borsheim et al. 2004b). In the 436 

present study, the EAA was ingested 1h after CHO and the peak response of NBAL occurred during 437 



30/09/2013 12:10  

 

20 

 

the first hour after EAA ingestion. Thus, it is possible that the optimal confluence of the NBAL 438 

response to the two nutrients may have not been achieved. Nevertheless, the subsequent efflux of 439 

amino acids (Figure 6) suggests that uptake of more amino acids would not have increased net 440 

muscle protein synthesis. 441 

The amount of CHO and EAA ingested also may have an important role in the observed 442 

responses of muscle protein metabolism following exercise. We chose amounts of CHO and EAA 443 

that are above that reported to provide maximal responses (Borsheim et al. 2004b; Cuthbertson et 444 

al. 2005). Thus, our results may be limited to the amounts of nutrients aimed to engender a maximal 445 

response of NBAL. We (Borsheim et al. 2002; Tipton et al. 1999) and others (Dreyer et al. 2008; 446 

Drummond et al., 2008b) have demonstrated that as little as 3-6g of EAA ingested  following 447 

exercise stimulate NBAL. However, the response to smaller amounts may not be maximal 448 

(Cuthbertson et al. 2005). Thus, it is possible that further stimulation of NBAL by prior CHO 449 

ingestion could be more effective with a submaximal response to EAA. Future studies should 450 

investigate factors that could interact with the timing of the nutrients to stimulate postexercise 451 

NBAL. 452 

On the other hand, it could be argued that assessing the physiological impact of EAA 453 

ingestion only in the first hour after ingestion may bias, or at least limit, the interpretation of the 454 

results. It is interesting that, despite a clear 50% increase in NBAL with delayed ingestion of EAA 455 

relative to CHO during the first hour after EAA ingestion, there is no difference when NBAL is 456 

considered over longer time periods, i.e. 3h after EAA ingestion or the entire 6h period. Differences 457 

in interpretation of the results may be due to methodological considerations. Ingestion of large 458 

amounts of EAA results in rapid stimulation of uptake of amino acids (Borsheim et al. 2002; Miller 459 

et al. 2003; Tipton et al., 2001). However, not all amino acids taken up by the muscle are 460 

necessarily incorporated into muscle proteins. This lack of incorporation likely explains the fact that 461 
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the uptake calculated for the first hour after EAA ingestion is different for COMB and SEP, but this 462 

difference does not reflect the response over the longer time periods (Figure 7). It is likely that some 463 

of the amino acids initially transported into the muscle are not incorporated into proteins and there 464 

is a subsequent efflux of these amino acids. The NBAL observed in the last few hours of the 465 

measurement is lower than the baseline values (Figure 6), suggesting that amino acids are released 466 

during this time period and not incorporated into muscle proteins. This notion is supported by our 467 

measured FSR data. There was no difference in FSR in the first hour following EAA ingestion 468 

regardless of whether CHO are ingested simultaneously (COMB) or one hour prior to EAA 469 

ingestion (SEP). Thus, the initial difference in NBAL between COMB and SEP may not reflect a 470 

difference in the incorporation of amino acids taken up by the muscle into muscle proteins due to 471 

increased MPS. Instead, net uptake over longer periods (3h and 6h – Figure 7) may better reflect the 472 

actual physiological anabolic response to the ingestion pattern. 473 

It should be noted that another methodological issue also might have influenced the 474 

response of NBAL. Interestingly, a biphasic response of NBAL to drink ingestion was observed in 475 

COMB, but not SEP. NBAL peaked 20 min after ingestion of the CHO+EAA-containing drink 1 476 

and then a second time ~20 min after ingestion of the water placebo drink 2. The likely driver of 477 

this response of NBAL was the pattern of arterial amino acid concentration that followed a similar 478 

biphasic pattern. This biphasic phenomenon has been observed in a previous study that 479 

administered a first drink containing EAA+CHO followed by a second water placebo drink (Tipton 480 

et al. 2001). Thus, this biphasic pattern seems to be an artifact of the placebo ingestion. 481 

The reason for the second peak in arterial amino acid concentration and NBAL is not 482 

obvious, but it seems unlikely that it significantly impacts the conclusions. One possibility may be 483 

that the 500 mL water placebo drink 2 served to increase the rate of gastric emptying of amino acids 484 

into the gut. It is well known that gastric emptying is increased with a ingestion of high fluid 485 
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volume (Costill and Saltin 1974). Thus, it is feasible that amino acids still remained in the stomach 486 

after the ingestion of drink 1 and the introduction of drink 2 served to increase gastric emptying 487 

leading to increased absorption of amino acids and a second peak in the appearance of amino acids 488 

into the circulation. Since there was no additional drink consumed after the EAA-containing drink 489 

in SEP, arterial concentrations and NBAL begin to decline as gastric-emptying and absorption slow 490 

and amino acids are taken up by tissues, including the liver. This notion is supported by the fact that 491 

arterial amino acid concentrations and delivery are still elevated above baseline at the end of the 6h 492 

period suggesting amino acids continue to be absorbed from the gut. Hence, it is possible that 493 

NBAL during SEP may have been greater if a large volume of fluid was ingested at some point 494 

after the drink 2 in SEP. This biphasic response of NBAL in COMB may have been an artifact of 495 

study design that led to a different response of NBAL for COMB. This changed pattern is unlikely 496 

to influence NBAL calculated over the entire 6h since all amino acids likely would have appeared 497 

into the circulation by this time, albeit at a slower rate. Thus, the physiological relevance of the 498 

similarity in NBAL between trials is uncertain. 499 

 To conclude, our results suggest that delaying the ingestion of EAA by 1h after CHO has a 500 

physiological impact on the postexercise response of NBAL, however this transient effect may not 501 

be sufficient to sustain an improved NBAL over a longer period. The seemingly disparate responses 502 

over the first hour after EAA ingestion compared to the six hours after exercise may be due to 503 

methodological considerations. Regardless, from a practical perspective, separating the ingestion of 504 

CHO and EAA could be considered unlikely to be an important component of a nutritional strategy 505 

aimed at maximizing the anabolic response of muscle to resistance exercise. Instead, a more simple 506 

approach of ingesting CHO and EAA together is sufficient to engender an improved net muscle 507 

protein balance. 508 

 509 



30/09/2013 12:10  

 

23 

 

Acknowledgements 510 

We thank the nurses and staff of the General Clinical Research Center (GCRC) at the University of 511 

Texas Medical Branch in Galveston, TX. We also thank Guy Jones and Jariwala Guarang for their 512 

technical assistance with mass spectrometry. Finally, we thank the volunteers who participated in 513 

the studies for their time and effort.  514 

Author contributions 515 

K.D.T., A.A.F and R.R.W. contributed to the conception and the design of the experiment.  516 

O.C.W., T.L.C. and K.D.T. contributed to collection, analysis, and interpretation of data.  517 

O.C.W., A.A.F., R.R.W. and K.D.T contributed to drafting or revising the content of the 518 

manuscript.  519 

 520 

 521 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30/09/2013 12:10  

 

24 

 

Reference List 

 

Bergstrom, J., Furst, P., Noree, L.O & Vinnars E. 1974. Intracellular free amino acid concentration 

in human muscle tissue. J Appl Physiol 36: 693-697. 

Biolo, G., Maggi, S.P., Williams, B.D., Tipton, K.D & Wolfe, R.R. 1995. Increased rates of muscle 

protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 

268: E514-E520. 

Biolo, G., Tipton, K.D., Klein, S & Wolfe, R.R. 1997. An abundant supply of amino acids enhances 

the metabolic effect of exercise on muscle protein. Am J Physiol 273: E122-E129. 

Biolo, G., Williams, B.D, Fleming, R.Y & Wolfe R.R. 1999. Insulin action on muscle protein 

kinetics and amino acid transport during recovery after resistance exercise. Diabetes 48: 

949-957. 

Borsheim, E., Aarsland, A. & Wolfe, R.R. 2004a. Effect of an amino acid, protein, and 

carbohydrate mixture on net muscle protein balance after resistance exercise. Int J Sport 

Nutr Exerc Metab 14: 255-271. 

Borsheim, E., Cree, M.G., Tipton, K.D., Elliott, T.A., Aarsland, A & Wolfe, R.R. 2004b. Effect of 

carbohydrate intake on net muscle protein synthesis during recovery from resistance 

exercise. J Appl Physiol 96: 674-678. 

Borsheim, E., Tipton, K.D., Wolf, S.E & Wolfe, R.R. 2002. Essential amino acids and muscle 

protein recovery from resistance exercise. Am J Physiol Endocrinol Metab 283: E648-E657. 



30/09/2013 12:10  

 

25 

 

Burke L.M., Winter J.A., Cameron-Smith, D., Enslen, M., Farnfield, M & Decombaz, J. 2012. 

Effect of intake of different dietary protein sources on plasma amino Acid profiles at rest 

and after exercise. Int J Sport Nutr Exerc Metab 22: 452-462. 

Churchward-Venne, T.A., Burd, N.A & Phillips, S.M. 2012. Nutritional regulation of muscle 

protein synthesis with resistance exercise: strategies to enhance anabolism. Nutr Metab 

(Lond) 9: 40. 

Costill, D.L & Saltin, B. 1974. Factors limiting gastric emptying during rest and exercise. J Appl 

Physiol 37: 679-683. 

Cuthbertson, D., Smith, K., Babraj, J., Leese, G., Waddell, T., Atherton, P., Wackerhage, H., 

Taylor, PM & Rennie, M.J. 2005. Anabolic signaling deficits underlie amino acid resistance 

of wasting, aging muscle. FASEB J 19: 422-424. 

DEMPSTER W.T., SHERR, L.A & PRIEST, J.G. 1964. CONVERSION SCALES FOR 

ESTIMATING HUMERAL AND FEMORAL LENGTHS AND THE LENGTHS OF 

FUNCTIONAL SEGMENTS IN THE LIMBS OF AMERICAN CAUCASOID MALES. 

Hum Biol 36: 246-262. 

Dreyer, H.C., Drummond, M.J., Pennings, B., Fujita, S., Glynn, E.L., Chinkes, D.L., Dhanani, S., 

Volpi, E & Rasmussen, B.B. 2008 Leucine-enriched essential amino acid and carbohydrate 

ingestion following resistance exercise enhances mTOR signaling and protein synthesis in 

human muscle. Am J Physiol Endocrinol Metab 294: E392-E400. 

Dreyer, H.C., Fujita, S., Cadenas, J.G., Chinkes, D.L., Volpi, E & Rasmussen, B.B. 2006. 

Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and 

protein synthesis in human skeletal muscle. J Physiol 576: 613-624. 



30/09/2013 12:10  

 

26 

 

Drummond, M.J, Bell, J.A., Fujita, S., Dreyer, H.C., Glynn, E.L., Volpi, E & Rasmussen, B.B. 

2008a. Amino acids are necessary for the insulin-induced activation of mTOR/S6K1 

signaling and protein synthesis in healthy and insulin resistant human skeletal muscle. Clin 

Nutr 27: 447-456. 

Drummond, M.J., Dreyer, H.C., Pennings, B., Fry, C.S., Dhanani, S., Dillon, E.L., Sheffield-Moore, 

M., Volpi, E et al: 2008b. Skeletal muscle protein anabolic response to resistance exercise 

and essential amino acids is delayed with aging. J Appl Physiol 104: 1452-1461. 

Elliot, TA., Cree, M.G., Sanford, A.P., Wolfe, R.R & Tipton, K.D. 2006 Milk ingestion stimulates 

net muscle protein synthesis following resistance exercise. Med Sci Sports Exerc 38: 667-

674. 

Glynn E.L., Fry, C.S., Drummond, M.J., Dreyer, H.C., Dhanani, S., Volpi, E & Rasmussen B.B 

2010a. Muscle protein breakdown has a minor role in the protein anabolic response to 

essential amino acid and carbohydrate intake following resistance exercise. Am J Physiol 

Regul Integr Comp Physiol 299: R533-R540. 

Glynn, E.L., Fry, C.S., Drummond, M.J., Timmerman, K.L., Dhanani, S., Volpi, E & Rasmussen 

B.B. 2010b. Excess leucine intake enhances muscle anabolic signaling but not net protein 

anabolism in young men and women. J Nutr 140: 1970-1976. 

Koopman, R., Beelen, M., Stellingwerff, T., Pennings, B., Saris, W.H., Kies, A.K., Kuipers, H & 

van Loon LJ. 2007. Coingestion of carbohydrate with protein does not further augment 

postexercise muscle protein synthesis. Am J Physiol Endocrinol Metab 293: E833-E842. 



30/09/2013 12:10  

 

27 

 

Mayhew, J.L., Prinster, J.L., Ware, J.S., Zimmer, D.L., Arabas, J.R & Bemben, M.G. 1995 

Muscular endurance repetitions to predict bench press strength in men of different training 

levels. J Sports Med Phys Fitness 35: 108-113. 

Miller, S.L., Tipton, K.D., Chinkes, D.L., Wolf, S.E & Wolfe, R.R. 2003. Independent and 

combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc 

35: 449-455. 

Phillips, S.M., Tipton, K.D., Aarsland, A., Wolf, S.E & Wolfe, R.R. 1997. Mixed muscle protein 

synthesis and breakdown after resistance exercise in humans. Am J Physiol 273: E99-107. 

Rasmussen, B.B., Tipton, K.D., Miller, S.L., Wolf, S.E & Wolfe, R.R. 2000. An oral essential 

amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance 

exercise. J Appl Physiol 88: 386-392. 

Rennie, M.J. & Tipton, K.D. 2000. Protein and amino acid metabolism during and after exercise 

and the effects of nutrition. Annu Rev Nutr 20: 457-483. 

Staples, A.W., Burd, N.A., West, D.W., Currie, K.D., Atherton, P.J., Moore, D.R., Rennie, M.J., 

Macdonald, M.J., Baker, S.K & Phillips, S.M. 2011 Carbohydrate does not augment 

exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc 43: 1154-

1161. 

Tipton, K.D., Borsheim, E., Wolf, S.E., Sanford, A.P & Wolfe, R.R. 2003. Acute response of net 

muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am J 

Physiol Endocrinol Metab 284: E76-E89. 



30/09/2013 12:10  

 

28 

 

Tipton, K.D., Elliott, T.A., Cree, M.G., Aarsland, A.A., Sanford, A.P & Wolfe, R.R. 2007.  

Stimulation of net muscle protein synthesis by whey protein ingestion before and after 

exercise. Am J Physiol Endocrinol Metab 292: E71-E76. 

Tipton, K.D., Elliott, T.A., Cree, M.G., Wolf, S.E., Sanford, A.P & Wolfe, R.R. 2004. Ingestion of 

casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci 

Sports Exerc 36: 2073-2081. 

Tipton, K.D & Ferrando, A.A 2008. Improving muscle mass: response of muscle metabolism to 

exercise, nutrition and anabolic agents. Essays Biochem 44: 85-98. 

Tipton, K.D, Ferrando, A.A., Phillips, S.M., Doyle, D., Jr. & Wolfe R.R. 1999. Postexercise net 

protein synthesis in human muscle from orally administered amino acids. Am J Physiol 276: 

E628-E634. 

Tipton, K.D, Rasmussen, B.B., Miller, S.L., Wolf, S.E., Owens-Stovall, S.K., Petrini, B.E & Wolfe, 

R.R. 2001. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle 

to resistance exercise. Am J Physiol Endocrinol Metab 281: E197-E206. 

Tipton, K.D & Witard, O.C. 2007. Protein requirements and recommendations for athletes: 

relevance of ivory tower arguments for practical recommendations. Clin Sports Med 26: 17-

36. 

Wolfe R.R. 2002. Regulation of muscle protein by amino acids. J Nutr 132: 3219S-3224S. 

Wolfe, R.R. 2006. The underappreciated role of muscle in health and disease. Am J Clin Nutr 84: 

475-482. 

 



30/09/2013 12:10  

 

29 

 

 

Figure Captions 

Fig. 1: Schematic representation of the study protocol. AV = arteriovenous; Ex = exercise; BF = 

blood flow. COMB = drink regimen that combined postexercise ingestion of CHO and EAA. SEP = 

drink regimen that separated postexercise ingestion of CHO and EAA. D1 = drink one (CHO+EAA 

or CHO only for COMB and SEP, respectively), D2 = drink two (Placebo or EAA only for COMB 

and SEP, respectively). 

 

Fig. 2: Arterial insulin concentrations (μU / mL) before and following combined (COMB) or 

separate (SEP) ingestion of carbohydrate and essential amino acids. Drink 1 = CHO+EAA or CHO 

only for COMB and SEP, respectively and Drink 2 = Placebo or EAA only for COMB and SEP, 

respectively. 
a
significantly different from -12 min values in COMB. 

b
significantly different from -

12 min values in SEP. Data are means ± SE (n=8).   

 

Fig. 3: Arterial phenylalanine (a) and leucine (b) concentrations (nmol/mL) before and following 

combined (COMB) or separate (SEP) ingestion of carbohydrate and essential amino acids. Drink 1 

= CHO+EAA or CHO only for COMB and SEP, respectively and Drink 2 = Placebo or EAA only 

for COMB and SEP, respectively. 
a
significantly different from -12 min values in COMB. 

b
significantly different from -12 min values in SEP. 

c
significant difference between SEP and 

COMB at corresponding time point (P < 0.05). Data are means ± SE (n=8).   

 

Fig. 4: Blood flow measurements before and following combined (COMB, solid bars) or separate 

(SEP, open bars) ingestion of carbohydrate and essential amino acids. Post Ex = post exercise 

period, PD h1 = post drink hour 1, PD h2 = post drink hour 2, PD h3 = post drink hour 3, PD h5 = 
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post drink hour 5. PD h6 – post drink hour 6. #significantly different (both COMB and SEP taken 

together) from Post Ex.  

 

Fig. 5: Phenylalanine (a) and leucine (b) delivery to the leg before and following combined 

(COMB) or separate (SEP) ingestion of carbohydrate and essential amino acids Drink 1 = 

CHO+EAA or CHO only for COMB and SEP, respectively and Drink 2 = Placebo or EAA only for 

COMB and SEP, respectively. 
a
significantly different from baseline values in COMB (P < 0.05). 

b
significantly different from baseline values in SEP. 

c
significant difference between SEP and 

COMB at corresponding time point (P < 0.05). Data are means ± SE (n=8).     

 

Fig. 6: Phenylalanine net balance across the leg before and following combined (COMB) or 

separate (SEP) ingestion of carbohydrate and essential amino acids. Drink 1 = CHO+EAA or CHO 

only for COMB and SEP, respectively and Drink 2 = Placebo or EAA only for COMB and SEP, 

respectively. . 
a
significantly different from -12 min values in COMB. 

b
significantly different from -

12 min values in SEP. 
c
significant difference between SEP and COMB at corresponding time point 

(P < 0.05). Data are means ± SE (n=8).   

 

 Fig. 7: Net phenylalanine exchange across the leg over 1 h (a), 3 h (b) & 6 h (c) following 

ingestion of drink one for separate (SEP) and combined (COMB) ingestion of CHO and essential 

amino acids trials. *significant difference between SEP and COMB (P < 0.05). Data are means ± 

SE (n=8).  
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Table 1: Mean muscle intracellular amino acid concentrations in COMB and SEP.   

  Phenylalanine  Leucine 

  COMB  SEP  COMB  SEP 

   Mean SE  Mean SE  Mean SE  Mean SE 

Biopsy 1     88 7  79 4  114 11  118 9 

Biopsy 2  197
a 

29  94
c 

17  204
a
 34  95 5 

Biopsy 3  182
a 

24  115
b,c 

13  184
a
 39  181

b
 17 

Biopsy 4  106 12  89 8  142 19  144 17 

 

Values are means (n=5, 3 males and 2 females) ± SE, expressed as nmol/mL IC water. 

COMB=value when drink 1 consisted of carbohydrate and essential amino acids and drink 2 

consisted of placebo. SEP=value when drink 1 consisted of carbohydrate and drink two consisted of 

essential amino acids. Biopsy 1 = biopsy collected immediately post drink one, Biopsy 2 = biopsy 

collected 1 h post drink one, Biopsy 3 = biopsy collected 2 h post drink one, 1 h post drink two, 

Biopsy four = biopsy collected 6 h following drink one, 5 h following drink two. 
a
significantly 

different from Biopsy 1 in COMB, 
b
significantly different from Biopsy 1 in SEP, 

c
significantly 

different from COMB at corresponding time point.  
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