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Abstract. Let T be a tree of order n > 6 with µ as a positive eigenvalue of multiplicity k. Star
complements are used to show that (i) if k > n/3 then µ = 1, (ii) if µ = 1 then, without restriction
on k, T has k + 1 pendant edges that form an induced matching. The results are used to identify
the trees with a non-zero eigenvalue of maximum possible multiplicity.
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1 Introduction

Let G be a graph of order n > 2 with an eigenvalue µ of multiplicity k. (Thus the corresponding
eigenspace of a (0, 1)-adjacency matrix of G has dimension k.) If µ = −1 then k ≤ n− 1, a bound
attained in the complete graph Kn. If µ = 0 and G is connected then k ≤ n−2, a bound attained

in the star K1,n−1. If µ 6= −1 or 0 and n > 4 then k ≤ n + 1
2
−
√

2n + 1
4
, a bound attained when

µ = −2 and n = 36. This last inequality is a reformulation of [1, Theorem 2.3].
For bipartite graphs, reduced upper bounds follow immediately from the fact that the spectrum

is symmetric about 0. For example, k ≤ 1
2
n when µ 6= 0; moreover, if µ2 is not an integer then µ

has an algebraic conjugate µ∗ such that µ,−µ, µ∗,−µ∗ are distinct eigenvalues of multiplicity k,
and so k ≤ 1

4
n. We investigate the structure of a tree T for which k > 1

3
n and µ 6= 0; we may

assume that µ > 0. In this case, if λ1, . . . , λn are the eigenvalues of T , then
∑n

i=1 λ2
i = 2(n−1) and

so 2
3
nµ2 < 2n; we conclude that µ = 1 or

√
2. We shall see that µ = 1, and this is the motivation

for studying the case µ = 1 in general – that is without any restriction on k. It turns out that,
with two exceptions, T has k + 1 endvertices whose neighbours constitute an independent set of
size k+1. The exceptions are K2 and Y6, where Y6 is the unique tree of order 6 with two (adjacent)
vertices of degree 3. As a consequence we are able to identify the trees with a non-zero eigenvalue
of maximum possible multiplicity.

We use star complements, defined as follows for any finite graph G. A star set for µ in G is
a subset X of the vertex-set V (G) such that |X| = k and the induced subgraph G−X does not
have µ as an eigenvalue. In this situation, G−X is called a star complement for µ in G. We recall
various properties of star complements from [3, Chapter 5].

(SC1) Star sets and star complements exist for any eigenvalue of any graph.

(SC2) If G is connected, and if L is a connected induced subgraph of G without µ as an eigenvalue,
then G has a star set X for µ such that G−X is a connected graph containing L.

(SC3) Suppose that G has µ as an eigenvalue of multiplicity k. If X is a star set for µ in G and if
S is a proper subset of X then G− S has µ as an eigenvalue of multiplicity k − |S|.

(SC4) Let V (G) = {1, 2, . . . , n}, and let A be the adjacency matrix of G. Let P be the matrix
which represents the orthogonal projection of IRn onto the eigenspace EA(µ) with respect to
the standard orthonormal basis {e1.e2, . . . , en} of IRn. Then the subset X of V (G) is a star
set for µ in G if and only if the vectors Pei (i ∈ X) form a basis for EA(µ).

(SC5) If µ 6= −1 or 0, if X is a star set for µ in G, and if H = G−X then the H-neighbourhoods
of vertices in X are non-empty and distinct.

(SC6) Suppose that G has µ as an eigenvalue of multiplicity k. Let X be a set of k vertices in the

graph G and suppose that G has adjacency matrix

(
AX BT

B C

)
, where AX is the adjacency

matrix of the subgraph induced by X. Then X is a star set for µ in G if and only if µ is not
an eigenvalue of C and

µI − AX = B>(µI − C)−1B.
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The matrix P of (SC4) is a polynomial in A [3, p.4] and so µPev = APev = PAev =
∑

u∼v Peu,
where we write u ∼ v to mean that vertices u and v are adjacent. More generally, for any µ-
eigenvector x = (x1, . . . , xn)>, we have µxj =

∑
i∼j xi (i = 1, . . . , n), and these equations are

called the eigenvalue equations for x. We shall also require the following observation:

Lemma 1.1. If u, v are adjacent vertices in a star set for G then the edge uv is not a bridge of
G.

Proof. Suppose by way of contradiction that G is obtained from disjoint graphs H, K by joining
the vertex u of H to the vertex v of K. Then the characteristic polynomial PG(x) of G is given
by the following formula of Heilbronner [4]:

PG(x) = PH(x)PK(x)− PH−u(x)PK−v(x). (1)

We also have:

PG−u(x) = PH−u(x)PK(x), PG−v(x) = PH(x)PK−v(x), PG−u−v(x) = PH−u(x)PK−v(x).

(Here we take the characteristic polynomial of an empty graph to be 1.) If µ is an eigenvalue of
G of multilplicity mG(µ) = k, and u, v lie in a star set for µ, we deduce from (SC3) that

k − 1 = mG−u(µ) + mK(µ), k − 1 = mH(µ) + mK−v(µ), k − 2 = mH−u(µ) + mK−v(µ). (2)

It follows from (2) that mH−u(µ) = mH(µ)− 1 and mK−v(µ) = mK(µ)− 1. Hence k = mH(µ) +
mK(µ), and from Equation (1) we have the contradiction (x− µ)k|PH−u(x)PK−v(x). 2

2 Star complements in trees

Suppose that T is a tree of order n with µ as a non-zero eigenvalue of multiplicity k. Let X be
a star set for µ such that T − X is connected. Thus the star complement T − X is a tree H of
order n − k. Since T has no cycles, we can deduce the following in turn using property (SC5).
First, each vertex u in X is adjacent to a unique vertex u′ of H. Secondly, if u, v are distinct
vertices of X then u′ 6= v′. Thirdly, X is an independent set. It follows that the vertices in X
are endvertices. For each u ∈ X, we have µPeu = Peu′ , and so by (SC4), the vertices u′ (u ∈ X)
also form a star set for µ. Since every edge of T is a bridge, it follows from Lemma 1.1 that the
vertices u′ (u ∈ X) are independent. Thus the k pendant edges uu′ (u ∈ X) constitute an induced
matching (that is, their vertices induce kK2). Explicitly, we have:

Proposition 2.1 Let T be a tree with µ as a non-zero eigenvalue of multiplicity k. If X is a
star set for µ in T such that T − X is connected, then each vertex in X has degree 1, and the
neighbours of vertices in X constitute an independent set of size k in T −X.

We first use Proposition 2.1 to prove:

Theorem 2.2. Let T be a tree of order n with µ as a positive eigenvalue of multiplicity k. If
k > 1

3
n then µ = 1.

Proof. Applying (SC2) with L a trivial graph, we see that T has a star set X for µ such that
T −X is connected. We use the notation of (SC6). By Proposition 2.1, we have AX = O, and so
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B>(µI − C)−1B = µI; moreover, vertices may be labelled so that B has the form

(
I
O

)
and C

has the form

(
O M>

M N

)
. Hence (µI − C)−1 has the form

(
µI E>

E F

)
and we have

(
µI −M>

−M µI −N

)(
µI E>

E F

)
=

(
I O
O I

)
.

It follows that µ2I−M>E = I. Since n < 3k the number of rows of E is less than k, and so there
exists a non-zero vector x such that Ex = 0. Now µ2x = x, and the result follows. 2

We now investigate the case µ = 1, without any restriction on k. We write E for the eigenspace
of 1, and Nd(v) for the subgraph induced by vertices at distance at most d from the vertex v.

Theorem 2.3. Let T be a tree with 1 as an eigenvalue of multiplicity k. If T 6= K2 or Y6 then T
has k + 1 pendant edges that form an induced matching.

Proof. Suppose that T is a counterexample to the statement of the theorem. By (SC2), X has
a star set for 1 such that the star complement H = T − X is a tree. By Proposition 2.1, each
vertex u ∈ X has degree 1; moreover, if u′ denotes the neighbour of u then the vertices u′ (u ∈ X)
are distinct and form an independent set in H. We fix u ∈ X. Since T 6= K2, we also have
N1(u

′) 6= K2; thus N1(u
′) is a star without 1 as an eigenvalue. By (SC2), T has a connected

star complement H1 = T − X1 containing N1(u
′). By Proposition 2.1, the k vertices i of X1 are

endvertices whose neighbours i′ form an independent set of size k. Note that this set avoids u′. By
(SC4), the vectors Pei (i ∈ X1) form a basis for E . Also, Peu 6= 0, and so there exists w ∈ X1 such
that another basis for E is obtained when we replace Pew with Peu. Let X2 = {u} ∪ (X1 \ {w}).
Each vertex in X2 has degree 1 and so Pej = Pej′ for all j ∈ X2. Since the vectors Pej′ (j ∈ X2)
form a basis for E , the vertices j′ (j ∈ X2) constitute a star set for 1, and hence are independent
by Lemma 1.1. It follows that u′ ∼ w′ for otherwise the k + 1 edges ii′ (i ∈ X1 ∪ {u}) constitute
an induced matching.

If N2(u
′) does not have 1 as an eigenvalue then by (SC2), there exists a star set X3 such that

T − X3 is a tree containing N2(u
′). But then, with the same notation as above, the k + 1 edges

ii′ (i ∈ X3 ∪ {u}) constitute an induced matching. Hence 1 is an eigenvalue of N2(u
′).

Suppose that u′ has r neighbours of degree 1 and t neighbours of degree greater than 1. Note
that r ≥ 1 since u ∼ u′, and t ≥ 1 since w′ ∼ u′. Moreover, u′ has degree r + t > 2 for otherwise
Pew′ = 0 (since then Peu′ = Peu + Pew′ , while Peu = Peu′). A similar argument shows that
w′ has degree greater than 2. We let u1, . . . , ut be the neighbours of degree greater than 1, and
consider separately the two possibilities (a) N2(u

′) has a 1-eigenvector x with u′-entry 1, (b) all
1-eigenvectors of N2(u

′) have u′-entry 0.
Case (a). If ui has degree di and the ui-entry of x is ai (i = 1, . . . , t), then we find from the

eigenvalue equations for x that

1 = r + a1 + · · ·+ at, ai = 1 + (di − 1)ai (i = 1, . . . , t),

whence di > 2 (i = 1, . . . , t) and

r = 1 +
1

d1 − 2
+

1

d2 − 2
− · · ·+ 1

dt − 2
. (3)
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Eigenvalue equations also show that N2(u
′) has no 1-eigenvector with u′-entry 0, and so 1 is a

simple eigenvalue of N2(u
′). Hence if N2(u

′) = T then k = 1, while N2(u
′) does not have an

induced matching consisting of two pendant edges. Therefore t = 1 and it follows from Equation
(3) that d1 = 3 and r = 2; but then T = Y6, a contradiction. Thus N2(u

′) 6= T and without loss of
generality T has an edge pq with p ∼ ut and q 6= u′. Let L be the induced subgraph of T obtained
from N2(u

′) by adding the edge pq.
We claim that 1 is not an eigenvalue of L. To see this, suppose that y is a 1-eigenvector

of L with ui-entry ci. From the eigenvalue equations we see that the p, q-entries of y coincide
and so ct = 0. We deal first with the case t = 1. If the u′-entry of y is zero then all entries
are zero, a contradiction. If the u′-entry of y is non-zero then r = 1 and so u′ has degree 2,
another contradiction. When t > 1, we find again that the u′ entry of y is non-zero, for otherwise
ci = (di − 1)ci (i = 1, . . . , t − 1), whence ci = 0 (i = 1, . . . , t) and y = 0. Now the eigenvalue
equations yield

r = 1 +
1

d1 − 2
+

1

d2 − 2
− · · ·+ 1

dt−1 − 2
,

in contradiction to Equation (3). Thus 1 is not an eigenvalue of L, and so T has a star set X4

for 1 such that T − X4 is a tree containing L. For each vertex v in X4, the neighbour v′ of v
is not adjacent to u′, and so the k + 1 edges jj′ (j ∈ X4 ∪ {u}) form an induced matching, a
contradiction.

Case (b). In this case, let z be a 1-eigenvector of N2(u
′) with ui-entry ei (i = 1, . . . , t). Since

ei = 0 + (di − 1)ei, either di = 2 or ei = 0. We label vertices so that u1 = w′ and di > 2 if and
only if i = 1, . . . , s; note that s < t since z 6= 0. For j = s + 1, . . . , t, let u′′i be the neighbour of
ui different from u′. Let L1 be the graph obtained from N2(u

′) by deleting u′′s+1, . . . , u
′′
t , and let

L2 be the graph obtained from N2(u
′) by deleting u′′s+1, . . . , u

′′
t and us+1, . . . , ut. If L1 has 1 as an

eigenvalue then (as above)

r + t− s = 1 +
1

d1 − 2
− 1

d2 − 2
− · · · − 1

ds − 2
,

while if L2 has 1 as an eigenvalue then

r = 1 +
1

d1 − 2
− 1

d2 − 2
− · · · − 1

ds − 2
.

Accordingly, one of L1, L2, say L′, does not have 1 as an eigenvalue. Then there exists a star set
X5 for 1 such that T −X5 is a tree containing L′. If v′ is the neighbour of a vertex v ∈ X5 then
v′ 6= ui (i = 1, . . . , s) because v lies outside L′, while v′ 6= ui (i = s + 1, . . . , t) because Peu′ 6= 0.
Now the k + 1 edges jj′ (j ∈ X5 ∪ {u}) form an induced matching, a final contradiction. 2

Since Y6 has spectrum −2,−1, 0, 0, 1, 2 we have the following as an immediate consequence of
Theorems 2.2 and 2.3:

Corollary 2.4. Let T be a tree of order n ≥ 3 with µ as a positive eigenvalue of multiplicity k.
If k > 1

3
n then µ = 1 and T has k + 1 pendant edges that form an induced matching.

We can now identify the trees with an eigenvalue of maximum possible multiplicity. We write
S(K1,h) for the tree obtained from the star K1,h by subdividing each edge.
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Corollary 2.5. Let T be a tree of order n > 6 with µ as an eigenvalue of multiplicity k.

(i) If µ = 0 then k ≤ n− 2, with equality if and only if T = K1,n−1.

(ii) If µ 6= 0 and n is odd, then k ≤ 1
2
(n−3), with equality if and only if µ = ±1 and T = S(K1,k+1).

(iii) If µ 6= 0 and n is even, then k ≤ 1
2
(n − 4), with equality if and only if µ = ±1 and T is

obtained from S(K1,k+1) by adding a pendant edge at the central vertex.

Proof. If µ = 0 and k ≥ n − 2 then, by interlacing, T has no induced path of length 3 and the
first assertion follows. In the remaining cases we may assume that µ > 0. For n = 7, 8, 9, 10 the
result follows by inspection of the spectra listed in Table 2 of the Appendix to [2]. Accordingly,
we suppose that n > 10.

If n is odd and k ≥ 1
2
(n− 3) then k > 1

3
n and we may apply Corollary 2.4. Thus µ = 1 and T

has k+1 pendant edges that form an induced matching. Then T has just one further vertex u, and
so T = S(K1,k+1) with u the central vertex. For the converse it suffices to observe that S(K1,k+1)
has k linearly independent 1-eigenvectors. Note that if (xi) is a 1-eigenvector then xu = 0 while
xw = xw′ whenever w is an endvertex with neighbour w′. For a fixed endvertex v and k choices of
w 6= v, we obtain k linearly independent eigenvectors by taking xv = xv′ = 1, xw = xw′ = −1 and
all other xi equal to 0.

If n is even and k ≥ 1
2
(n − 4) then either k > 1

3
n or (n, k) = (12, 4). In the former case,

µ = 1 by Theorem 2.2. In the latter case, we know that µ2 is an integer (since k > 1
4
n), while

8µ2 + 2λ2
1 ≤ 22, where λ1 is the largest eigenvalue of T . Now the largest eigenvalue of a tree

exceeds the mean degree [2, Theorem 3.8] and so here λ1 > 11
6
. Hence always µ = 1 and by

Theorem 2.3, T has k +1 pendant edges that form an induced matching, say ww′ (w ∈ W ) where
each vertex w has degree 1. It follows that n = 2k + 4 and T has two further vertices u, v such
that either (a) u ∼ v and each vertex w′ is adjacent to precisely one of u, v, or (b) u 6∼ v, exactly
one vertex w′ is adjacent to both u and v, and each of the remaining vertices w′ is adjacent to
precisely one of u, v. In case (a) we can construct k linearly independent 1-eigenvectors if and
only if u or v is adjacent to all vertices w′ (w ∈ W ); in this situation, G is the graph described in
(iii). In case (b), we cannot construct k linearly independent 1-eigenvectors, and so the corollary
is proved. 2

References

[1] Bell F. K., Rowlinson P. , On the multiplicities of graph eigenvalues, Bull. London
Math. Soc. 35 (2003), 401-408.
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