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THE MAIN EIGENVALUES OF A GRAPH:

A SURVEY

Peter Rowlinson

We survey results relating main eigenvalues and main angles to the structure
of a graph. We provide a number of short proofs, and note the connection
with star partitions. We discuss graphs with just two main eigenvalues in the
context of measures of irregularity, and in the context of harmonic graphs.

1. INTRODUCTION

Let G be a simple graph with vertex set V (G) = {1, 2, . . . , n} and (0, 1)-
adjacency matrix A. The eigenvalue µ of A is said to be a main eigenvalue of G
if the eigenspace E(µ) is not orthogonal to the all-1 vector j. An eigenvector x is
a main eigenvector if x>j 6= 0. The main eigenvalues of the connected graphs of
order ≤ 5 are listed in [12, Appendix B], and those of all the connected graphs on 6
vertices are given in [10]. In this section we introduce notation and survey the basic
results concerning main eigenvalues and main angles (as defined below). In Section
2, we provide a general context for the investigation of the main eigenvectors of G
and its complement G. We also extend the notion of star partition to a refined star
partition that takes account of main eigenvalues. In Section 3, we discuss graphs
with just two main eigenvalues in the context of measures of irregularity of a graph,
and we note the connection with harmonic graphs. In Section 4, we deal with a
simple instance of graphs with just three main eigenvalues.

Let A have spectral decomposition

(1) A = µ1P1 + µ2P2 + · · · + µmPm.

The main angles of G are the numbers β1, β2, . . . , βm, where βi =
1√
n
||Pi j || (i =

1, 2, . . . , m). These are the cosines of the angles between j and the eigenspaces of

A, and so µi is a main eigenvalue if and only if βi 6= 0. Since ||j ||2 =
m
∑

1=1
||Pij ||2,
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we have
m
∑

1=1

β 2
i = 1. The main eigenvalues include the index (largest eigenvalue)

of G because there exists a corresponding eigenvector with no negative entries [8,
Theorem 0.4]. The main angles of the connected graphs of order ≤ 5 are listed in
[12, Appendix B].

We take the main eigenvalues of G to be µ1, µ2, . . . , µs, with µ1 the index of
G; no further ordering is assumed for µ2, . . . , µm. We write

mG(x) = (x − µ1)(x − µ2) · · · (x − µs).

Note that if µ is a main eigenvalue of G then so is any algebraic conjugate µ∗ of µ;
for if Ax = µx where j>x 6= 0 then Ax∗ = µ∗x∗ where j>x∗ 6= 0. It follows that
mG(x) ∈ Z[x], a fact established by other means in [10].

Proposition 1.1 (cf. [16, Theorem 2.6]). For k ∈ {1, 2, . . . , s}, let mG(x) = (x −
µk)fk(x) and gk(x) = fk(x)/fk(µk). Then fk(A)j is a main eigenvector of G
corresponding to µk, and

βk =
1√
n
||gk(A)j || (k = 1, 2, . . . , s).

Proof. From Equation (1), we have fk(A)j =
m
∑

i=1

fk(µi)Pij = fk(µk)Pkj, a non-zero

vector. �

The main eigenvalues and main angles of G are related to the structure of G
as follows.

Proposition 1.2. If Nk denotes the number of walks of length k in G then

Nk = n

s
∑

i=1

µ k
i β 2

i .

Proof. We have Nk = j>Akj =
m
∑

i=1

µ k
i j>Pij =

s
∑

i=1

µ k
i ||Pij ||2. �

Since the Vandermonde matrix (µi−1
j ) is invertible the integers N0, . . . Ns−1 de-

termine β1, . . . , βs and hence all Nk. The walk generating function HG(t) is defined

by HG(t) =
∞
∑

k=0

Nktk, and it follows from Proposition 1.2 that

(2) HG(t) =
s
∑

i=1

nβ 2
i

1 − µit
.

As noted in [24], it also follows from Proposition 1.2 that

(3) N2q+r ≤ µ r
1 N2q
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for all positive integers q, r. If N2q+r = µ r
1 N2q then the main eigenvalues lie in the

set {−µ1, 0, µ1}, a situation discussed in Sections 3 and 4.

Proposition 1.3. G has exactly s main eigenvalues.

Proof. The adjacency matrix of G is J − I − A, where J denotes the all-1 matrix
and I denotes the identity matrix of size n × n. Note that

EA(µi) ∩ j⊥ ⊆ EJ−I−A(−1 − µi) (i = 1, 2, . . . , m),

where we allow EJ−I−A(−1 − µi) to be the zero subspace. By extending an or-
thonormal basis Bi of EA(µi) ∩ j⊥ to one of EA(µi) (i = 1, 2, . . . , m), we see that

(4) n − s =

m
∑

i=1

dim(EA(µi) ∩ j⊥).

Since the n − s vectors in
m
⋃

i =1

Bi are linearly independent eigenvectors of G in j⊥,

we deduce that G has at most s main eigenvalues. Interchanging G and G, we see
that G has exactly s main eigenvalues. �

We call
m
∑

i=1

(EA(µi) ∩ j⊥) the tangent space for G. From the proof of Propo-

sition 1.3, we see that G and G share the same tangent space. Nevertheless the
eigenvalues −1−µi (i = s+1, . . . , m) are not necessarily the non-main eigenvalues
of G; for example, if G is the cycle C4 then its non-main eigenvalues are 0 and −2,
but G = 2K2, with −1 as its unique non-main eigenvalue. However, it follows from
Proposition 1.3 that if we denote the main eigenvalues of G by µ1, . . . , µs, then the
characteristic polynomial of G is

(5) PG(x) =
s
∏

i=1

(x − µi)
s
∏

i=1

(x + 1 + µi)
ki−1

m
∏

i=s+1

(x + 1 + µi)
ki ,

where ki denotes the multiplicity of µi (i = 1, . . . , m). It follows that
s
∑

i=1

(µi + µi)

= n − s [19, Proposition 7].

We may also express PG(x) as follows [11, p. 90]:

PG(x) = det
(

(x + 1)I + A − J
)

= det
(

(x + 1)I + A
)

− j>adj
(

(x + 1)I + A
)

j

= (−1)nPG(−x − 1)
(

1 − j>
(

(x + 1)I + A
)−1

j
)

and so

(6) PG(x) = (−1)nPG(−1 − x)

(

1 − n

s
∑

i=1

β 2
i

x + 1 + µi

)

.
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From Equations (2) and (6), we obtain the relation [6]:

(7) HG(t) =
1

t







−1 + (−1)n
PG

(

− t + 1

t

)

PG

(

1

t

)







.

From Equation (5) we see that

(8) PG(−1 − x)/PG(x) = (−1)n−smG(−1 − x)/mG(x).

Equation (8) allows us to rewrite Equation (7) as:

HG(t) =
1

t







−1 + (−1)s
mG

(

− t + 1

t

)

mG

(

1

t

)







.

From Equations (5) and (8), we have

(x − µ1)(x − µ2) · · · (x − µs)(9)

(x + 1 + µ1)(x + 1 + µ2) · · · (x + 1 + µs)

(

1 − n
s
∑

i=1

β2
i

x + 1 + µi

)

.

If we write the RHS of Equation (9) in polynomial form, we can see that none of
−1 − µi (1 = 1, . . . , s) is a main eigenvalue of G [16, Theorem 3.1].

Using Equation (9) for both G and G, we see that the main eigenvalues and
main angles of G are determined by the main eigenvalues and main angles of G.
In particular, it follows that mG(x) is determined by mG(x) and N0, N1, . . . , Ns−1.
The relation between the (integer) coefficients in mG(x), the (integer) coefficients in
mG(x) and the integers N0, N1, . . . , Ns−1 is determined in Corollary 2.5 below. The
relation between main eigenvectors of G and main eigenvectors of G is described in
Theorem 2.6.

The cone over G, usually denoted by K1∇G, can be constructed as K1 ∪̇ G,
and so its characteristic polynomial can be derived from two applications of Equa-
tion (6). Alternatively [11, p.90], we may note that

∣

∣

∣

∣

x −j>

−j xI − A

∣

∣

∣

∣

= xdet(xI − A) − j>adj(xI − A) j

to obtain:

PK1∇G(x) = PG(x)

(

x − n

s
∑

i=1

β 2
i

x − µi

)

.

The next two observations relate the number of main eigenvalues to the struc-
ture of G.
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Proposition 1.4. s = 1 if and only if G is regular.

Proof. s = 1 if and only if j ∈ (E(µ2) + · · · + E(µm))⊥, that is, s = 1 if and only
if j ∈ E(µ1). �

For U ⊆ V (G), let eU denote the characteristic vector of U , and write ej for
e{j}. For any permutation π in the symmetric group Sn, let Mπ be the correspond-

ing permutation matrix, so that Mπ(x1, x2, . . . , xn)> = (xπ(1), xπ(2), . . . , xπ(n))
>.

Then π is an automorphism of G if and only if MπA = AMπ. The following result
was established in [9] by a character-theoretic argument.

Proposition 1.5. The automorphism group of G has at least s orbits in V (G).

Proof. Since Pi is a polynomial in A, we have MπPi = PiMπ, and hence MπPi j =
Pi j for all π ∈ Aut(G). Now the subspace S = {x ∈ R

n : Mπx = x ∀ π ∈
Aut(G)} has basis {eU1

, . . . , eUr
}, where U1, . . . , Ur are the orbits of Aut(G). Since

P1j , . . . , Ps j are linearly independent vectors in S, we have s ≤ r as required. �

Proposition 1.5 can be seen in the context of graph divisors, defined as follows.
An equitable partition of G is a partition U1 ∪̇ · · · ∪̇ Ur of V (G) with the property
that the number of edges from a vertex ui ∈ Ui to a vertex in Uj is independent
of the choice of ui from Ui. If we denote this number by dij then the r × r matrix
D = (dij) is the adjacency matrix of a multigraph called a divisor (or quotient graph)
of G. Note that for any f(x) ∈ R[x], we have f(D)(y1, . . . , yr)

> = (z1, . . . , zr)
>

if and only if f(A)(y1eU1
+ · · · + yreUr

) = z1eU1
+ · · · + zreUr

; in particular,
(y1, . . . , yr)

> is a λ-eigenvector of D if and only if y1eU1
+ · · · + yreUr

is a λ-
eigenvector of G (cf. [14, Theorem 9.3.3]). Since the orbits of Aut(G) form an
equitable partition of G, Proposition 1.5 is a corollary of the following result.

Theorem 1.6. The main eigenvalues of G are eigenvalues of every divisor of G.

For a proof of Theorem 1.6 using walk-generating functions, see [7, Theorem
3]; we give an alternative proof in the next section, using an annihilator polynomial
for j .

If π denotes an equitable partition of G with r cells, and G/π denotes the
corresponding quotient graph, then from Theorem 1.6 and Equation (8), we have
[29, Theorem 3.3]:

HG(t) =
1

t







−1 + (−1)r
mG/π

(

− t + 1

t

)

mG/π

(

1

t

)







.

It follows from Theorem 1.6 that any equitable partition has at least s cells. It
was conjectured in [17] that always there exists an equitable partition with exactly
s cells. A counterexample was provided in [26, Section 3]: the graph obtained
from K1,3 by subdividing edges has 2 main eigenvalues (cf. Proposition 3.3), but
no equitable partition with fewer than 3 cells.
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2. THE GENERAL CASE

Here we include some observations (Propositions 2.1 and 2.2) which are in-
stances of more general results on modules: note that R

n becomes an R[x]-module
if we define f(x)v as f(A)v. We retain the notation of Section 1, and we write
‘u ∼ v’ to indicate that the vertices u, v are adjacent.

Proposition 2.1 [29, Theorem 2.5]. For f(x) ∈ R[x], we have f(A) j = 0 if and

only if mG(x) divides f(x).

Proof. From (1) we have

f(A)j = f(µ1)P1 j + · · · + f(µs)Ps j,

and so f(A) j = 0 if and only if f(µi)Pi j = 0 (i = 1, . . . , s); equivalently, f(µi) =
0 (i = 1, . . . , s); equivalently, mG(x) divides f(x). �

To prove Theorem 1.6, let c(x) be the characteristic polynomial of an r × r
divisor matrix D, and let jr be the all-1 vector in R

r. By the Cayley-Hamilton

theorem, c(D)jr = 0 and so c(A) j = 0; by Proposition 2.1, mG(x) divides c(x) as
required.

From Proposition 2.1 we see that if the components of G are G1, . . . , Gt then
mG(x) is the least common multiple of mG1

(x), . . . , mGt
(x). Also, Proposition 2.1

accounts for most of the observations in [28, Section 1] concerning polynomials f(x)
such that f(A)j = 0. For example, if (Ak − µkI)j = 0 then either G is µ-regular
or k is even and (A2 − µ2I)j = 0. The latter case is treated in Proposition 3.5.

Note that a linear relation among the integers Nk (= j>Ak j) has the form
j>f(A)j = 0 for some f(x) ∈ R[x]. As noted in [29, [Section 2], if f(A) is positive
semi-definite or negative semi-definite (e.g. if f(A) = A2 − µ2

1) then the condition
j>f(A)j = 0 is equivalent to the condition f(A)j = 0.

The next observation is a variant of [16, Theorem 2.1].

Proposition 2.2. The number of main eigenvalues of G is the largest integer k
such that the vectors j, Aj, A2j, . . . , Ak−1j are linearly independent.

Proof. The vectors j, Aj, A2j, . . . , Asj are linearly dependent because mG(A)j =

0. On the other hand, if
s−1
∑

i=0

ciA
ij = 0 then by Proposition 2.1, mG(x) divides

s−1
∑

i=1

cix
i, whence c0 = c1 = · · · = cs−1 = 0. �

We mention one of the results from [29, Section 2] that can be deduced from
Propositions 2.1 and 2.2. The Hankel matrix H of the sequence (Nk) is the infinite
matrix (Ni+j−2), whose rows and columns are indexed by the positive integers.

Corollary 2.3 [29, Proposition 2.1]. The number of main eigenvalues is equal to

the rank of H .
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Proof. By Proposition 2.2, we may write Asj =
s−1
∑

i=0

hiA
ij . Then j>As+kj =

s−1
∑

i=0

hij
>Ai+kj , that is, Ns+k =

s−1
∑

i=0

hiNi+k, for all non-negative integers k. Hence

each column of H beyond the s-th is a linear combination of its predecessors, and
so rank(H) ≤ s. On the other hand, if Hs is the leading s× s submatrix of H then
Hs is non-singular. To see this, we suppose that Hsx = 0 and use a variant of the
argument in [29]. Writing ui = (1, µi, . . . , µ

s−1
i )> (i = 1, . . . , s), we have

0 = x>Hsx = n

s
∑

i=1

β2
i x

>(uiu
>
i )x = n

s
∑

i=1

β2
i (u>

i x)2,

whence u>
i x = 0 (i = 1, . . . , s). Since u1, . . . ,us are linearly independent, we have

x = 0 as required. �

Let α denote the linear transformation x 7→ Ax (x ∈ R
n), and let α denote

the linear transformation x 7→ (J − I − A)x (x ∈ R
n). We say that a subspace of

R
n is symmetric if it is invariant under the transformation x 7→ Mπx (x ∈ R

n) for
all π ∈ Aut(G).

Theorem 2.4. Let B = {j, Aj, A2j, . . . , As−1j}, let V be the subspace of R
n with

basis B, and let W =
m
∑

i=1

(EA(µi) ∩ j⊥). Then

(i) V is orthogonal to W and R
n = V ⊕ W ;

(ii) each of V and W is α-invariant, α-invariant and symmetric.

Proof. (i) If x ∈ EA(µi) ∩ j⊥ then x>Akj = µk
i x

>j = 0 for every non-negative
integer k. Hence V ⊥ W . Using Equation (4) and comparing dimensions, we see
that R

n = V ⊕ W .

(ii) The subspace V is α-invariant by construction, since Asj is a linear combination
of j , Aj, A2j , . . . , As−1j . It is invariant under the transformation x 7→ Jx (x ∈ R

n)
since j ∈ V . Hence V is also α-invariant. Now W is invariant under the symmetric
transformations α and α because W = V ⊥. The subspace V is symmetric because,
for every π ∈ Aut(G), Mπ fixes each element of B. And W is symmetric because
j⊥ and all eigenspaces are Mπ-invariant. �

The subspace V features in [26, Section 2], and the following remarks con-
cerning α |V and α |V can be found in [26, Section 4].

The matrix of α|V with respect to B is the companion matrix of mG(x), while
JAkj = Nk j . Hence if mG(x) = xs + as−1x

s−1 + · · · + a1x + a0, then the matrix
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of α |V with respect to B is

(10) M =























N0 − 1 N1 N2 · · · Ns−2 Ns−1 + a0

−1 −1 0 · · · 0 a1

0 −1 −1 · · · 0 a2

0 0 −1 · · · 0 a3

...
...

...
...

...
0 0 0 · · · −1 as−2

0 0 0 · · · −1 as−1 − 1























.

Since W is the tangent space for G, mG(x) is the characteristic polynomial of M .
To determine this polynomial, suppose that Mx = µx, where x = (x1, . . . , xs)

>,
and let ν = −1 − µ. Then we have:

νx1 +

s
∑

j=1

Nj−1xj + a0xs = 0,(11)

xi−1 = ai−1xs + νxi (i = 2, . . . , s).(12)

If we define polynomials m0(x), m1(x), . . . , ms(x) ∈ Z[x] by

mG(x) = m0(x), mi−1(x) = mi−1(0) + xmi(x) (i = 1, . . . , s),

then Equation (12) yields:

xi = mi(ν)xs (i = 1, . . . , s − 1).

Now Equation (11) becomes

(mG(ν) +

s
∑

j=1

Nj−1mj(ν))xs = 0.

Hence xs 6= 0 and we deduce the following:

Corollary 2.5. (−1)smG(x) = mG(−1 − x) +
s
∑

j=1

Nj−1mj(−1 − x).

In order to discuss further the main eigenvectors of G, we note first that
s
∑

i=1

EJ−I−A(µi) =
s
∑

i=1

EA(µi), because these subspaces have the same orthogonal

complement in R
n. Thus if x1, . . . ,xs are orthonormal eigenvectors with corre-

sponding eigenvalues µ1, . . . , µs then any main eigenvector y of G is a linear com-
bination of x1, . . . ,xs. For an explicit formulation due to Hagos [16], suppose
that

(J − I − A)y = µy, y = c1x1 + · · · + csxs.
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Since also Ay = c1µ1x1 + · · · + csµsxs, we have

Jy =

s
∑

i=1

ci(µi + 1 + µ)xi.

It follows that

ci(µi + 1 + µ) = x>
i Jy = x>

i j j>y =

s
∑

j=1

j>xi j>xjcj (i = 1, . . . , m).

Thus if E is the s × s matrix with (i, j)-entry j>xi j>xj then

(E − I − diag(µ1, . . . , µs))c = µc,

where c = (c1, . . . , cs)
>. We deduce the following.

Theorem 2.6 [16, Theorem 3.4]. Let µ1, . . . , µs be the main eigenvalues of the

graph G, and let x1, . . . ,xs be corresponding orthonormal eigenvectors. Let E be

the s×s matrix whose (i, j)-entry is j>xi j>xj , and let N = E−I−diag(µ1, . . . , µs).
The eigenvalues of N are precisely the main eigenvalues of G. Moreover, if c =

(c1, . . . , cs)
> is an eigenvector of N corresponding to the eigenvalue µ then

s
∑

i=1

cixi

is an eigenvector of G corresponding to µ.

We may take the vector xi above to be a unit vector vi orthogonal to EA(µi)∩
j⊥ (i = 1, . . . , s). Then V has basis B′ = {v1, . . . ,vs}, and if j =

s
∑

i=1

γivi then

Pij = γivi (i = 1, . . . , s); hence the signs of the unit vectors vi may be chosen so
that

1√
n

j = β1v1 + · · · + βsvs.

Now N = (nβiβj), and this is the matrix of α |V with respect to B′.

Next we turn to star complements and star partitions. Let µ be an eigenvalue
of G of multiplicity k. Recall that the subset X of V (G) is a star set for µ in G if
|X | = k and µ is not an eigenvalue of G − X . Here G − X denotes the subgraph
induced by the complement X of X ; such a subgraph is called a star complement

for µ in G.

For any subset X of V (G) of size k, let

A =

(

AX B>

B C

)

,

where AX is the adjacency matrix of the subgraph induced by X . Then (see [12,
Theorems 7.4.1 and 7.4.4]) X is a star set for µ in G if and only if µ is not an
eigenvalue of C and

(13) µI − AX = B>(µI − C)−1B.
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In this situation, the eigenspace of µ consists of the vectors
(

v

(µI − C)−1Bv

)

(v ∈ R
k),

and we define a bilinear form on R
t (t = n − k) by

〈x,y〉 = x>(µI − C)−1y (x,y ∈ R
t).

If we denote the columns of B by bu (u = 1, . . . , k), then it follows from Equation
(13) that, for all vertices u, v of X ,

(14) 〈bu,bv〉 =







µ if u = v
−1 if u ∼ v

0 otherwise
.

Now we can establish the following result, noted in [27, Section 1]. Here, j t denotes
the all-1 vector in R

t.

Proposition 2.7. The eigenvalue µ is a non-main eigenvalue if and only if

〈j t,b〉 = −1 for every column b of B.

Proof. Since Bei is the i-th column of B, EA(µ) has a basis consisting of the
vectors

(

ei

(µI − C)−1bi

)

(i = 1, . . . , k).

Now µ is a non-main eigenvalue if and only if j is orthogonal to each of these
vectors, that is, if and only if 〈j t,bi〉 = −1 (i = 1, . . . , k). �

Recall that a star partition for G is a partition V (G) = X1 ∪̇ · · · ∪̇ Xm such
that Xi is a star set for µi (i = 1, . . . , m). Every graph has a star partition [12,
Theorem 7.1.3]; we observe here that always there exists a star partition which has
a refinement determined by the main eigenvalues of G. First, let

EA(µi) = Vi ⊕ (EA(µi) ∩ j⊥) (i = 1, . . . , s),

where Vi is spanned by the vector vi (as defined above). Then we have an orthog-
onal decomposition

R
n = V1 ⊕ (EA(µ1) ∩ j⊥) ⊕ · · · ⊕ Vs ⊕ (EA(µs) ∩ j⊥) ⊕ EA(µs+1) ⊕ · · · ⊕ EA(µm).

Let P ′
i , P ′′

i denote the orthogonal projection of R
n onto Vi, EA(µi) ∩ j⊥,

respectively. (If EA(µi)∩ j⊥ is the zero subspace then P ′′
i is the zero map.) All the

summands in our decomposition are A-invariant, and so A commutes with each of
these projections.

We may label vertices so that X ′
i = {i} (i = 1, . . . , s). Now the argument

used to prove [12, Theorem 7.1.3] may be extended to show that there exists a
partition

(15) V (G) = X ′
1 ∪̇ X ′′

1 ∪̇ · · · ∪̇ X ′
s ∪̇ X ′′

s ∪̇ Xs+1 ∪̇ · · · ∪̇ Xm
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such that P ′
iei spans Vi (i = 1, . . . , s), EA(µi) ∩ j⊥ has basis {P ′′

i ej : j ∈ X ′′
i } (i =

1, . . . , s) and EA(µi) has basis {Piej : j ∈ Xi} (i = s + 1, . . . , m). Let Xi =
X ′

i ∪̇ X ′
i (i = 1, . . . , s). Since Pi = P ′

i + P ′′
i (i = 1, . . . , s), the partition V (G) =

X1 ∪̇ . . . ∪̇ Xm is a star partition for G.

We call the partition (14) a refined star partition for G, and we call the cells
X ′′

1 , . . . , X ′′
s , Xs+1, . . . , Xm tangent star cells. (Note that if the main eigenvalue µi

is simple then X ′′
i = ∅.) We may now state our conclusion as follows.

Theorem 2.8. Every graph has a refined star partition.

We provide an example and then prove one result that relates tangent cells
to graph structure.

t
1

t t t t t t t
2 3 4 5 6 7 8

t t t t t t t t t t t t t t

9 10 11 12 13 14 15 16 17 18 19 20 21 22
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Fig. 1

Example 2.9. The graph G shown in Fig. 1 has spectrum 3(1),
√

2 (6), 0(8),−
√

2 (6),−3(1),
and the main eigenvalues are µ1 = 3, µ2 = 0 (see Proposition 3.3). Let X = {1, 9, 11, 13,

15, 17, 19, 21}; then X is a star set for 0 since G − X = 7K2. By [12, Theorem 7.4.5], G

has at least one star partition X1 ∪̇ X2 ∪̇ · · · ∪̇ X5 with X2 = X. Such a star partition
can be refined because X ′′

1 = ∅ and we may take X ′

2 = {1}, X ′′

2 = {9, 11, 13, 15, 17, 19, 21}.
To see this, note that EA(0) has a basis consisting of the orthogonal vectors w, w1, . . . ,w7,
where

w
> = (2; 0, 0, . . . , 0;−1,−1,−1,−1, . . . ,−1,−1,−1,−1),

w
>

1 = (0; 0, 0, . . . , 0; 1,−1, 0, 0, . . . , 0, 0, 0, 0),

w
>

7 = (0; 0, 0, . . . , 0; 0, 0, 0, 0, . . . , 0, 0, 1,−1).

Thus EA(0) ∩ j⊥ has basis {w1, . . . ,w7}. If we normalize w,w1, . . . ,w7 to obtain an

orthonormal basis {u,u1, . . . , u7} of EA(0), then P ′

2 = uu> and P ′′

2 =
7
∑

i=1

uiu
>

i . Now we

find that P ′

2e1 =
1

9
w and P ′′

2 e9 =
1

2
w1, P ′′

2 e11 =
1

2
w2, . . . , P ′′

2 e21 =
1

2
w7. �

Proposition 2.10. Let µ be a main eigenvalue of G and let X be the associated

tangent cell in a refined star partition for G. Then no vertex in X is adjacent to

every vertex outside X.

Proof. We take µ = µi and X = X ′′
i . For j ∈ X ′′

i , we have

µiP
′′
i ej = AP ′′

i ej = P ′′
i Aej = P ′′

i

∑

k∼j

ek.
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Let ∆(j) denote the set of neighbours of j and suppose, by way of contradiction,
that X ′′

i ⊆ ∆(j). Then we obtain:

µiP
′′
i ej =

∑

{P ′′
i ek : k ∈ ∆(j) ∩ X ′′

i } +
∑

{P ′′
i ek : k ∈ X ′′

i }.

Since P ′′
i j = 0, this equation may be rewritten:

µiP
′′
i ej =

∑

{P ′′
i ek : k ∈ ∆(j) ∩ X ′′

i } −
∑

{P ′′
i ek : k ∈ X ′′

i }.

Now the vectors P ′′
i ek (k ∈ X ′′

i ) are linearly independent; hence µi = −1 and
∆(j)∩X ′′

i = X ′′
i \{j}. Thus j is adjacent to every other vertex of G. Now we apply

Proposition 2.7 with µ = µi and X = Xi. Note first that j t is a column of B because
X ′′

i ⊆ ∆(j), and so 〈j t, j t〉 = −1 by Equation (14). Secondly, since j is adjacent to
every other vertex of X ′′

i , we know from Equation (14) that 〈j t,b〉 = −1 for every
column b of B different from j t. By Proposition 2.7, µi is a non-main eigenvalue,
a contradiction. �

The above argument shows that if µi is a non-main eigenvalue, and j is a
vertex of Xi adjacent to every vertex outside Xi then µi = −1 and j has degree
n − 1.

3. THE CASE s = 2

In view of Proposition 1.4, the case s = 2 is the first non-trivial case. Here,
G is non-regular and (A2 − aA + bI)j = 0, where a = µ1 + µ2 and b = µ1µ2. Let
d = (d1, . . . , dn)>, where di is the degree of vertex i, so that d = Aj and Ad =
ad − bj. It follows that if u, v are vertices of different degree, and s(u) =

∑

i∼u

di,

then [16, Theorem 2.4]:

a =
s(u) − s(v)

du − dv
, b =

dus(u) − dvs(v)

du − dv
.

The main eigenvalues µ1, µ2 may be found as roots of x2 − ax + b.

Secondly, when s = 2 we have β 2
1 + β 2

2 = 1 and Equation (9) yields

(16) µ1,2 =
1

2
(n − 2 − µ1 − µ2 ±

√

(µ1 − µ2 + n)2 − 4nβ 2
1 (µ1 − µ2)),

as noted by Lepović [20]. In that paper, it is shown that, for various perturbations
G∗ of a graph G with just two main eigenvalues, if G∗

1 and G∗
2 are cospectral then

G∗
1 and G∗

2 are cospectral.

Thirdly, it follows from Proposition 1.1 that the following are unit eigenvec-
tors of G corresponding to µ1 and µ2 [16, Corollary 2.7]:

x1 =
(A − µ2I)j

√

(µ1 − µ2)j>(A − µ2I)j
, x2 =

(A − µ1I)j
√

(µ2 − µ1)j>(A − µ1I)j
.
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The simplest examples of graphs with just two main eigenvalues are the
graphs G(h, a; k, b) = hKa ∪̇ kKb (a 6= b). In view of Proposition 1.3, the graphs

G(h, a; k, b) and `G(h, a; k, b) share this property; those with integer eigenvalues
have been investigated by Lepović [22,23].

Other examples include the graphs obtained from a strongly regular graph G

by deleting a vertex i. To see this, let G have spectrum r(1), µ
(m2)
2 , µ

(m3)
3 (where

G is regular of degree r). Then G has (m2 − 1) + (m3 − 1) linearly independent
eigenvectors in j⊥ with i-th entry equal to 0. Deletion of the i-th entry yields
m2 +m3 −2 linearly independent eigenvectors of G− i orthogonal to j. Since G− i
has order m2 + m3, it has at most two main eigenvalues; and exactly two since
G − i is not regular.

For any graph with just µ1, µ2 as main eigenvalues, it follows from Proposition
1.1 that d − µ1j is a µ2-eigenvector, while d − µ2j is a µ1-eigenvector. Hence

(d − µ1j)
>(d − µ2j) = 0. Since

1

n
j>d is the average degree d, this orthogonality

relation may be written as follows:

Proposition 3.1. If G has mean degree d and just two main eigenvalues, µ1 and

µ2, then

1

n

n
∑

i=1

(di − d)2 = (µ1 − d)(d − µ2).

Both the variance of the degrees and the difference µ1 − d have been used as
measures of irregularity of a graph; see [1] and [5] respectively. In what follows, δ
and ∆ denote the smallest and largest degrees, respectively.

Corollary 3.2. Let G be a connected graph with just two main eigenvalues, µ1 and

µ2, where µ1 > µ2. Then µ2 < δ < d < µ1 < ∆.

Proof. Since G is connected, EA(µ1) is spanned by a vector x = (x1, . . . , xn)> such
that all xi are positive. Without loss of generality, x1 ≥ x2 ≥ · · · ≥ xn > 0. Then
µ1x1 =

∑

j∼1

xj ≤ ∆x1, whence µ1 ≤ ∆. If µ1 = ∆ then the remaining eigenvalue

equations ∆xi =
∑

j∼i

xj show that G is regular (and x1 = x2 = · · · = xn), contrary

to Proposition 1.4. Hence µ1 < ∆, as is well known. Always µ1 ≥ j>Aj/j>j = d,
and so we know from Proposition 3.1 that µ1 > d (and µ2 < d). The eigenvector
d− µ2 j has an entry ∆ − µ2 > µ1 − µ2 > 0, and so d− µ2 j = αx for some α > 0;
in particular, δ > µ2. Finally, δ < d because G is non-regular. �

When s = 2, the matrix M of Equation (10) is

(

n − 1 2e + µ1µ2

−1 −1 − µ1 − µ2

)

,

where e is the number of edges of G. Thus

mG(x) = x2 + (µ1 + µ2 + 2 − n)x + 2e + µ1µ2 − (n − 1)(1 + µ1 + µ2).

Using Proposition 3.1, we recover Equation (16).
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Now we turn to two special cases of graphs with just two eigenvalues, namely
the cases µ2 = 0 and µ2 = −µ1.

The graph G is said to be harmonic if it has d as an eigenvector. (An exercise
for the reader: both G and G are harmonic if and only if G is regular.) If Ad = µd

then we say that G is µ-harmonic; in this situation, µ is an integer and µ = µ1. In
[24], a harmonic graph without isolated vertices is called pseudo-regular; for any
vertex v in such a graph, the mean degree of the neighbours of v is µ1.

An example of a non-regular 6-harmonic graph is the graph obtained from
the Clebsch graph [4, p. 35] by switching with respect to a vertex [4, p. 59]. The
unique connected 2-harmonic graph is the tree T2 of order 7 obtained from K1,3 by
subdividing edges. For µ > 2, let Tµ be the tree obtained from µ2 − µ + 1 disjoint
stars K1,µ−1 by adding a vertex adjacent to the central vertex of each star. Then
Tµ is the only µ-harmonic tree, and the only connected µ-harmonic graph with
∆ ≥ µ2 − µ + 1 [15]. The tree T3 is shown in Fig. 1. For a given integer c ≥ 3,
there are only finitely many connected non-regular harmonic graphs G in which the
number of edges is |V (G)| + c − 1 [3, Theorem 11]; those graphs for which c ≤ 4
are discussed in [2] and [3].

The relation Ad = µd may be written (A2 −AµI)j = 0. If G is not regular,
then Aj 6= 0 and (A−µI)j 6= 0, and so from Proposition 2.1. we have the following
(cf. [24, Theorem 8]):

Proposition 3.3. Let G be a connected non-trivial graph with index µ. Then G is

harmonic and non-regular if and only if the main eigenvalues of G are µ and 0.

It follows that for harmonic graphs, we have Nk = nβ 2
1 µ 2

1 (k ≥ 1) by Propo-

sition 1.2. By Proposition 1.1, nβ 2
1 = µ−2

1 ||d||2 and so Nk = µk−2
n
∑

i=1

d 2
i (k ≥ 1).

Proposition 3.4. Let G be a non-trivial graph with index µ1. Then G is harmonic

if and only if N3 = µ1N2.

Proof. We have d>Ad = µ1d
>d if and only if Ad = µ1d; that is, N3 = µ1N2 if

and only if Ad = µ1d. �

If the main eigenvalues of G are µ and −µ (µ > 0) then µ = µ1, mG(x) =
x2 − µ2 and G is bipartite. This last fact follows from a theorem of Frobenius

(see [13, Chapter 13] or [8, Theorem 0.5]).

Examples of graphs with mG(x) = x2 − µ2 include the semi-regular bipartite

graphs, i.e. the non-regular graphs in which every edge joins a vertex of degree δ to
a vertex of degree ∆. For if the corresponding bipartition of V (G) is U ∪̇ V , then
δeU ± ∆eV is an eigenvector corresponding to ±µ, and j ∈ E(µ) ⊕ E(−µ); in this
situation, δ∆ = µ2. In fact, these are the only examples among connected graphs
[25] (see also [29, Proposition 2.7]), and we provide a short proof. Recall that a
symmetric matrix M is reducible if, for some permutation matrix P , P>MP has

the form

(

M1 O
O M2

)

. Further, the largest eigenvalue of an irreducible symmetric

matrix is a simple eigenvalue, and there exists a corresponding eigenvector whose
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entries are all positive (see [13, Chapter 13] or [8, Theorem 0.3]).

Proposition 3.5. Let G be a non-trivial connected graph with index µ. Then G is

a semi-regular bipartite graph if and only if the main eigenvalues of G are µ and

−µ.

Proof. It remains to show that if the main eigenvalues of G are µ and −µ then

G is semi-regular. Let A =

(

O B>

B O

)

, where B> has size r × s. Then A2 =
(

B>B O
O BB>

)

. Now A2j = µ2j, whence B>Bjr = µ2jr and BB>js = µ2js. We

have

j>s B(B>B)B>js = js(BB>)2js = sµ4 = µ2j>s BB>js.

Now µ2 is the largest eigenvalue of B>B, and so B>js is an eigenvector of B>B
corresponding to µ2. Since G is connected, B>B is irreducible, and so µ2 is a simple
eigenvalue of B>B. Hence B>js = αjr for some α ∈ N. Similarly, Bjr = βjs for
some β ∈ N. Thus each edge of G joins a vertex of degree α to a vertex of degree
β; moreover, α 6= β because G has two main eigenvalues. �

The graphs for which (A2 − µ2I)j = 0 are precisely those for which
∑

u∼v
du

is the same for all v ∈ V (G); such graphs were called Γ-regular by Plonka [25].
In view of Proposition 3.5, a graph is Γ-regular if and only if each component is
µ-regular or semi-regular bipartite with δ∆ = µ2.

4. CONCLUDING REMARKS

We have discussed the cases mG(x) = x−µ, mG(x) = x(x−µ) and mG(x) =
x2 − µ2. The ‘next’ case is mG(x) = x(x2 − µ2). This case is investigated in
[24] using relations on the integers Nk (cf. Proposition 1.2), but in some proofs
the eigenvalue 0 is overlooked as a main eigenvalue. The graph numbered 103
in [10] is a counterexample to [24, Theorem 5], and the graph T3 in Fig. 1 is
a counterexample to [24, Theorem 11]. (The principal assertion of [24, Theo-
rem 5], namely the inequality (3) above, remains correct; the graphs in question
are those for which equality is attained in (3).) As noted by the original au-
thor at http://arxiv.org/abs/math.CO/0506259, the results can be corrected
by first defining a pseudo-semi-regular graph as a bipartite graph, without iso-
lated vertices, in which neighbours of vertices from the same part have the same
mean degree. (Thus semi-regular bipartite graphs are pseudo-semi-regular.) Now
if A(A2 − µ2I)j = 0, each component of G is µ-regular or pseudo-semi-regular. To
establish this, we may assume that G is connected and mG(x) = x(x2 − µ2). As
before, G is bipartite, and so we can give a direct proof.

Proposition 4.1. Let G be a connected graph for which mG(x) = x(x2 − µ2).
Then G is pseudo-semi-regular.
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Proof. We may argue as in the proof of Proposition 3.5, replacing j =

(

jr
js

)

with

d =

(

d1

d2

)

. Since A2d = µ2d, we find that B>d2 = αd1 for some α > 0 and

Bd1 = βd2 for some β > 0. Thus the neighbours of the i-th vertex have mean
degree β if 1 ≤ i ≤ r, and mean degree α if r + 1 ≤ i ≤ n. �

In Section 1, we compared the eigenvalues of A with those of J − I − A. In
similar fashion we may compare the eigenvalues of A with those of J−I−2A, which
is the Seidel adjacency matrix of G. In particular, the characteristic polynomial
SG(x) of J − I − 2A is given by

SG(x) = (−2)nPG

(

− 1

2
(x + 1)

)

(

1 − n

m
∑

i=1

β 2
i

x + 1 + 2µi

)

,

obtained in exactly the same way as equation (6) above. Main eigenvalues and
main eigenvectors of J − I − 2A are defined just as before. A relation between the
main eigenvectors of A and those of J − I − 2A is given in 21].
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19. M. Lepović: On eigenvalues and main eigenvalues of a graph. Math. Moravica, 4

(2000), 51–58.
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21. M. Lepović: On the Seidel eigenvectors of a graph. Univ. Beograd, Elektotehn. Fak.

Ser. Mat., 14 (2003), 4–10.
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