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ABSTRACT 45 

 46 

Transfer functions are widely used in palaeoecology to infer past environmental 47 

conditions from fossil remains of many groups of organisms. In contrast to 48 

traditional training-set design with one observation per site, some training sets, 49 

including those for peatland testate amoeba-hydrology transfer functions, have a 50 

clustered structure with many observations from each site. Here we show that this 51 

clustered design causes standard performance statistics to be overly optimistic. 52 

Model performance when applied to independent data sets is considerably weaker 53 

than suggested by statistical cross-validation. We discuss the reasons for these 54 

problems and describe leave-one-site-out cross-validation and the cluster bootstrap 55 

as appropriate methods for clustered training sets. Using these methods we show 56 

that the performance of most testate amoeba-hydrology transfer functions is worse 57 

than previously assumed and reconstructions are more uncertain.  58 

 59 
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Transfer functions are widely used to generate quantitative environmental 64 

reconstructions in palaeoecology. Traditional training-set design (e.g. Birks et al. 65 

1990) has one observation per site. An alternative design with many observations at 66 

each site is used for some training-sets, including those for chironomid-lake depth 67 

(Kurek and Cwynar 2009); coastal diatom-water chemistry (Saunders et al. 2008); 68 

diatom- and foraminifera-sea level (Massey et al. 2006; Zong & Horton 1999; Leorri 69 

et al. 2008); and testate amoeba-hydrology transfer functions (Charman 2001, 70 

Mitchell et al. 2008). Although the implications of, and methods for, such clustered 71 

data are well known in other branches of statistics (Walsh 1947), the implications of 72 

this design have been neglected for transfer functions.  73 

One motivation for developing clustered training-sets is the presence within 74 

each site of substantial environmental gradients, which may be large relative to the 75 

differences between sites. This contrasts with the traditional one observation per 76 

site training-set where typically the environmental variable (e.g. lake-pH) is assumed 77 

to be spatially homogeneous at each site. Standard methods for assessing the 78 

performance of transfer functions assume that the observations are independent 79 

and are thus inappropriate for clustered data. Lack of independence between 80 

observations, either because of spatial autocorrelation or a clustered design, will 81 

cause performance statistics to be over-optimistic (Telford and Birks, 2005). Telford 82 

and Birks (2009) have developed cross-validation methods appropriate for spatially 83 

autocorrelated training sets; here we consider the problem of clustered training sets 84 

and develop appropriate cross-validation methods. We focus on testate amoeba-85 

hydrology transfer functions from peatlands, which have become increasingly 86 

important in shaping our understanding of Holocene climatic change (Charman et al. 87 

2004, 2006).  88 

 89 

Indications that standard tools are misleading  90 

Training sets for peatland testate amoebae transfer functions have a highly 91 

uneven spatial structure, with samples from individual sites often only separated by 92 

a few metres, while sites may be separated by tens or hundreds of kilometres. 93 

Ordinations of testate amoeba data frequently show distinct clustering of 94 

observations from the same bog (e.g. Charman et al. 2007, Swindles et al. 2009) and 95 



site identity typically explains a large proportion of variance in constrained 96 

ordinations (Fig. 1).  97 

To provide an independent estimate of transfer function performance, we 98 

apply five transfer functions to all comparable independent datasets with 99 

appropriate corrections for taxonomic and methodological differences (Appendix I). 100 

Table 1 shows that most transfer functions perform worse than suggested by leave-101 

one-out (LOO) cross-validation when applied to independent data. Methodological 102 

explanations for the poor model performance can largely be excluded. Differences in 103 

time-discrete water-table measurements cannot explain the differences in rank-104 

order shown by Spearman’s ρ. Any differences in sample preparation and analysis, or 105 

residual taxonomic biases cannot explain poor performance where these are closely 106 

harmonised (e.g. Polish data). Performance is particularly poor for two datasets from 107 

Scotland (Payne 2010a; Potts & Blackford unpublished data); in the case of the Moss 108 

of Achnacree, this is likely to be due to the limited WTD range in a site which has 109 

experienced hydrological modification. As previously presented tests with transfer 110 

functions from different regions have frequently (Charman et al. 2007; Booth et al. 111 

2008; Payne 2011), but not universally (e.g. Swindles et al. 2009), shown 112 

performance poorer than LOO cross-validation we conclude that model performance 113 

in praxis appears to be weaker than suggested by conventional cross-validation.  114 

 115 

Appropriate cross-validation methods for clustered data 116 

Typically, transfer function model performance is assessed by either leave-117 

one-out (LOO) or bootstrap cross-validation. In LOO, one observation at a time is 118 

omitted from the training-set of size n and the environmental value predicted using 119 

the remaining n-1 observations. For clustered data, this can be extended to leave-120 

one-site-out cross-validation (LOSO), where data from one site is omitted from the 121 

training set, and data from the remaining m-1 sites used to predict it. LOSO is also 122 

known as leave-one-cluster-out cross-validation and sometimes as leave-one-group-123 

out cross-validation (confusingly, this latter term is also used to refer to k-fold cross-124 

validation in which k groups are created at random).  125 

In standard bootstrap cross-validation, n observations are selected from the 126 

training set with replacement, and used to predict the remaining observations and 127 



new observations. There are several possible bootstrap schemes available for 128 

clustered data including the cluster bootstrap, where m clusters are selected at 129 

random with replacement, and the two-level bootstrap where m clusters are 130 

selected at random and observations are selected at random from within each 131 

cluster (Field and Welsh 2007). Here we use the cluster bootstrap following the 132 

findings of Field and Welsh (2007) that the two-level bootstrap and the related 133 

reverse-two-level bootstrap generate excessive variability. 134 

  135 

Application to Testate Amoeba Training sets 136 

We determine the performance of 14 published testate amoeba transfer 137 

functions for water-table depth (WTD) using both robust cross-validation methods 138 

and standard methods. In the case of the Jura training set (Mitchell et al. 1999) we 139 

omit samples with estimated rather than measured water-table depths. For all 140 

training sets, we use weighted averaging with inverse deshrinking as this transfer 141 

function method is fairly robust to spatial autocorrelation (Telford and Birks, 2005) 142 

and so should also be fairly robust to clustered data. Assemblage data were square 143 

root transformed prior to analysis. All analyses were carried out in R (R Development 144 

Core Team 2010) with the rioja library (Juggins 2010).  145 

While differences are not always great, all transfer functions except for one 146 

exhibit worse performance with LOSO than LOO cross-validation (Table 2). One 147 

transfer function has an LOSO RMSEP greater than the standard deviation of WTD. 148 

There are several possible reasons for this deterioration in performance. It could be 149 

simply an artefact because the estimates are based on fewer observations as more 150 

observations are omitted during LOSO than LOO. We tested for the importance of 151 

this factor by running a modified cross-validation scheme termed leave-many-out 152 

(LMO) that omits as many observations as LOSO when making each prediction but 153 

with the observations chosen at random rather than being from the same site. We 154 

repeated this analysis 100 times to get a distribution of performance statistics and 155 

tested if the observed LOSO RMSEP is worse than the 95th percentile of the leave-156 

many-out RMSEP. Only the Poland (Lamentowicz & Mitchell 2005) training set had a 157 

LOSO performance that was not statistically significantly worse than expected from 158 

leaving out so many observations during cross-validation.  159 



LOSO performance would be worse than LOO performance if each site only 160 

covered part of the environmental gradient. This factor is likely to be of minor 161 

importance, except in the Greece training set as all the other training sets have 162 

replication along the WTD gradient and variance partitioning shows only a small 163 

covariance between WTD and site for most of the training sets (Figure 1).  164 

As for most training sets the WTD measurements are based on one-time spot 165 

measurements, there may be site-specific errors in the WTD measurements if heavy-166 

rainfall or prolonged drought occurs between sampling the first and last bog. Most 167 

training sets were collected within a short period of time, so major changes in WTD 168 

are unlikely to have occurred however a few training sets were acquired over a 169 

longer period of time and this may be an important factor (Charman et al. 2007; 170 

Lamentowicz et al. 2008b).  171 

There are likely to be important non-hydrological controls on amoebae which 172 

differ between sites such as pollutant loading with recent studies showing sulphur 173 

(Payne et al. 2010), reactive nitrogen (Nguyen-Viet et al. 2004; Mitchell 2004), heavy 174 

metals (Nguyen-Viet et al. 2007; 2008) and particulate matter (Meyer et al. 2010) to 175 

be important. Many transfer function studies have included sites of differing pH and 176 

trophic status, and there is evidence for differences in amoeba communities and 177 

their hydrological responses between fens and bogs (Payne 2011; Jassey et al. 2011). 178 

Plant communities, which differ between sites in many studies, shape both the 179 

physical and biotic environment of amoebae through processes such as root 180 

exudation and allelopathy, particularly the production of phenolic compounds 181 

(Jassey et al. 2011). The fundamental hydrological controls on amoeba communities 182 

are poorly understood, while water table depth consistently explains the largest 183 

proportion of variance in gradient studies it is clearly not water table depth per se 184 

which is important to amoebae usually living well above the water table. Water table 185 

depth is simply a robust measurement, which serves as a proxy for the hydrological 186 

variables which do affect amoebae such as water film thickness and variability in the 187 

top few cm of moss where amoebae live (Sullivan et al. 2011). These variables may 188 

be controlled by fine-scale structural details of the peat and plant communities.  189 

 190 

Predictors of LOSO relative performance 191 



In an attempt to understand the attributes of training sets that have a large 192 

decrease in performance with LOSO cross-validation, we regress the decrease in 193 

performance, standardised by dividing by the standard deviation of WTD, against the 194 

number of sites and observations, the proportion of variance explained by WTD, site, 195 

and the covariance between WTD and site (Fig. 2). Of these predictors, only the 196 

proportion of variance explained by WTD is a statistically significant predictor of the 197 

deterioration in performance. Although the regression is not statistically significant, 198 

there appears to be an increased risk of a large reduction in performance for training 199 

sets with few sites.  200 

 201 

Error decomposition 202 

The magnitude of the RMSEP is not necessarily a good guide to the utility of a 203 

transfer function. If, as is usually the case in testate amoeba palaeoecology, one is 204 

interested only in identifying relatively wet and dry phases, then the absolute value 205 

of the reconstruction is not very important. Thus, even transfer functions with a 206 

large RMSEP could potentially have utility. 207 

For each site in the clustered training-set, we can decompose the total sum of 208 

squares of residuals into the proportion explained by site-specific offsets or biases 209 

and the residual variation. Table 3 shows that when LOSO is used instead of LOO, the 210 

site specific offset increases much more than the residual variation in both absolute 211 

and relative terms. This suggests that the absolute values of reconstructions are 212 

much more uncertain, but the relative values are only slightly more uncertain than 213 

LOO suggests. 214 

 215 

Reconstruction errors 216 

Sample-specific (s1; Birks et al., 1990; Birks, 1995) bootstrap errors for the 217 

cluster bootstrap will always be larger than those from the standard bootstrap. Fig. 3 218 

shows the WTD reconstruction for Jelenia Wyspa, Poland (Lamentowicz et al. 2007b) 219 

using the Poland 2008 training set, with sample-specific bootstrap errors using both 220 

bootstrap techniques. Bootstrap errors vary by sample but are in all cases greater 221 

when using the cluster bootstrap and for some samples the errors are more than 222 

double.  223 



 224 

Recommendations 225 

Given our results, improvements can be made in both the generation and 226 

application of clustered training sets. We make four recommendations for 227 

generating new training sets, which should be followed where it is practical to do so 228 

and may not be possible to satisfy simultaneously. First, efforts should be made to 229 

sample the full environmental gradient at each site, or at least to ensure that all 230 

parts of the gradient are replicated in several sites. Ideally, the gradients should be 231 

uniformly sampled at each site (Telford and Birks 2011). Second, approximately the 232 

same number of observations should be made at each site, so that in LOSO cross-233 

validation the number of observations omitted is close to constant. Third, a large 234 

number of sites should be sampled, as the cluster bootstrap is not appropriate for 235 

datasets with few clusters. Finally, the sites should be similar to each other with 236 

respect to, for example, vegetation and climate, with the proviso that care is taken 237 

to include sufficient diversity of sites to ensure that all fossil samples have good 238 

analogues in the training set.   239 

We recommend that the robust cross-validation methods developed here are 240 

used when testing the performance of clustered training sets. We anticipate that the 241 

performance statistics of transfer function methods robust to autocorrelation (e.g., 242 

WA) will deteriorate less with robust cross-validation than methods more sensitive 243 

to autocorrelation (e.g., WAPLS with several components). If there is a choice of 244 

training set that could be applied to the fossil data, we recommend, all else being 245 

equal, using the training set with the smallest loss of performance when robust 246 

cross-validation is used. Single-site training sets (e.g. Booth et al. 2008; Payne et al. 247 

2008) will be immune to cluster problems but this may be offset by poor 248 

reconstructive ability. As always in quantitative palaeoecology, caution should be 249 

used in interpreting small changes in reconstructions and replication using multi-250 

core, multi-proxy and multi-site records is desirable.  251 

 252 

Conclusions 253 

Published performance statistics of testate amoeba transfer functions are 254 

over-optimistic due to the clustered design of the training sets. LOO cross-validation 255 



is biased by the lack of independence of the observations. As amoeba communities 256 

in a sample tend to be more similar to other samples from the same site than to 257 

samples from different sites, if samples from the same site remain in the training set 258 

during cross-validation, then the model will generate unrealistically accurate 259 

predictions of water-table depth in the training set.  260 

 261 
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 289 

TABLES 290 

Table 1. Transfer function performance for five training sets tested by leave-one-out 291 

(LOO) cross-validation and application to independent test-sets, showing transfer 292 

function method used, number of samples (n), root mean squared error of 293 

prediction (RMSEP), R2, and Spearman’s ρ. Some values differ from previously 294 

published values due to minor variation in sample selection and taxonomic 295 

harmonisation. Values in round brackets show performance when small taxa are 296 

excluded to account for differences in the use of back-sieving (Appendix 1). R2 and ρ 297 

values in square brackets denote negative correlations.  298 

 299 
Training-set Transfer 

function 
Test-set Peatland 

type(s) 
N RMSEP 

(cm) 
R2 Ρ 

European  
(Charman et 
al. 2007) 

2 component 
WA-PLS  

LOO cross-validation - 119 5.63 
(5.80) 

0.71 
(0.69) 

0.90 
(0.89) 

All test data Bogs 200 5.51 0.18 0.67 

Blythermo (Potts & Blackford, 
unpublished)2 

Bog 9 11.40 0.37 0.66 

Loonan (Potts & Blackford, 
unpublished)2 

Bog 11 13.02 [0.12] [-0.38] 

Moss of Achnacree (Payne 
2010a)1,2 

Bog 30 6.65 [0.01] [-0.01] 

Moidach More (Payne et al. 
2010b)1 

Bog 150 4.38 0.53 0.75 

UK  
(Woodland et 
al. 1998) 

WA-Tol 
(inverse 
deshrinking) 

LOO cross-validation - 160 3.94  
(3.91) 

0.29 
(0.30) 

0.64 
(0.64) 

All test data Bogs 200 6.71 0.25 0.60 

Blythermo (Potts & Blackford, 
unpublished)2 

Bog 9 13.18 0.56 0.82 

Loonan (Potts & Blackford, 
unpublished)2 

Bog 11 17.05 [0.13] [-0.21] 

Moss of Achnacree (Payne 
2010a)1,2 

Bog 30 10.19 0.01 0.11 

Moidach More (Payne et al. 
2010b)1 

Bog 150 4.86 0.23 0.42 

Alaska 
(Payne et al. 
2006) 

2 component 
WA-PLS 

LOO cross-validation - 91 9.99 0.53 0.81 

Alaska (Markel et al. 2010) Various 126 16.52 0.42 0.61 

Alaska 
(Markel et al. 
2010) 

2 component 
WA-PLS 

LOO cross-validation - 126 8.50 0.63 0.84 

Alaska (Payne et al. 2006) Various 91 16.94 0.42 0.69 

Poland 
(Lamentowicz 
& Mitchell 
2005) 

WA-Tol 
(inverse 
deshrinking) 

LOO cross-validation - 36 7.75 0.72 0.94 

All test data Various 213 11.23 0.20 0.48 

Jedwabna (Lamentowicz et al. 
2008b) 

Poor fen 10 5.77 0.17 0.53 

Mietlica (Lamentowicz et al. 
2008b) 

Poor fen 12 7.86 0.85 0.77 

Ostrowite (Lamentowicz et al. 
2008b) 

Bog 7 13.41 0.82 0.85 

Rybie Oko (Lamentowicz et al. 
2008b) 

Bog 16 6.35 0.80 0.84 

Skrzynka (Lamentowicz et al. 
2008b) 

Poor fen 12 4.13 0.55 0.60 

Stawek (Lamentowicz et al. 
2008b) 

Poor fen 9 8.69 0.52 0.39 

Stążki (Lamentowicz et al. 
2008b) 

Moderately 
rich fen 

10 7.89 0.51 0.71 



Żabieniec (Lamentowicz et al. 
2008b) 

Schwingmoor 8 3.83 0.76 0.96 

Chlebowo (Lamentowicz et al. 
2007a, 2008a) 

Poor fen 27 5.96 0.27 0.54 

Linje (Lamentowicz et al. 
2008b) 

Bog and poor 
fen 

46 12.07 0.52 0.55 

Słowińskie Błota (Lamentowicz 
et al. 2008b) 

Bog 25 29.58 0.24 0.73 

Jeziorka Kozie (Lamentowicz et 
al. 2008b) 

Poor fen 31 11.34 0.00 0.27 

1Back-sieving not used so small taxa excluded.  300 
2Lower counts of around 100 tests.  301 

302 



Table 2. Root mean squared error of prediction for 14 published training sets 303 

calculated with leave-one-out (LOO), leave-one-site-out (LOSO), and leave-many-out 304 

(LMO) cross-validation. The 95th percentile of the LMO distribution is shown. Results 305 

are based on weighted averaging with inverse deshrinking on square root 306 

transformed data. Also shown are the DWT range (cm), number of sites (m) and 307 

observations (n), and the standard deviation of WTD (sd).  308 

 Range 

 (cm) 

m n LOO LOSO LMO 

95% 

sd 

Europe (Charman et al. 2007) -3-35 7 119 6.2 6.9 6.3 10.5 

Alaska 2006 (Payne et al. 2006) 7-67 8 91 10.8 14.0 11.1 14.6 

Alaska 2010 (Markel et al. 2010) -18-46 12 126 8.6 9.3 8.8 14.0 

Engadine (Lamentowicz et al. 2010) -20-76 6 84 9.8 11.0 10.3 16.1 

Greece (Payne and Mitchell 2007) -1-14.5 4 57 2.2 3.3 2.2 4.1 

Jura (Mitchell et al. 1999) 3-53 4 36 9.5 12.4 10.4 13.4 

Minnesota/Ontario (Warner and Charman 

1994) 

0-100 10 49 20.1 22.7 20.8 26.2 

Newfoundland (Charman and Warner 1997) -4-46 6 57 7.2 8.1 7.6 11.8 

Northern Ireland (Swindles et al. 2009) -10-38 3 81 5.3 6.0 5.6 12.2 

Rockies (Booth and Zygmunt 2005) -5-50 14 139 7.5 8.0 7.6 16.1 

UK (Woodland et al. 1998) 0-19 9 160 4.0 4.8 4.1 4.7 

North America (Booth 2008) -13-75 31 403 8.1 8.2 8.2 17.1 

Poland 2008 (Lamentowicz et al. 2008b) -25-84 15 249 14.0 16.3 14.1 17.8 

Poland 2005 (Lamentowicz and Mitchell 2005) -3-55 3 36 9.6 9.3 11.8 14.7 

 309 

310 



 311 

Table 3. Decomposition of the mean total sum of squares of the transfer function 312 

residuals into the portion explained by site-specific offsets and the residual variation 313 

for both LOO and LOSO cross-validation, and the ratio of the LOSO and LOO results.  314 

 LOO LOSO LOSO/LOO 

 Total Site Residual total Site Residual total Site Residual 

Europe 38 9 29 48 16 32 1.26 1.89 1.08 

Alaska 2006 116 53 63 197 121 75 1.69 2.28 1.19 

Alaska 2010 75 13 61 86 25 60 1.14 1.88 0.98 

Engadine 96 17 79 120 30 90 1.25 1.72 1.15 

Greece  5 2 2 11 8 3 2.35 3.56 1.22 

Jura  90 8 82 154 69 85 1.71 8.93 1.04 

Minnesota/Ont
ario  

405 177 228 516 250 266 1.27 1.41 1.17 

Newfoundland 52 15 37 66 29 37 1.26 1.87 1.01 

Northern 
Ireland 

28 5 24 35 9 26 1.25 2.04 1.10 

Rockies 57 8 48 64 16 48 1.12 1.95 0.98 

UK 16 4 12 23 11 11 1.44 2.74 0.98 

North America  66 12 54 68 13 54 1.02 1.12 1.00 

Poland 2008  196 72 124 266 134 133 1.36 1.85 1.07 

Poland 2005  91 11 80 84 13 71 0.92 1.18 0.88 

315 



Figure 1. 316 

Variance partitioning of the inertia in the different data-sets into components 317 

explained by water table depth (light grey), site (dark grey), covariance between site 318 

and water table depth (black). Unexplained inertia is shown in white. See Table 2 for 319 

data sources. Site is a statistically significant predictor for all training sets except 320 

Poland 2005. 321 

 322 

Figure 2. Scatter plots of the relative decrease in performance against different 323 

predictors: a) number of sites; and proportion of variance explained by b) site, c) 324 

water table depth and d) covariance between water table depth and site in a CCA.  325 



 326 

Fig. 3. Water table reconstruction from Jelenia Wyspa, Poland (Lamentowicz et al. 327 

2007b) calculated using weighted averaging with inverse deshrinking on square root 328 

transformed data with the expanded Polish training set (Lamentowicz et al. 2008b). 329 

Reconstructions (black) are based on 1000 bootstrap predictions (50 of which are 330 

shown in grey) for a) conventional bootstrap and b) cluster bootstrap. The standard 331 

deviation of the bootstrap predictions (error component s1) is shown with vertical 332 

black lines).  333 
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 492 
Appendix 1. Details of taxonomic harmonisation showing groupings and 493 
nomenclatural changes made to the original data. In addition to these changes small 494 
taxa (Corythion spp., Trinema spp., Euglypha rotunda type, Euglypha cristata, 495 
Cryptodifflugia oviformis, Difflugia pulex type and Pseudodifflugia fulva type) were 496 
eliminated where there was a difference in preparation method between training 497 
and test sets.  498 
 499 
Dataset Taxa in original data Taxa here 

Moss of Achnacree 
(Payne 2010a) 

Centropyxis aerophila type 
Phryganella acropodia type 
Corythion dubium, Trinema complanatum 

Centropyxis cassis type 
Cyclopyxis arcelloides type 
Corythion-Trinema type 

Moidach More 
(Payne et al. 2010b) 

Phryganella acropodia type 
Corythion dubium, Trinema complanatum 

Cyclopyxis arcelloides type 
Corythion-Trinema type 

UK 
(Woodland et al. 
1998; Charman et al. 
2007; Potts & 
Blackford 
unpublished data) 

Nebela minor, Nebela tincta, Nebela 
parvula 

Nebela tincta type 

Alaska  
(Payne et al. 2006; 
Markel et al. 2010) 

Arcella arenaria type, A. catinus type 
Centropyxis aerophila s.l., C. cassis type 
Centropyxis laevis, C. ecornis, C. ecornis 
type 
Cyclopyxis arcelloides type, Phryganella 
acropodia type, P. acropodia s.l.  
Nebela dentistoma, N. vitraea 
Euglypha ciliata, E. compressa, E. strigosa, 
E. rotunda s.l., E. tuberculata type, E. 
strigosa type, E. rotunda type 
Nebela tincta s.l., N. tincta, N. parvula 
Placocista spinosa s.l., P. lens, P. spinosa 
Trigonopyxis arcula, T. minuta 
Trinema spp., T. lineare 

Arcella catinus type 
Centropyxis aerophila type 
Centropyxis ecornis type 
 
Cyclopyxis arcelloides type 
 
Argynnia dentistoma type 
Euglypha spp. 
 
 
Nebela tincta type 
Placocista spinosa type 
Trigonopyxis arcula type 
Trinema spp. 
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