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ABSTRACT 17 

Nitrogen pollution affects many peatlands with consequences for their biodiversity and ecosystem 18 

function. Microorganisms control nutrient cycling and constitute most of the biodiversity of peatlands 19 

but their response to nitrogen is poorly characterised and likely to depend on the form of deposition. 20 

Using a unique field experiment we show that ammonia exposure at realistic point source levels is 21 

associated with a general shift from heterotrophic (bacteria and fungi) to autotrophic (algal) dominance 22 

and an increase in total biomass. The biomass of larger testate amoebae increased, suggesting increased 23 

food supply for microbial predators. Results show the widespread impacts of N pollution and suggest 24 

the potential for microbial community-based bioindicators in these ecosystems.  25 
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Ombrotrophic peatlands, which receive their nutrients from the atmosphere, are naturally 27 

oligotrophic and highly sensitive to atmospheric deposition of acids, nutrients, and other pollutants. 28 

Nitrogen deposition affects many peatlands in industrialised regions and may shift peatlands from 29 

carbon sinks to sources with important consequences for the global carbon cycle (Aerts et al., 1992, 30 

Bragazza et al., 2006). Such processes are microbially-mediated but the overall microbial community 31 

response to N is poorly characterised. Microbes constitute most of the biodiversity of peatlands (Gilbert 32 

and Mitchell 2006) but studies of the biodiversity impacts of N pollution in terrestrial ecosystems are 33 

almost entirely restricted to plants. The form of N deposition is an important determinant of ecosystem 34 

impacts (Stevens et al., 2011; Liu and Greaver 2009), with evidence that the impacts of gaseous 35 

ammonia can be particularly acute (Sheppard et al., 2011). Ammonia is a significant threat to peatlands 36 

in areas of intensive agriculture (Sutton et al., 2011) but existing research on the microbial response to N 37 

has been limited to wet NH4NO3 application (Gilbert et al., 1998).  In this study, we use a morphological, 38 

functional group approach to investigate the response of micro-organisms to ammonia dry deposition in 39 

a field experiment. 40 

The Whim Moss experiment is a globally-unique pollution experiment on a Calluna vulgaris-41 

Eriophorum vaginatum blanket bog in southern Scotland (3° 16’W, 55° 46’N: Leith et al., 2004). NH3 is 42 

released from a pipe 1 m above the ground when air temperature exceeds 0°C, wind speed exceeds 2.5 43 

m s-1 and wind direction is within the range 180-215°.  Monthly average NH3 concentrations are 44 

determined using passive ALPHA samplers (Sutton et al., 2001) positioned at 0.1 m above the vegetation 45 

along a downwind transect (Sheppard et al., 2011). After nine years of treatment (September 2011), the 46 

upper 50mm of ten stems of Sphagnum capillifolium (Ehrh.) Hedw. were extracted at seven locations 47 

along this transect and placed in 10% formaldehyde. Additional samples were taken off the main 48 

transect and from an area receiving only ambient deposition. Samples were prepared by multiple cycles 49 

of agitation and washing following Jassey et al. (2011) and examined under inverted microscopy. All 50 

larger micro-organisms were identified to group (cyanobacteria, microalgae, fungi, flagellates, ciliates 51 

and micrometazoa including rotifers and nematodes) and assigned to a sequence of broad 52 

morphotypes. More detailed morpho-species identification was carried out for testate amoebae (>100 53 

individuals; Supplementary Table 1): an abundant group of protists which are sensitive to N deposition 54 

(Gilbert et al., 1998; Payne et al., 2012). Flow cytometry (BD FACSCalibur) was used for bacterial counts 55 

with samples stained with SYBR Green I (1/10,000 final concentration) for 15 minutes in the dark and 56 

run at medium speed (ca 40 μL min-1). DAPI-treated sub-samples were examined by epifluorescence 57 

microscopy to establish mean bacterial dimensions. All count data were converted to biomass by 58 



 

 

calculating biovolumes based on geometric shapes (cf. Mitchell  2004) and applying established 59 

conversion factors (Jassey et al., 2011).  60 

Enhanced ammonia exposure was found to drive large changes in the microbial community. 61 

Near to the ammonia source the biomass was dominated by algae, contributing over 50% of the total 62 

microbial biomass (Fig. 1A), while in samples receiving ambient exposure the biomass was more evenly 63 

distributed between algae, fungi, bacteria and protozoa (Fig. 1A). There was a positive trend in total 64 

microbial biomass along the ammonia concentration gradient (Spearman’s rs=0.71, p=0.009; Fig. 1B); 65 

mostly accounted for by difference between those samples receiving <8 and >25 μg m-3 (t-test t=-10.8, 66 

p<0.001). Biomass near the ammonia source was more than double that of samples receiving ambient 67 

exposure. Considered separately, only algal (rs=0.63, p=0.03) biomass was significantly correlated with 68 

ammonia concentration. The algae increasing in abundance included euglenids (e.g. Euglena cf. 69 

mutabilis), and to a lesser extent, desmids (e.g. Cylindrocystis gracilis). Cyanobacteria biomass (mostly 70 

non-nitrogen fixing genera such as Merismopedia and Chroococcus) showed a non-significant positive 71 

correlation with ammonia (rs=0.5, p=0.08) but was a minor component of the total biomass (<3%). Given 72 

the many other influences on peatland microbial communities (Mitchell et al., 2000), the impact of 73 

ammonia emerges strongly in our data (Fig. 1). The sample at 30 m did not have an elevated overall 74 

biomass but does have a larger proportion of algae than untreated samples, perhaps reflecting local 75 

micro-topographic sheltering (Fig. 1A).  76 

 77 

Ammonia concentration was significantly (p=0.02) correlated with the second ordination axis in 78 

an NMDS of testate amoeba data, showing ammonia-induced changes in testate amoebae community 79 

structure (Fig. 2). Total (living + dead) testate amoeba biomass tends to increase with ammonia but this 80 

is of marginal non-significance (rs=0.51, p=0.09; Fig. 2). There was a significant positive correlation 81 

between ammonia and the total biomass of testate amoeba taxa with larger tests (>50000μm3, e.g. 82 

Nebela tincta, Heleopera rosea], rs=0.78, p=0.003) but not with smaller taxa (p>0.05). These larger taxa 83 

with larger apertures are more likely to be algivorous (e.g. N. tincta: Jassey et al., 2012) suggesting that 84 

greater biomass is driven by greater availability of algal prey.  The lack of a similar biomass response in 85 

other groups of predators (ciliates, rotifers) may relate to the palatability of the algal and cyanobacterial 86 

species involved (Dokulil and Teubner, 2000). 87 

 88 



 

 

Our study only considers a relatively small number of samples from a single sampling occasion at 89 

a single site, but results are sufficient to suggest that increased ammonia exposure can cause large 90 

changes in the structure and functioning of the microbial food-web.  Our results show a similar pattern 91 

to those of Gilbert et al., (1998) with N enhancing overall microbial biomass, and particularly autotrophs. 92 

The magnitude of change is greater in our data, which probably relates to the much longer duration of 93 

the experiment but may also reflect differences in sensitivity to N forms and peatland type. Our results 94 

are consistent with a direct eutrophying influence of ammonia, suggesting that peatland algae and 95 

cyanobacteria are N-limited (or N and P co-limited). However we cannot exclude indirect impacts 96 

through changes in pH, soil chemistry and biotic interactions. The positive impact of ammonia on algae 97 

contrasts with the deleterious impacts on bryophytes and vascular plants (Sheppard et al., 2011), 98 

probably because the microbial community was primarily exposed to ammonium in the moist 99 

bryosphere rather than to dry ammonia which can produce direct physiological impacts on plants.  100 

Microbial C biomass with high ammonia exposure is only approximately 1% of Sphagnum C but may be 101 

an important C pool given its greater lability.  102 

Increased autotroph biomass is apparent with ammonia concentrations above approximately 6 103 

μg m-3, which corresponds to an N deposition of approximately 15 kg N ha-1 yr-1 (Sheppard et al., 2011).  104 

N deposition in Europe is regulated using a critical load, currently set at 5-10 kg N ha-1 yr-1 and NH3 using 105 

a critical level currently set at 1 μg m-3 (Cape et al., 2009). Such values are primarily assigned on the basis 106 

of impacts on plant communities with a (usually unstated) assumption that if plants are protected, other 107 

ecosystem components will also be conserved. Our results do not contradict this assumption: after 9 108 

years of treatment we find no indication of impacts on microbial communities below either the critical 109 

load or level, our results suggest either should be sufficient to avoid major microbial change. Changes in 110 

microbial community composition might be a useful addition to the suite of techniques used for the 111 

bioindication of N pollution (Sutton et al., 2004), perhaps by considering a ratio of algae to other 112 

microbial groups.  113 
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FIGURE CAPTIONS 123 

Fig. 1. Microbial response to ammonia. A) NMDS ordination based on Bray-Curtis dissimilarity of 124 

microbial group biomass, pies show relative abundance of groups with symbols sized in proportion to 125 

total biomass.  Ammonia concentration is significantly correlated with NMDS axis one (r=0.78, p=0.002).  126 

B) Microbial total biomass against NH3 concentration measured 0.1m above the vegetation. Symbols on 127 

both plots labelled with distance along transect (20-108 m, B=background sampling area, (15E)=15 m off 128 

main transect). Biomass calculations are likely to under-estimate biomass of some groups not removed 129 

in preparation (notably fungi) but provide internally consistent estimates. Ammonia concentrations are 130 

means for January 2007-September 2011; these long-term values are very strongly correlated with 131 

those for the month of sampling and the preceding 3 month period (both r=0.99, p<0.0001).  132 

 133 

 134 

 135 

Fig. 2. Testate amoeba community. NMDS ordination based on Bray-Curtis dissimilarity of taxa biomass 136 

(calculated on the basis of both living and dead individuals, unlike Fig. 1 based on only living individuals 137 

for comparability with other microbial groups). Symbols sized in proportion to total biomass (range: 90-138 

780 μg C g(dm)-1).  Ammonia concentration significantly correlated with axis two (r=0.66, p=0.02). Pies 139 

show relative abundance of selected taxa, labelled as for Fig. 1. 140 
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Supplementary Table One. Full list of testate amoeba taxa identified in Whim Moss samples.  143 
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