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Abstract

In this paper we consider a general non-linear size structured population
dynamical model with size and density dependent fertility and mortality rates
and with size dependent growth rate. Based on [3] we are able to deduce a
characteristic function for a stationary solution of the system in a similar way.
Then we establish results about the stability (resp. instability) of the stationary
solutions of the system.
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1 Introduction

The model equation

pi(at)+ (v(@p(at))y = —H@P(t))pat), 0<a<m< oo,

VOP(0.0) = ["BlaP())patida t>0 1.1

with the initial conditionp(a,0) := po(a) describes the dynamics of a single
species population with structuring varialalevhich is now a measure of an indi-
vidual’s “size” (volume, weight, biomass, etc.).

The mortality and the fertility functiong, 3 depend on the siza and on the
total population quantity -

P(t) = /o p(a,t)da
at timet which makes the model a non-linear one. We assume a finite maximal
size denoted byn and the size of any newborn is considered to be 0. We make the
following general assumptions on these vital rate functions:

VX € [0,) B(.,Xx) € LY(0,m), p(.,x) €L ([0,m)),

VX € [0,00) 0<B(a,x) <K <o, p@ax) >0, [i"uax)da= .

The growth ratey > 0 depends only on the size Moreover we assume that all
the vital rate functiong, 3,y are inC! class. This generalized model is equivalent
to the Gurtin-MacCamy (or McKendrick) non-linear age structured modesifL,

(se [5],[6],[1]). This type of model can be derived from fundamental principles as a
continuity equation, see e.qg. [7],[4].

In [3] a characteristic equation for a stationary solution of the above mentioned
age structured model is deduced which enabled us to prove stability (resp. instabil-
ity) results under relatively general conditions on the vital rgtes

In the present note we are going to deduce the characteristic function for a sta-
tionary solution of the more general size structured model. Then we establish sta-



bility (resp. instability) results under general and simply conditions for the vital rate

functions.

2 The characteristic equation

If the model (1.1) has a stationary solution denotedoba) then it has to satisfy
the following equations

V(@)Pa(a) +V(@)Ph(@) = —Ha.PUR(@), Pi= [ pra)da

YO)P1(0) = [ BlaPy)py(a)da 1)

from which

;o —H@Ppi(a) —y(a)pi(a)
pl(a) - y(a> )

and we get the solution

_ [ausP)H(O) 4

pu(a) = ps(0)e © ¥, (2.2)
Substituting (2.2) into (2.1) we get

[p(a Py T
a P e Y(s a
— 1o 1 v —=: Q(Py) (2.3)

what is known as the inherent net reproduction number in the age structured

1

casey=1).
We can solve equation (2.3) for the single variaBleand from the equation

m m _ja H(S,Pl)ﬂ/(s)ds
P =/ pi(a) = pl(o)/ e Y9 “da
0 0

we have the initial valug;(0).



This way we showed that for any soluti®h of (2.3) we have exactly one sta-
tionary solutionp;(a).
Now introducing the variation for an arbtitrary stationary solutmia)

u(a,t) = p(a’t> - pl(a)a
which satisfies the following differential equation

/

u(at) + (v(@u(a,t)z = pr(at) + (v(@)p(a,t))a — (v(@) pa(a))a,

and with

pt(at) +(v(@p(at))a=—maPt)pat), (v(a)pi(a))a=—Ha P1)P(a),

we get

ur(a,t) + (v(au(a,t))z = —u(a P(t)) p(a,t) + u(a, Pr) pa(a).

After linearizing the right-hand side ia we obtain

w(a,t) + (y(@u(at))a = —u@ Pu(at) — ip(a P pu(a) /O “uatida (2.4)

and for the initial condition

u0.) = p(O.)-pi(0) = [ BaPu@nda+ [ Bh(aPpi(@da [ uatda
(2.5)
Now suppose that the linearized problem has solutions of the tgtna) =
eMU (a) substituting this into (2.4) and (2.5) and applying the following notation
U = [J"U(a)dawe get



U'(a) =U(a) Y@ —p@P)-A  Ske(aP)pi(a) ’ (2.6)

(@) y(@)

u(0) = /O "8(a U (@)dat+ 0 /0 "L (a, P p(a)da 2.7)
The solution of (2.6)-(2.7) is

atnr (1) +1(r,Py) a v (9)+u(sP
U(a) = (U (0) - /0 Ube (S Py pi(S) efOHdrds) s

¥(s)
(2.8)
i . _ SV(r)"’“(rvPl)dr
Integrating (2.8) from O tonand using the formulp;(s) = p1(0)e ° YO

we obtain

U = A1(A)U(0) +Az(MU,
whith

M _ raY(9+HSPY+A 4o
Aun) = [e BT

avY(s S )+A s
A12(A) = —p1(0) /Ome Jo Pl ds </ Hp(s efo ol drdS) da.

Substituting the solutiobd (a) into (2.7) we get

U(0) =U(0)Az1(A) +UAz(N),

where

Y (9+ Y(9HHSPHA 4o
A21 / B a, Pl Y(s) da

Axo(N) =
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ay(s)+usPy) _ aY(9+Hs
=) | m<e_f°3<§1dss' (@py)—e T ey [TH “P Pl drds)d
0

Thus, we get the same linear system as in [3]Jou (0) but with more com-
plicated coefficients:

0= A11(A)U(0) + (Ar2(A) — 1)U, 0=U(0)(A21(A) — 1) +UAxn(A).

We can formulate the following

Theorem 1The stationary solutiop; (a) is asymptotically stable (resp. unsta-
ble) if all the roots of the following equation have negative real part (resp. it has a
root with positive real part).

A11(M)A22(A) — Ar2(A)A21(N) +As2(A) +Aza(A) = 1

3 Stability of equilibria

Next we establish our stability results.

The proof of the following result mainly follows the idea of the proof of Th.1 in
[2].

Theorem 2In the case ofi(a,P) = m(a), B(a, P) generaly(0) = 1, the station-
ary solutionps(a) is asymptotically stable iBy(.,P1) < O, if insteadBp(.,P1) > 0
then it is unstable.

Proof

Let us introduce the following notations:

ay(s +usP1)dS

, T(a,P):=e ° O \

a Y (9 HHsPy A o

T(a,Pl,)\) =e 0 ¥(s)

and



_ aY(&+usP) 4oy pa_L
T(aPL\)=e B o 9 Mosgts_1(a pe i@,

where

a i
F(a):/o Eds

If the vital rates assume the form above then the characteristic equation can be
written the following way

KO\ =1=

_ Py m AT (a) /m /
= TP /0 T(aPye ™ @da | T(aPyBp(aPydar

m
+ / B(a,P)T(a,Pe M @da
0

Now suppose thaBp(.,P1) > 0 holds. Then we are going to show that the
characteristic function has a positive raot
The following inequality is true for alP; > 0

K(0) = Pl/omT(a, P1)Bp(a, Pr)da+y(0) > 1

becausg(0) = 1 andBp(.,P1) > 0 holds.
Additionally we have

lim K(A) =0,

A—00
and the functionsg, 3,y are non-negative so thKtA) is a monotone decreasing
function ofA, which shows that there exists exactly one posiiver whichK(A) =
1.



On the other hand iBs(.,P1) < 0 holds, suppose that there exists a et
X+ 1y such that > 0.
Then

P

R e pda

/o "I (a,P1)e ™ @ cogyl (a))da

[T Popb(aPyda+ [ B PT (@ Poe @ cosyr ()da

for x> 0, we havee ™ (@ < 1 and co§yT (a)) < 1 obviously, so we have

ReK(A)) <

Pl m m p m B
< I o P /0 T(a,Pl)da/O T (a,P1)Bb(a, Py)dat /O B(a,P)T(a,Py)da—

_p, /O " (a,PL)Bb(a, Py)da+y(0) < 1,

a contradiction.

That means that the characteristic equation does not have a root with positive or
zero real part iBp(.,P1) < 0 holds.OJ

Remark The stability condition for the fertility function seems to be very nat-
ural in a biological sense, namely it says that if at the equilibrium the growth of
the population decreases the fertility of individuals which in general decreases the
number of newborns as a compensation or balancing principle, then the equilib-
rium is stable. In general if the conditions for stability of equilibria arrived at by
mathematical modelling of biological phenomena are intuitively obvious then the
mathematical model can be relied upon perhaps by greaten certainty.



The following theorem generalizes the first part of Th.2., that is we give a con-
dition which implies instability of the equilibrium for genenala, P),3(a, P),y(a).

Theorem 3Supposeg/(0) = 1, then ifQ'(Py) > 0 holds then the stationary solu-
tion py1(a) with total population quantity?; is unstable.

Proof With the notations above we have

Az(A) = /O " Tla PN da As(h) = /0 "8(a,Py)T(a P\ da

m a r(s)
Aaa(A) = _fén%,lplﬂa/o (T(a, PlJ\)/O Hp(s, Pl)es(s) dS) da,

/

Pl /OmT(a, PR (a,P1) —T(a,Pi,\)B(a, Pr) /()a%;ﬂ@r(s)dsda

Ao = e, P da

Substitutingh = 0 into the characteristic equation a basic calculation leads to

/

K(0)=P; /O " (a Py)Bb(a, Py) — T(a,P1)B(a,Py) /0 ? \(;’S)Pl)dsd% /O "8(a,P)T(a,P)da

and observe that the first term on the right hand sidR@@(P;) so that we have

K(0)=PQ(P)+1>1.

Now we only have to prove that lin,., K(A) = 0 which proves that there exists
areal positive rock. ForAj1(A),A21(A) we have lim_, Ar1(A) = limy_q, Az1(A) =
0. ForAs2(A) consider the function

o I8 TeEr / THp(SP) ars) _ oS3 MR / “He(S.P) ar(s)-T (@)
o Y(S o Y

and we have



15 Wlu)du: Ma)>T(s)= féﬁdufor a> s, which proves li_,., A12(A) = 0.
So does the second termA&f>(A), namely

/

lim T (a, P, \)B(a, P1) /0 0

A—00

(5P gri9gs—o
y(s)
That is we have

: B Py
v e prda

/omT(a, P)B(a,Py)da=C
a constant, which completes the proiaf.

Remark The conditionQ'(P;) > 0 gets a natural meaning for the age structured
population model (the cage= 1) whenQ(P) = R(P) is the expected number of
newborns for an individual. Then Th.3. states that for sufficiently ciyde > Py
the net reproduction number is greater than 1, so that the stationary solution cannot
be stable. This is not a surprising behaviour again.

At the moment the problem, that whether f&(P;) < O (or even in general in
the case of a size structured model @(P;) < 0), the stationary solution is stable,
seems to be open.
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