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A major aim of island biogeography has been to describe general patterns of species
richness across islands and to identify the processes responsible. Data are often collected
across many islands; with larger datasets providing increased statistical power and more
accurate parameter estimates. However, there is often structure in observational data,
violating an assumption of linear models that each datum is independent. In island
biogeography this structure may take the form of an island, archipelago or taxon being
represented by multiple data points. We survey recent papers in this field and find that
these forms of non-independence are a common feature. Most authors addressed this
problem by conducting separate analyses for each archipelago, taxon or combination of
the two, but a better tool for dealing with non-independence and structure in data, the
mixed model, already exists. We demonstrate the advantages of a mixed model approach
by applying it to a well-known dataset that spans 134 observations of single island
endemic (SIE) richness across 39 islands, four archipelagos and four taxa. Taking island
area and age into account, SIE richness varies substantially more among archipelagos than
it does among islands or taxa. We find that SIE richness rises with island age on the Azores
and Galapagos, while on the Canaries and Hawaii SIE richness initially rises with age but
later declines on older islands. Our analyses demonstrate three advantages to island
biogeography of applying a mixed modelling approach: (1) structure in the data is
controlled for; (2) the variance among islands, archipelagos and taxa is estimated; (3) all
the data can be included in a single model, making it possible to test whether trends are

general across all archipelagos and taxa or are idiosyncratic.



Introduction

A central goal of island biogeography is to understand the processes responsible for
generating heterogeneity in biodiversity among islands (MacArthur and Wilson 1963,
MacArthur and Wilson 1967, Whittaker and Fernandez-Palacios 2007). The most
common approach to addressing this question is to compile data on numbers of
species per island and then to examine the degree to which species richness is
explained by island attributes (particularly area, isolation, habitat heterogeneity and
island age) using linear regression techniques. An assumption of linear models is that
all data points are independent. However, in island biogeography, as is the case with
many strands of non-experimental biology, numerous factors can cause this
assumption to be violated (see Table 1 for examples of non-independence in the
island biogeography literature). The problem of non-independence of data becomes
particularly acute when researchers consider larger datasets in a quest for statistical
power and model generality. In this paper, we show that linear mixed modelling
(LMM) can address these issues by adding information on the structure of the data
(e.g., pseudoreplication due to multiple data points coming from the same island,
archipelago or taxon). Moreover, LMMs can offer novel insights by estimating the
variation among islands, archipelagos and taxa.

To illustrate the most common forms of non-independence pertinent to
island biogeography, we will explore a hypothetical statistical model that aims to
address island area as a predictor of the species richness of ten distinct taxa across
all of the islands constituting ten different archipelagos. In this case there are at least
three sources of non-independence, namely island, archipelago and taxon, which we

will consider in turn.



Island Effects: On any single island, a multitude of local factors (including
aspects of the environment and island history) not included in our statistical model
may make the species richness of the ten different taxa more similar, thereby
introducing non-independence (pseudoreplication). For instance, the island may
have experienced a recent tropical storm that exterminated many species, resulting
in a reduction in the species richness of all ten taxa.

Archipelago Effects: Equally, within a given archipelago, the species richness

of the constituent islands may tend to be particularly high or low due to attributes of
the archipelago, such as its geological history, climate, inter-island isolation and
isolation from sources of colonists. The combined effects of these factors that make
species richness more similar across islands within an archipelago is sometimes
referred to as biogeographical coherence (Santos et al. 2010).

Taxon Effects: Differences in diversity between taxa are a ubiquitous feature
of biodiversity and are often associated with intrinsic traits of taxa as well as
exogenous environmental factors. For example, just as on the mainland, we may
expect a taxon whose representatives are top carnivores to be less species rich
across different islands and archipelagos than a taxon made up of herbivores.
Within island biogeography, taxon effects on species richness on different islands
are likely to be particularly affected by species richness on the mainland and by the
degree of inter-island dispersal.

If a single standard linear model was applied to data collected for the
hypothetical scenario described above, there would be a high probability of
detecting a general trend where there is none (see Fig. 1 for an example of how a

false positive or Type | error may arise). A partial solution, often employed in the



study of island biogeography (Table 1), is to construct separate linear models within
subsets of data comprising each unique combination of archipelago and taxon
identity. The estimated parameters are then compared across the different subsets,
with the aim of drawing conclusions about the similarities or differences across the
different data subsets. While this approach does remove pseudoreplication due to
archipelago and taxon, it leads to very small data sets that offer low power to detect
trends, resulting in (i) the failure to find a trend where there is one, also called false
negative or Type Il error; (ii) uncertainty in parameter estimates; (iii) the linear
models are easily overfitted, i.e. too many explanatory variables for the number of
data points.

Although analysing each taxon by archipelago combination separately
reduces non-independence within tests, any further comparison of models between
tests, such as comparing models for different taxa within an archipelago,
reintroduces non-independence. If we are testing for a difference in slopes then this
pseudoreplication will increase the frequency of Type Il errors. Under these
conditions, a finding of no significant difference between slopes does not constitute
reliable evidence of a shared slope or general trend across taxa. Unfortunately, this
latter problem appears to arise quite frequently in island biogeography (Table 1).

Here, we show that linear mixed models (LMMs), a class of models that have
gained in popularity in other fields of ecology and evolution (Bolker et al. 2009), can
overcome all of these problems and deliver novel insights. Surprisingly, in a survey of
recent papers in the field of island biogeography and species richness, we found no
case where LMM was used (see Table 1 for details). Two rare instances where a

mixed modelling approach (generalised linear mixed models in both cases) has been



used in an island biogeography setting are Blackburn et al. (2004) and Steinbauer et
al. (2011).

LMMs, similarly to linear models, describe the degree to which a response
variable is predicted by explanatory variables, but the explanatory variables are of
two types, fixed effects and random effects (see Glossary for an explanation of LMM
terminology). We include the variables for which we intend to estimate slope or
intercept coefficients as fixed effects. For instance, if we want to test the hypothesis
that species richness increases with island area, we would include area as a fixed
effect (just as would be the case in a linear model). Random effects describe the
grouping (e.g. taxon) or the hierarchical structure (data points within islands within
archipelagos) within the data. Rather than estimating a coefficient for each level of a
random effect, we estimate a single parameter, the variance across levels of the
random effect. Therefore, random effects provide an efficient means of dealing with
non-independence, such as data points from the same island, archipelago or taxon.
The number of levels each random effect should have in order to obtain reliable
estimates of variance is a matter of debate, with some arguing that more than five
are needed (Bolker et al. 2009).

If we return to the hypothetical example from earlier, we can see how this
might be treated in a mixed model framework (eq. 1). We are seeking to explain the
log transformed species richness +1 (S) of a taxon p on island i within archipelago g
as a function of the grand mean (u) and log island area (A) and its slope coefficient
(). However, we also want to quantify how S of each taxon (p) on each island (i) in
each archipelago (g) deviates from the grand mean, and this variance is captured as

island (/), archipelago (G) and taxon (P) effects, leaving those differences that are



unique to that particular combination of archipelago, island and taxon (the residual
term: E).

Sigp=u+/)’A+Ii+Gg+Pp+Eigp eq. 1.
In a mixed modelling framework we can estimate the variance across all levels of /,
G, P and E. In this way, the variance estimate for island, taxa or archipelago provides
us with additional information, whilst also correcting for pseudoreplication. This is
commonly called variance components analysis and conveys the amount of variance
distributed among the separate random effects (Pinheiro and Bates 2000 p. 50, Zuur
et al. 2009 p.).

So far we have considered a LMM with the random effects of island,
archipelago, taxon and residual. This model type is also called a random intercept
model because island, archipelago and taxon are categorical variables with a number
of levels across which we estimate variation around the grand mean. Consider a
more complex case where we are interested not only in whether archipelagos vary in
their intercept but also in whether the slope of the island area and species richness
relationship varies among archipelagos. We can extend the LMM approach to a
random slope model (sometimes called random regression), where, we can estimate
the variation of the slope across different archipelagos (or taxa). Conceptually, the
random slope (or random regression) model is similar to an analysis of covariance
(ANCOVA), where we estimate different slopes for each level of a categorical
variable by adding the interaction between the continuous variable and the
categorical variable. The difference being that the object of interest is the variance in

slopes rather than the coefficient of each slope.



We illustrate the application of a mixed modelling approach to data on the
richness of single island endemics (SIEs) collected for multiple islands, archipelagos
and taxa. These data were originally used to test the general dynamic model (GDM)
of oceanic island biogeography (Whittaker et al. 2008, 2010). The GDM posits that
the number of SIEs initially rises and later falls through time, coincident with changes
in island area, altitude and habitat diversity (see also Stuessy 2007, Whittaker et al.
2007). Whittaker et al. (2008, 2010) applied separate linear models to unique
combinations of archipelago and taxon and showed that by including area, time and
time? as predictors (their ATT? model) they could explain a large proportion of the
variance in SIE richness. Note that in the ATT? model the rise and fall of SIE richness
is independent of island area. In this study we test whether the influences of area,
time and time?” on SIE richness predicted by the GDM persist when a mixed
modelling approach is applied and additional variables are considered. We also

highlight the further insights that a mixed modelling approach provides.

Methods

The island data set

Data (n=134) on the number of single island endemics (SIEs), island age (in millions
of years) and area (km?) were kindly provided by R. J. Whittaker and K. A. Triantis
(Whittaker et al. 2008, Whittaker et al. 2010). Data from four volcanic archipelagos,
the Azores (Arthropods, Coleoptera and land snails), Canaries (Arthropods,
Coleoptera, land snails and plants), Galapagos (Arthropods, Coleoptera, and plants)

and Hawaii (Arthropods, Coleoptera, land snails and plants) were included. See



Whittaker et al. (2008) for a full discussion of the selection of islands and for basic
evaluation of data quality issues and important assumptions regarding age of islands.
The data analysed here on Arthropods and Coleoptera on the Azores (Borges et al.
2005, Borges and Hortal 2009) and Coleoptera on the Canaries (lzquierdo et al. 2004)
were not included in the study of Whittaker et al. (2008). Data on isolation from the
nearest island and from the mainland (both in km) were obtained from UNEP island

directory (http://islands.unep.ch/isldir.htm) and Silva & Smith (2004).

Statistical analyses

Our response variable was the number of single island endemics (SIE), a diversity
metric that has been used by a number of recent studies. For the sake of simplicity
we apply a In(n+1) transformation to the response variable, meaning that linear
mixed modelling techniques can be applied. However, we refer the reader to a
recent study demonstrating that when faced with count data of this sort, a negative
binomial or quasi-Poisson error structure often performs better than In(n+1)
transformation (O'Hara and Kotze 2010). Our fixed effects were the area of the
island (km?), distance to the mainland (km), distance to the nearest island (km), the
geological age of the island (in millions of years) and its quadratic term.

Following Zuur et al. (2009), we first selected the most parsimonious random
intercepts structure by finding the model with the lowest Akaike Information
Criterion corrected for small sample size (AlCc) with all fixed effects added. AAICc is
calculated as the difference between each model’s AlCc and the lowest AlCc, with a

AAICc < 2 interpreted as substantial support that the model belongs to the set of



best models, a AAICc of 4 — 7 corresponding to less support and AAICc > 10 treated
as providing no support that the model belongs to the best set. Akaike weights give
the probability that a model is the best model, given the data and the set of

candidate models (Burnham and Anderson 2004).

Models were fit with Imer in the Ime4 package (version 0.999375-37) in R (R
Development Core Team 2010). When comparing models that varied in their random
effects but not fixed effects, the models were fit using restricted maximum
likelihood (REML). To find the most parsimonious random intercept structure we ran
models with archipelago, island, taxon and taxon:archipelago (meaning the unique
combination of taxon and archipelago) as random effects. Island is nested within
archipelago because each island occurs only in one archipelago. Taxon is crossed
random effect with respect to both island and archipelago, since each taxon can
occur on more than one island or archipelago (see Glossary for definition of nested
versus crossed random effects). For simplicity we assume that the taxa are
independent of each other. In reality this assumption is likely to be violated because
Coleoptera are a subclade of Arthropods and plants are more distantly related to
snails, beetles and Arthropods than the latter are to each other. Methods for dealing
with phylogenetic non-independence in a mixed model setting do exist (Hadfield and
Nakagawa 2010), however, we will not consider this issue further here. Equally,
pseudoreplication arising via island or archipelago effects can be seen as points
along a continuum of spatial autocorrelation. We draw the reader’s attention to the
option of dealing with this continuum directly in a mixed modelling framework by

incorporating spatial variation and covariation in the error term of the mixed model
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(note that this is not possible in the Ime4 library but can be done using the nlme

library).

Whittaker et al. (2008) argue that the curve of the rise and fall of diversity
with island age will vary among archipelagos. Therefore, we use a random slope
model to test whether allowing the age versus SIE richness slope to vary among

archipelago:taxon combinations improved model performance.

After determining the random effect structure, the most parsimonious
combination of fixed effects must be found using maximum likelihood (ML) rather
than REML. We conducted AlCc based multi-model inference using the dredge
function in the MuMlIn package in R (version 0.13.17) to run a complete set of
models with all possible combinations of the fixed effects. The code in R for all mixed

model analyses is given in Appendix 1.

Graphical inspection is an important tool in statistics (Hilborn and Mangel
1997). After graphical inspection of the final model (Pinheiro and Bates 2000, Zuur et
al. 2009), major differences in dynamics among archipelagos were apparent, and on
this basis we chose to explore the alternative analysis of adding archipelago as a
fixed effect instead of as random effect (see below). Distance to mainland was not

included as fixed effect in these models due to low variation within archipelagos.

Results

Random effects
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The lowest AlCc random effects structure included archipelago, island, taxon and
taxon:archipelago as random intercepts (Table 2). Fitting either a random slope of
area or age for each taxon:archipelago led to an increase in AlCc (i.e., the model was
poorer) (Table 2). In the most parsimonious (lowest AlCc) model, after fitting the
fixed effects (age of the island, squared age of the island and the area of the island),
archipelago explained 59% of the variation in the random effects, with the
remainder being distributed as follows island = 7%, taxon:archipelago = 3%, taxon =

23% and residual = 8%.

Fixed effects

The lowest AlCc model shows the number of SIEs increasing with both the age and
area of the island but with a negative quadratic slope for age (Table 3, Appendix 2):
species richness increases with area but rises and then falls over time. This model
has nine estimated parameters, four fixed effects and five random effects. Neither
distance to the mainland and distance to the nearest island improved model fit
(Table 3). Inspection of predicted versus observed values showed that the model

explained most of the variation in SIE richness (Appendix 3).

An alternative approach

As archipelago effects were much more sizeable than any of the other random
effects and due to the substantial variation in maximum island age among
archipelagos, we investigated whether the slopes of the effects of island age or area
differed among archipelagos. While there was no support for these hypotheses

when we used a random slope approach (Table 2), we were concerned that this
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might be due to the small number of archipelagos across which we were trying to
estimate variance in both intercept and slope. We therefore adopted an alternative
approach and included archipelago as a fixed effect and tested whether allowing for
an interaction between archipelago and various covariates (island age, age® and
area) led to an improved model fit. By fitting archipelago as a fixed effect and
allowing for interaction with a covariate, we estimated both an intercept and a slope
for each archipelago.

Treating archipelago as a fixed effect led to a substantial improvement in
model fit (AAICc = 11.1, models estimated with maximum likelihood). The most
parsimonious model included archipelago, age of the island, squared age of the
island and the area of the island (Figure 2) as fixed effects. It also included the
interaction of archipelago with squared age of the island as fixed effect (Table 4,
Figure 3). The variance of the random effects included were as follows: island: 12%,
taxon:archipelago: 7%, taxon: 56%, residual: 25% (Appendix 2). This model is based
on 14 estimated parameters, 10 fixed effects and four random effects. Graphical
inspection showed that the model explained most of the variation in SIE richness
(Appendix 3). Across all four archipelagos this model described an increase in SIE
richness with island area (Figure 2). However, the effect of island age differed among
archipelagos. A positive near linear increase in SIE richness with island age was
observed on the youngest two archipelagos, the Azores and Galapagos. In
comparison, the coefficients estimated for the Canaries and Hawaii described a rise

and fall of SIE richness with island age.
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Discussion

By applying a mixed model approach to island SIE richness data across four volcanic
oceanic archipelagos, we found that the ATT? formulation proposed by Whittaker et
al. (2007, 2008, 2010) provides an excellent description of the data. We also
identified previously unappreciated nuances that we will discuss below. Plotting the
predicted T+T* function for the different archipelagos (Fig. 2) revealed that on the
Canaries and Hawaii SIE richness rose and fell with increasing island age, exactly as
predicted by Whittaker and colleagues. In both cases islands showed an increase in
diversity for the first 10MY and a decrease for the next 10MY. In comparison and
consistent with Borges and Hortal (2009), we found that on the Azores and

Galapagos SIE richness only increased with island age (Fig. 2).

The increase in SIE richness with island age on younger islands has a intuitive
explanation; speciation, whether by anagenesis or cladogenesis, requires time (Price
2008, Rosindell and Phillimore 2010). Moreover, early in an island’s history, the
more species present, the more species that are available to undergo renewed bouts
of cladogenesis (Whittaker et al. 2007). A slowing of the rate of SIE accumulation
with time (not evident in the Azores) makes sense in the light of accumulating
phylogenetic and fossil evidence that there are limits to diversity and that speciation
rates are regulated by diversity (Phillimore and Price 2008, Rabosky and Glor 2010,
Ezard et al. 2011). However, an explanation for the decrease in the SIE richness of
the older islands is less straightforward. In describing the GDM, Whittaker et al.

(2008, 2010) suggested that SIE richness on old islands may fall as a consequence of
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a reduction in island area (we can discount this explanation as area is included in the
ATT? model), topographic complexity and habitat diversity or by SIEs colonizing other
islands and becoming multiple island endemics rather than SIEs. An alternative
explanation is the taxon cycle model as described by Ricklefs and colleagues (Ricklefs
and Cox 1972, Ricklefs and Bermingham 2002); perhaps old endemic species on the
oldest islands are most susceptible to immigration of new colonists and the diseases

that they carry.

The mixed modelling approach provided insights into how archipelagos, taxa
and islands vary in SIE richness. For instance, by far the most substantial variance
component was the archipelago effect, with taxon effect also substantial. This
suggests that biogeographical coherence has a large influence on SIE richness. We
found evidence for a significant taxon:archipelago interaction, meaning that the SIE
richness of a particular taxon on a particular island was not entirely accounted for by
the main random effects, although this interaction captured relatively little variance.

Island effects and the residual term were both small.

Whittaker et al. (2008) fitted 14 different models, one for each island-taxon
combination, to explain the number of single island endemics using area, the time
and the squared time as explanatory variables. Thus, for each of their models, they
estimated four parameters; three slopes and one intercept, summing to 56
parameters. In our lowest AlCc model, treating archipelago as fixed effect, we used
14 parameters in total, 10 fixed effects, and four random effects. The advantages of
the mixed modelling framework over separate fitting of terms to each

archipelago:taxon combination are parsimony and generality, since we have used
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fewer parameters in a single model framework, whilst modelling differences among

islands, archipelagos and taxa.

A challenge in the application of mixed models to data is their added
complexity. For example, they require the user to have thought about which
variables to include as fixed effects and random effects and the nesting structure of
random effects. Secondly, even though mixed models can deal with unbalanced
design (different number of data points for different groups of the random effect),
LMMs require a data set that is large enough to estimate variances for each group of
the random effects. Here we have chosen to exemplify the advantages of using
linear mixed models for island biogeography using the Ime4 package in the free
software R. Within R, there are several packages for LMMs and many other common
software packages can fit LMMs (see Bolker et al. 2009). The choice of the package
depends on the data and the research question. LMMs are a flexible tool and recent
developments have extended linear mixed models to generalized linear mixed
models (GLMM) with the option to include a link function and error structures to
allow for the non-normal distribution of the response variable such as species
richness data (often Poisson distributed) or binomial data for zero-one-states such as
alive or dead (Bolker et al. 2009). Further reading on LMMs and GLMMs and
statistical detail can be obtained from Pinheiro and Bates (2000), Zuur et al. (2009)

and Hadfield (2010).

In summary, linear mixed models increase the power to detect general
patterns where data come from grouped sources, such as is common in island

biogeography and have the potential to offer additional insights that linear models
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cannot. Therefore, we suggest that this approach should be adopted as standard in
future island biogeography studies that have the goal of identifying general trends

across archipelagos and taxa.
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GLOSSARY

Crossed random effect — multiple random effects that apply independently to a data point
such as a species belongs to a taxon and was found on a specific island where both island

and taxon influence the occurrence of the species.

Fixed effect — estimates intercepts for factor levels or slopes for continuous variable.
Examples are age or area of islands.

Mixed effects model — a model with both fixed and random effects.
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Nested random effects — multiple random effects with a hierarchical structure where levels
of one random effect may only vary within a level of another random effect. For instance,

island effects are nested within archipelago effects.

Random effects — grouping units drawn as a random sample from a population, for example
islands, archipelagos or taxa. Allow estimating the variance explained by the grouping unit,
such as different islands.

Random intercept model — a model where the deviations of the intercepts of the levels of
the random effect from the grand mean come from a normal distribution with an estimated

variance.

Random slope/regression model — extending the random intercept model by allowing the
slope estimated for a fixed effect to vary among the individual units of a random effect. For
example, the slope of the relationship between age of the island and species richness varies
on different islands.
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Table 1. Summary of the forms of pseudoreplication that exist in recent island biogeography studies, the approaches taken to remedy it and

suggestions for how linear mixed models could improve on this.

Study Type of study’ Potential pseudoreplication* Method to deal with pseudoreplication Suggested model structure in LMM?
employed in paper
Dexter 2010 Species area Island, habitat Separate analysis for each habitat Fixed = habitat

Murakami and Hirao

2010

Hannus and von Numers

2010

Santos et al. 2010

Steinbauer and

Beierkuhnlein 2010

Cardoso et al. 2010

Uchida and Inoue 2010

Kallimanis et al. 2010

relationship

Species area
relationship

Species area
relationship

Species area
relationship
Correlates of species
richness

Correlates of species
richness

Correlates of species
richness

Correlates of species

richness

Island, taxon

Island, year

Island, archipelago, taxon

Island, taxon

Archipelago

Island, sampling time

Biogeographic region within

archipelago

Separate analysis for each taxon

Separate analysis for each year

Separate analysis for each combination of

archipelago and taxon

Separate analysis for each taxon

Separate analysis for each archipelago

Mean taken across sampling times.

No action taken
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Random = island

Random = island + taxon

Fixed = year

Random = island

Random = island + archipelago + island
+ archipelago:taxon

Random = island + taxon

Fixed = archipelago

Random = island + sampling time

Random = biogeographic region within

archipelago



Dengler 2010

Ishtiaq, et al. 2010

Keppel et al. 2010

Jonsson et al. 2009

Hortal et al. 2009

Tuya and Haroun 2009

Stracey and Pimm 2009

Fattorini 2009

Long et al. 2009

Horvath et al. 2009

Species area
relationship

Species area
relationship
Correlates of species
richness

Species area
relationship

Habitat area
relationship
Correlates of species
richness

Correlates of species
richness

Correlates of species
richness

Correlates of species
richness

Correlates of species

richness

Floristic region within

archipelago

Island

Archipelago

Island

Island, archipelago, taxon

Island, archipelago, taxon

Island, species type
(visitor/resident)

Island, taxon

Island, species type
(native/exotic)

Fragment, habitat

No action taken

Separate analysis for each taxon

No action taken

Separate analysis for each combination of

taxon and year

Separate analysis for each combination of

archipelago and taxon

Separate analysis for each archipelago

Separate analysis for visitors and residents

Separate analysis for each taxon

Separate analysis for native and exotic

species

Separate analysis for each habitat

Random = floristic region within
archipelago

Fixed = taxon

Random = island

Random = archipelago

Fixed = taxon + year

Random = island

Random = island + archipelago + island
+ archipelago:taxon

Fixed = archipelago + taxon

Random = island

Fixed = species type

Random = island

Random = island + taxon

Fixed = species type
Random = island
Fixed = habitat

Random = island

Studies of species richness include those investigating subsets of species richness, e.g., numbers of single island endemics.
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*We searched Thomson ISI Web of Knowledge (http://apps.isiknowledge.com/) for papers published over the period 2009-2010 with the
keyword “island biogeography”. We only include papers in this table that were addressing correlates of species richness across islands or

patches of some sort and where the assumption of independence of datapoints appeared to be violated.

¥We suggest a model structure that would remove the pseudoreplication in a mixed modelling framework. We only include variables as
random effects where there are more than four levels, otherwise we propose treating the variable as a fixed effect (Bolker et al. 2009). In
many cases it would also be appropriate to fit interactions between the fixed effects for archipelago (or taxon) and other fixed effects, such as

area. Alternatively, such interactions could be fitted as random effects and random regression implemented.
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Table 2: AlCc for random effects model selection with single island endemics as response
variable and distance to mainland, age, agez, area and distance to nearest island as fixed
effects (n=134). Random intercepts were included for archipelago, island, taxon and
taxon:archipelago. Random slopes for area and age varying across taxon:archipelago
combinations were tested. An X indicates that a variable was included in the model,

whereas a blank field means that the variable was not included.

Random intercept Random slope
Area within
taxon: Age within taxon:
Archipelago Island Taxon Taxon:archipelago archipelago archipelago AlCc

X X X X 330.80
X X X X X 334.24
X X X X X 335.26
X X X 338.71
X X X 341.09

X X X 342.95
X X X 350.91
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Table 3: Coefficients for the fixed effects of the four most parsimonious models that treat

archipelago, island, taxon and taxon:archipelago as random effects. The number of

parameters in the model (k), the AlCc difference (A AlCc) and AlCc weight is given for each

model.

Distance Nearest
Intercept mainland  Age Age’ Area island  k  AICc AAICc AICc weight
-0.3117 0.2410 -0.0129 0.4466 9 2826 0.00 0.51
-0.4606 0.2336 -0.0129 0.4639 0.0018 10 2843 1.7 0.22
-0.7650 0.0003 0.2518 -0.0132 0.4535 10 2846 2.0 0.19
-0.8565 0.0002 0.2433 -0.0131 0.4693 0.0017 11 286.4 3.8 0.08
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Table 4: The fixed effects included in the three most parsimonious models that treat

archipelago as a fixed effect. The number of parameters in the model (k), the AlCc

difference (A AlCc) and AICc weight is given for each model. The random effects for the

models were island, taxon and taxon:archipelago. Archipelago (ARCH) was included as a

fixed effect and its interactions with age, age” and area. Distance to mainland was not

included as fixed effect due to low variation within archipelagos. An X indicates that a

variable was included in the model, whereas a blank field means that the variable was not

included.
Nearest ARCH: ARCH: ARCH: AlCc
ARCH Age Age’ Area island  age  age’ area k  AICc AAICc  weight
X X X X X 14 2715 0.0 0.24
X X X X 11 272.2 0.25 0.17
X X X X X X 17 2729 1.43 0.12
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Figure 1. A hypothetical scenario illustrating how archipelago or taxon effects can mislead.
In this figure there is no underlying relationship (dotted line) between island area and
species richness but data points from the same archipelago (or taxon) tend to be more
similar than those from different archipelagos (or taxa). In this case the slope estimated
using a linear model (grey solid line) incorrectly identifies a positive relationship across all

islands, which is due to differences between archipelagos.

A
()]

A
n
S ,
b= A A
O
o
n
Ko
(@]
O B consuileaaas
Q.
)

Island Area

29



Figure 2: Prediction from the lowest AlCc mixed effect model including the random effects
of taxon:archipelago, island and taxon. The response variable SIE was In(n+1) transformed
and explained by area of the island and age of the island (n=134). The grid is predicted from
the fixed effects estimates (termed best linear unbiased estimates) from the model with the
lowest AlCc (Table 4) adjusted by the best linear unbiased predictor of the random effect of
taxon:archipelago. Please note that the lines are an approximation and do not include the
differences due to the random effect of Island. SEE ALSO SEPERATE FILE FOR FIGURE 2 in

higher resolution
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