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 2 

Abstract - Trade-off shapes are crucial to evolutionary outcomes. However, due to 1 

different ecological feedbacks their implications may depend not only on the trade-off 2 

being considered but also the ecological scenario. Here, we apply a novel geometric 3 

technique, trade-off and invasion plots (TIPs), to examine in detail how the shape of 4 

trade-off relationships affect evolutionary outcomes under a range of classic 5 

ecological scenarios including Lotka-Volterra type and host-parasite interactions. We 6 

choose models of increasing complexity in order to gain an insight into the features of 7 

ecological systems that determine the evolutionary outcomes. In particular we focus 8 

on when evolutionary attractors, repellors and branching points occur and how this 9 

depends on whether the costs are accelerating (benefits become ‘increasingly’ costly), 10 

decelerating (benefits become ‘decreasingly’ costly) or constant. In all cases strongly 11 

accelerating costs lead to attractors while strongly decelerating ones lead to repellors, 12 

but with weaker relationships, this no longer holds. For some systems weakly 13 

accelerating costs may lead to repellors and decelerating costs may lead to attractors. 14 

In many scenarios it is weakly decelerating costs that lead to branching points, but 15 

weakly accelerating and linear costs may also lead to disruptive selection in particular 16 

ecological scenarios. Using our models we suggest a classification of ecological 17 

interactions, based on three distinct criteria, that can produce one of four fundamental 18 

TIPs which allow for different evolutionary behaviour.  This provides a baseline 19 

theory which may inform the prediction of evolutionary outcomes in similar yet 20 

unexplored ecological scenarios. In addition we discuss the implications of our results 21 

to a number of specific life-history trade-offs in the classic ecological scenarios 22 

represented by our models. 23 

 24 
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 3 

Introduction 1 

 2 

Life history theory has long recognised the importance of trade-offs in determining 3 

evolutionary behaviour (see Stearns, 1992; Roff, 2002 for reviews). It is also 4 

increasingly recognised that the shape of trade-offs, in addition to the level of costs, is 5 

crucial in determining the evolutionary dynamics (see Levins 1962, 1968; de 6 

Mazancourt and Dieckmann, 2004; Rueffler et al., 2004; Bowers et al., 2005). By 7 

definition, in all trade-off relationships, benefits in one life-history trait come at a cost 8 

in terms of another component of fitness. In general then as benefits through one trait 9 

increase, the costs due to the change in the other trait may increase at the same rate, 10 

leading to an exactly linear trade-off; alternatively the costs may accelerate (increase 11 

quicker than the benefits) or decelerate (increase slower than the benefits), so that 12 

benefits become increasingly or decreasingly costly. When the benefits of a trait are 13 

met with accelerating costs in the correlated trait we define an ‘acceleratingly costly 14 

trade-off’. Conversely we define ‘deceleratingly costly trade-offs’ when the costs 15 

decelerate. Here our aim is to understand how these different shapes of trade-offs 16 

influence evolutionary outcomes in a range of scenarios described by a number of 17 

classic ecological models. 18 

 19 

The importance of the shape of trade-off relationships was first made clear in 20 

the work of Levins (1962, 1968). He developed a graphical technique that plots the 21 

fitness landscape from the fitness contours for two traits onto which the trade-off 22 

relationship between them is superimposed. Applying these techniques to the 23 

evolution of reproductive effort it was shown that the optimal strategy for a trade-off 24 

with decelerating costs is at the maximum reproductive effort whereas for a trade-off 25 



 4 

with accelerating costs it is at an intermediate state (see Stearns, 1992). However, 1 

optimisation approaches, such as Levin’s are not appropriate, when there is 2 

frequency-dependent (density-dependent) selection (Maynard Smith, 1982; de 3 

Mazancourt and Dieckmann, 2004; Rueffler et al., 2004; Bowers et al., 2005). 4 

Different ecological interactions result in particular feedbacks that may clearly lead to 5 

different selection pressures on traits (Abrams, 2001) that in turn depend on the nature 6 

of the trade-off connections between traits. Here we will examine how trade-off 7 

shapes influence evolutionary behaviour in a number of fundamental ecological 8 

models using a geometric approach that incorporates frequency-dependent selection. 9 

 10 

Under frequency-dependent selection, the evolution of traits is dependent on 11 

the ecological feedbacks in the system since for a mutation to be successful it must be 12 

able to invade a population whose ecological characteristics are being determined by 13 

the resident strain (Metz et al., 1996; Geritz et al., 1998). Successful mutant invasion 14 

necessarily changes the resident and therefore also reshapes the characteristics of the 15 

population. This approach has been applied to a number of specific ecological 16 

scenarios in which trade-off relationships have been explicitly considered (Boots and 17 

Haraguchi, 1999; Kisdi, 2001; Day et al., 2002; Bowers et al., 2003; Egas et al., 2004; 18 

de Mazancourt and Dieckmann, 2004; White and Bowers, 2005; Rueffler et al., 2006). 19 

In particular, the importance of the trade-off shape in characterising evolutionary 20 

behaviour has recently been examined in detail with the development of general 21 

geometric methods for analysing the evolutionary dynamics (de Mazancourt and 22 

Dieckmann, 2004; Rueffler et al., 2004; Bowers et al., 2005). Rueffler et al. (2004) 23 

extended the Levins fitness landscape approach to allow for frequency-dependent 24 

selection for specific trade-off functions. This was further extended to enable 25 



 5 

visualisation of the effect of general trade-off functions on evolutionary outcomes (de 1 

Mazancourt and Dieckmann, 2004). The method of trade-off invasion plots (TIPs) 2 

developed by Bowers et al. (2005) and first used in Boots and Bowers (2004) is 3 

similar to that of de Mazancourt and Dieckmann (2004) in that it is a geometric 4 

technique that allows the visualisation of the role of the trade-off shape. From TIPs 5 

given a specific ecological model, it is easy to determine which trade-off shapes (or 6 

cost structures) produce for example, evolutionary branching. Although globally the 7 

curvature of the trade-off can change sign, for example in sigmoidal trade-offs, TIPs 8 

focus on the shape of the trade-off locally about the evolutionary singularity; in this 9 

local region the curvature of the trade-off stays relatively constant and hence falls into 10 

one of three shapes: decelerating, accelerating or straight (linear). 11 

 12 

In this study we use TIPs to explore which ecological characteristics lead to 13 

different evolutionary behaviours with trade-offs of different shapes. We use classic 14 

models of increasing ecological complexity in order to reveal the ecological features 15 

that underlie four fundamental types of TIPs. By classic we mean Lotka-Volterra type 16 

continuous time models, i.e. where the dynamics are linear in terms of the ‘evolving’ 17 

parameters (those involved in the trade-off) and of order one or two (linear, bilinear or 18 

quadratic) in terms of densities. We choose this framework as it underpins many 19 

model structures in theoretical ecology. In particular, we examine classical single 20 

species models, Lotka-Volterra models that include species interactions with one class 21 

of individuals for both species and host-parasite systems with multi-class interactions. 22 

These TIPs in turn define all the evolutionary implications of different trade-off 23 

shapes. In this way we outline how the incorporation of additional ecological 24 

mechanisms can alter the topology of the invasion boundaries on a TIP and therefore 25 
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also the possible evolutionary outcomes. For our range of models, we classify, by 1 

means of three criteria, the necessary general ecological characteristics and trade-off 2 

set-up required to produce different types of evolutionary behaviour. By focussing on 3 

the classical models that underpin much ecological theory, our aim is to provide a 4 

baseline that may inform the understanding of more complex ecological scenarios that 5 

can be modelled by these type of systems. 6 

 7 

 8 

 9 

The approach: Trade-off and invasion plots (TIPs) 10 

 11 

A detailed description of the use of trade-off and invasion plots (TIPs) to determine 12 

evolutionary behaviour has been given elsewhere (Bowers et al., 2005) and their 13 

derivation is outlined in the appendix. An example of a TIP showing its key features 14 

can be seen in Fig. 1 (where Table 5 (see Appendix) has been used to determine 15 

whether a region is ES or CS). The mutant-resident invasion boundaries (f1, f2) are 16 

plotted in trait space and the trade-off line  f  is superimposed such that the position 17 

of the trade-off line in relation to the invasion curves determines the evolutionary 18 

behaviour. The main advantage of the approach is the relatively easy way in which the 19 

nature of the evolutionary outcome can be determined. Thus in Fig. 1, we can 20 

immediately see that the evolutionary singularity (the point at the top right hand 21 

corner of the TIP in this case, where the fitness gradient is zero) is a branching point 22 

(the trait will be selected to move towards the point and then branch because the 23 

trade-off curve f  enters the TIP in the region where x  is convergent stable (CS) but 24 

not resistant to invasion and therefore not evolutionarily stable (ES)). The 25 
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evolutionary behaviour of other trade-off curves can also be determined from the TIP. 1 

For instance, if the trade-off curve entered the TIP below the mutant ( 1f ) invasion 2 

boundary in Fig. 1 then the evolutionary singularity would be an attractor (that is CS 3 

and ES). As such the singular point is a ‘continuously stable strategy’ (CSS) and 4 

always the end point of evolution. In contrast, if the trade-off curve entered above the 5 

dashed line (mean curvature) of Fig. 1 the singularity would be a repellor (since it is 6 

not CS and therefore strains further away from it invade those closer). Thus a visual 7 

inspection of the TIP can indicate the type of evolutionary behaviour expected for 8 

different trade-off shapes (i.e. by the direction in and strength at which f  curves) 9 

without the need to specify the trade-off explicitly. 10 

 11 

Results 12 

Single species 13 

We begin with a basic maturation model consisting of two stages, a non-reproducing 14 

juvenile stage and a reproducing mature stage. This, for two strains x  and y , is 15 

defined by the continuous time age-structured dynamics 16 

 17 
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 19 

where 1X  and 2X  denote the number of juveniles and matures, respectively, for strain 20 

x , and similarly 1Y  and 2Y  for strain y . Also, a  represents the per capita 21 
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reproduction rate of matures (offspring, of course, enter into the juvenile stage), q  the 1 

rate of intraspecific competition where density-dependence is taken to act on births of 2 

juveniles (i.e. of the form   2XqHa   with 2121 YYXXH  ), b  and e  the 3 

death rates of juveniles and matures respectively, and m  the maturation rate which we 4 

take to be directly (linearly) related to the number of juveniles. 5 

  6 

Calculating the fitness function  ysx , which defines the long-term exponential 7 

growth rate (Metz et al., 1992) of a mutant strain y , of low density, attempting to 8 

invade an established resident population of strain x , we get  9 

 10 
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(see equations (A.2)-(A.6)). From the form for this, with the population equilibrium 13 

densities (from equation (A.1) which we take to be stable) included explicitly 14 

(equation (A.7)), and the equivalent form of  xsy  (found simply by switching the x  15 

and y  parameters, as y  is now the resident and x  the invading mutant), we find that 16 

the two fitness functions are related by    xAsys yx  , where 0A . This implies 17 

that whenever  ysx  is positive,  xsy  is negative, and vice-versa. Therefore one 18 

strain will always ‘win’, with no possible co-existence between two strains as the 19 

fitness functions can never both be positive simultaneously. In terms of TIPs, this has 20 

the consequence that the fitness functions are always zero simultaneously, which in 21 

turn, results in the invasion boundaries being identical (i.e. superimposed). From this, 22 
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we can see that there will be no ‘middle’ region between the invasion boundaries and 1 

hence no possibility of evolutionary branching (see, for example, Fig. 2). 2 

  3 

As 1f  and 2f  are identical, we will concentrate on the invasion boundary 1f , 4 

stemming from  ysx  being zero. Firstly assuming the trade-off involves the birth rate 5 

and is of the form   fa , 1f  is, from equation (2), 6 

 7 
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 9 

Taking each of the remaining four parameters in turn to be the second parameter 10 

involved in the trade-off, the curvature of the invasion boundaries at the tip of a TIP 11 

(and hence their shapes) can be calculated. The first observation we make is that the 12 

parameter concerning maturation, m , is the only one that appears non-linearly. The 13 

remaining parameters all appear linearly and hence for trade-offs between birth rate a  14 

and either one of the death rates, b  or e , or the level of intraspecific competition, q , 15 

the curvature of 1f  will be zero and hence the invasion boundaries will be straight. In 16 

terms of evolutionary outcomes, this means that the singularity is an attractor for 17 

accelerating trade-offs and a repellor for decelerating trade-offs. The singular TIPs for 18 

these trade-offs will take the form of Fig. 2A. For these trade-offs 0f  (where 19 

  fa ) as a decrease in either the death rate of the juveniles or matures, b  or e , or 20 

the level of the intrinsic growth rate, q, comes at a cost of a lower birth rate, a. The 21 

results for the trade-off between adult birth and survival parallel the findings in 22 

classical life history theory on the evolution of fecundity (Schaffer, 1974; Stearns, 23 
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1992). A trade-off with accelerating costs lead to the evolution of intermediate birth 1 

and death rates (because the singular point on the TIP is a CSS) whereas one with 2 

decelerating costs leads to the evolution of extreme parameter values, such as 3 

maximum birth and death rate (because the singular point on the TIP is a repellor).  4 

 5 

The remaining choice of trade-off (taken in association with the invasion boundary in 6 

equation (3)), between the adult birth rate, a , and the maturation rate, m , results in 7 

invasion boundaries with positive curvature. In terms of TIPs, 1f  and 2f  curve (but 8 

remain superimposed) resulting in a singular TIP of the form as in Fig. 2B. Here 9 

0f  (where   mfa ) as an increase in the maturation rate, m, comes at a cost of 10 

a lower birth rate, a. Here, evolutionary attractors occur not only for accelerating 11 

trade-offs but also weakly decelerating trade-offs (and linear trade-offs), whereas 12 

evolutionary repellors only occur for strongly decelerating trade-offs. Clearly the 13 

relative strength of the costs depends on the relative curvatures of the invasion 14 

boundaries. However in general, we use the short hand "weak" where the trade-offs 15 

are relatively close to linear. 16 

 17 

The results for these four choices of trade-offs considered in Fig. 2 are shown in the 18 

top row of Table 1. The letters denote whether the invasion boundaries curve in the 19 

same manner as an accelerating trade-off, ‘A’, a decelerating trade-off, ‘D’, or are 20 

linear/straight, ‘0’. Since the invasion boundaries are superimposed (the = denotes 21 

this), these letters also record the shape of trade-off for which a singularity changes 22 

from being an attractor to a repellor. For example, a ‘DD’ implies that a singularity 23 

changes evolutionary outcome depending on the magnitude of a decelerating trade-24 
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off, i.e. a repellor for strongly decelerating trade-offs but an attractor for weakly 1 

decelerating trade-offs (as in the case of the trade-off between a and m in Fig. 2). 2 

 3 

Table 1 also shows the shape of the invasion boundaries for all the remaining possible 4 

choices of trade-offs. From this we note that only a small number of trade-off choices 5 

in our simple maturation model give curved invasion boundaries on TIPs. These 6 

include the birth rate against the maturation rate ( a  and m ), the intraspecific 7 

competition rate against the maturation rate ( q  and m ) and the maturation rate 8 

against the death rate of mature individuals ( m  and e ). In these cases evolutionary 9 

attractors occur for accelerating trade-offs and weakly decelerating trade-offs, and 10 

evolutionary repellors for strongly decelerating trade-offs. In contrast, with a trade-off 11 

between the juvenile death rate and the mature death rate ( b  and e ), evolutionary 12 

attractors occur for strongly accelerating trade-offs only whereas evolutionary 13 

repellors occur for both decelerating trade-offs and weakly accelerating trade-offs. All 14 

the remaining possible trade-offs have linear/straight invasion boundaries, and hence 15 

evolutionary attractors always occur for accelerating trade-offs and evolutionary 16 

repellors for decelerating trade-offs. 17 

 18 

Single class, multi-species interactions 19 

In our remaining models we examine evolution in one species involved in an 20 

interaction with another species. To begin with we assume that the dynamics of each 21 

species can be described by a single class, the classical examples of which are 22 

competition, mutualism and predator-prey. These interactions are all very similar in 23 

terms of their dynamics, therefore we aim to set up and use differential equations 24 

covering them all and, for predator-prey, examine in turn both prey and predator 25 
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evolution. Taking two strains of our evolving species, denoted x  and y , and a single 1 

strain of our non-evolving species, denoted z, gives the Lotka-Volterra form 2 

 3 
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    where 1 , 2 , 3 1 ,   (4) 4 

 5 

where X , Y  and Z  are the population densities of x , y  and z  respectively. For the 6 

remaining parameters, we take r  to represent the intrinsic demographic (growth or 7 

mortality) rate of each species/strain, q  to be the intra-species interaction 8 

(competition) terms and c  to be the cross-species interaction terms. The strength of 9 

this notation is that by selecting different values of 1 , 2 , and 3  (see Table 2) 10 

equation (4) can be made to represent classical competitive, mutualistic and predator-11 

prey systems. 12 

  13 

We invoke a relation between the cross-species interaction terms, xzc  and zxc  (and 14 

similarly between yzc  and zyc ), such that  xzzx cgc   (and similarly  
yzzy cgc  ) 15 

(Table 2) in order to model a wide variety of biological scenarios. These interspecific 16 

relationships help define the ecological characteristics of the system, in that they, for 17 

example, determine how the competition coefficients of two species depend on each 18 

other. In the case of predator-prey, we use a standard linear form for g representing a 19 

conversion ratio, while in the other cases we can have biologically meaningful 20 

positive and negative relationships or indeed no relationship between these terms. 21 



 13 

  1 

We take the x  strain to initially be the resident strain and y  to be the mutant invader. 2 

In these roles, we can calculate the fitness function  ysx  as 3 

 4 



sx y  1ry  qyX 3cyzZ.        (5) 5 

 6 

Here, the fitness can be calculated directly from the dynamics in equation (4) as this 7 

model consists only of a single class. First taking a trade-off to include the intrinsic 8 

growth rate r , the invasion boundary 1f  is, from equation (5), 9 

 10 
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 12 

We choose the cross-species interaction term, izc , to be the second parameter 13 

involved in the trade-off, so  izi cfr   where yxi ,  and 0f . Calculating the 14 

curvatures of the invasion boundaries at the tip of the singular TIP gives 15 
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(where equation (A.9) was used to calculate the curvature of 2f , also using the 19 

equilibrium densities from equation (A.8) and the singularity condition 20 

*
1*

/
x

yzx
cff  ). The invasion boundary 1f , which stems from  ysx , is always 21 

straight because all the parameters enter the fitness function linearly. Furthermore, the 22 
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term in square brackets for the curvature of 2f  (in equation (7)) is positive due to 1 

conditions imposed for the equilibria in equation (A.8) to be point stable. Thus, for 2 

each interaction, using the appropriate values of   (and the function  xzcg ) shown in 3 

Table 2, we can calculate the shape of the invasion boundaries at the tip of the 4 

singular TIP. For competition and mutualism, these are dependent upon the relation 5 

between the cross-species interaction terms, primarily on the sign of  
xzcg  (for 6 

predator-prey this is always negative). Results are summarised in Table 3. 7 

 8 

The shapes of invasion boundaries specified in Table 3 can be used to produce 9 

singular TIPs for the various model systems. Fig. 3 shows the singular TIPs for the 10 

competition model for each possible sign of  
xzcg . If an increase in the competitive 11 

ability of one species results in decrease in that of the other species (an 12 

aggressive/passive relationship) then there is the possibility of evolutionary branching 13 

for trade-offs with weakly decelerating costs (Fig. 3A). If the between species 14 

competition parameters are unrelated the invasion boundaries are linear and 15 

superimposed (Fig. 3B). If an increase in the between species competition rate of one 16 

species results in increase in the other species (aggression is countered with 17 

aggression) then a Garden of Eden (ES but not CS) (ES-repellor) outcome exists for 18 

weakly accelerating costs (note also that evolutionary branching is no longer possible) 19 

(Fig. 3C). 20 

 21 

The singular TIPs for mutualism and predator-prey set-ups, with a trade-off between r 22 

and c, are similar to those for competition although the specific details are model 23 

dependent (and reflect the slope and cost-benefit structure of the trade-off function). 24 

For mutualism the singularity is at the top left of the TIP and for predator-prey the 25 
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TIPs is the same form as figure 3A but with the regions being the mirror image in the 1 

(straight) f1 line for predator evolution. For evolutionary branching to occur the 2 

between species interaction term must be of the form   0 

xzcg  (Table 3) reflecting 3 

the fact that a benefit through the interaction for one species produces a cost for the 4 

other species. If this is the case then branching can occur for trade-offs with weak 5 

decelerating costs. For mutualism this requires that an increase in the benefit of the 6 

mutualistic interaction for one species produces a reduction in the benefit for the other 7 

species. For prey evolution it requires that a reduced predation rate produces fewer 8 

predator births and for predator evolution an increased predation rate must increase 9 

the loss rate of the prey. 10 

 11 

When the interaction term is of the form   0 

xzcg  reflecting the fact that a benefit 12 

through the interaction for one species produces a benefit for the other species then 13 

Garden of Eden evolutionary behaviour is possible for trade-offs with weak 14 

accelerating costs (in practice these singularities act as evolutionary repellors). When 15 

  0 

xzcg , the cross-species interaction terms are unrelated (i.e. there is no 16 

interspecific parameter dependence). Here, the two invasion boundaries are identical 17 

(superimposed) and hence branching points cannot occur (see also White and Bowers 18 

2005). Note also that branching requires that the evolving species exhibits 19 

intraspecific competition ( 0xq ) since otherwise the invasion boundary f2 is straight 20 

and therefore superimposed on f1 (equation (7), see also Bowers et al., 2005).  21 

 22 

The remaining two trade-off possibilities are also summarised in Table 3. The trade-23 

off xq  against xzc  again involves the cross-species interaction term and produces 24 
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identical results in terms of the shapes of invasion boundaries and evolutionary 1 

outcomes to those for xr  again xzc . The trade-off between xr  and xq  produces two 2 

(superimposed) straight invasion boundaries. Here, although the cross-species terms 3 

can be related, they are not involved in the trade-off (and are therefore constant) and 4 

hence the curvature of the invasion boundaries are equal (and zero) (Bowers et al., 5 

2005; White and Bowers 2005).  6 

 7 

Multi-species, multi-class 8 

The final section looks at host evolution in a host-parasite model consisting of 9 

susceptible and infected classes (with no immune class) where the parasite is therefore 10 

modelled implicitly via the infected class of the host. Again taking two strains of host, 11 

defined as x  and y , we can define the dynamics as follows (based on Anderson and 12 

May, 1981),  13 
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where yxyx IISSH  . The parameter r  represents the intrinsic growth rate of 17 

the host (i.e. births-deaths) and k  represents the reduction, due to infection, in the 18 

birth rate from infected hosts. For the purposes of this study, we restrict this parameter 19 

to either 0, for total loss of reproduction from infecteds (births only from 20 



 17 

susceptibles), or 1, for no decrease in reproduction due to infection. The parameter q  1 

represents competition between hosts,   the infection rate,   the recovery rate,   2 

the parasite induced death rate and b  the natural death rate where the term bkI  in 3 

the susceptible class compensates for the deaths included in rkI . 4 

  5 

Due to the added complexity of this model, being both multi-species and multi-class, 6 

we present the analysis only for a trade-off between the intrinsic growth rate of the 7 

host, r , and the infection rate,  . 8 

  9 

As with the two previous examples, for the purposes of calculating the fitness 10 

function we take the strains x  and y  to assume the roles of the established resident 11 

and mutant invader respectively. In these roles, the fitness function,  ysx , takes the 12 

form 13 

 14 
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(see equations (A.11)-(A.14) for working). We focus on a trade-off of the form 17 

 fr  . Finding the invasion boundary 1f , from  ysx  above, gives 18 

 19 
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We now go back to the condition we imposed on k , such that we restrict it to the 1 

value of 0 or 1 (depending on whether infecteds can reproduce or not), and take these 2 

two cases in turn.  3 

 4 

Starting with 0k , which relates to the case when there is total loss of reproduction 5 

when the host is infected, the curvatures of the invasion boundaries at the tip of the 6 

singular TIP are 7 

 8 
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 10 

The main conclusion is that the invasion boundary 1f  is straight, whereas 2f  has 11 

positive curvature implying that it curves upwards near the tip of the singular TIP. It 12 

follows that the singular TIP will take an identical form to that for competition, in Fig. 13 

3A; hence branching points occur for weakly decelerating trade-offs.  14 

  15 

For the second case, we assume there is no reduction in the reproduction rate of the 16 

hosts due to infection, hence 1k , and again take a trade-off between the intrinsic 17 

growth rate r  and the infection rate  . Calculating the curvatures of the invasion 18 

boundaries at the tip of the singular TIP gives 19 
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where   is as in equation (A.15). The invasion boundary 1f  is no longer straight and 1 

now curves downwards (Fig. 4). The implication of this is that the evolutionary 2 

singularity can be a branching point with either a weakly decelerating trade-off, or a 3 

weakly accelerating trade-off (Fig. 4A) or alternatively with a moderately accelerating 4 

trade-off (Fig. 4B). This depends upon the relative curvatures of 1f  and 2f . It is 5 

important to note that as with all the examples we have seen, evolutionary attractors 6 

always occur for strongly accelerating trade-offs and evolutionary repellors for 7 

strongly decelerating trade-offs. 8 

 9 

The results above emphasise the different configurations of TIPs and therefore 10 

evolutionary outcome that can occur. It is interesting to note from equation (12) 11 

however that, the sign of the curvature of 2f  is also not fixed. Indeed, the curvature 12 

can be either greater than or less than that of 1f . Hence these results for when the 13 

infecteds can and can not reproduce emphasise the complex evolutionary outcomes 14 

that can be visualised swiftly with the geometric approach. 15 

 16 

 17 

Discussion 18 

 19 

The feedback between ecological and evolutionary processes is crucial to understand 20 

how ecological interactions generate natural selection and how evolutionary change 21 

further modifies the ecological interactions (MacArthur, 1972; Roughgarden, 1979; 22 

Bulmer, 1994). By applying a geometric approach we have developed a theory for 23 

how different trade-off shapes affect evolutionary outcomes in a number of classical 24 

ecological scenarios. The work clearly demonstrates the importance that the shape of 25 
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the trade-off curve plays. Whether costs are accelerating or decelerating and, 1 

furthermore, whether the curvature of these trade-offs is relatively weak or strong (in 2 

relation to the invasion boundaries) are key determinants of the evolutionary outcome 3 

in all of our examples. The outcomes are also fundamentally dependent on the 4 

particular ecological scenario that is being considered. The ecological characteristics 5 

of our specific models may change the curvature of both invasion boundaries and 6 

therefore radically change the evolutionary outcome but the approach we have taken 7 

allows a clear separation of the effects due to the ecological feedbacks and those that 8 

result from the shape of the trade-off 9 

 10 

We can define four fundamental forms of TIPs. First, the two invasion boundaries can 11 

be linear and therefore superimposed, a type I TIP (see Fig. 2A, 3B). This implies that 12 

trade-offs with accelerating costs always produce a CSS, or attractor, while 13 

decelerating costs produce a repellor. In type II TIPs, both boundaries curve at the 14 

same rate and remain superimposed (see Fig. 2B). Since the curvature of the invasion 15 

boundaries can be either positive or negative, the direction and strength of the 16 

curvature is important. We find that weakly decelerating costs in addition to 17 

accelerating costs can lead to a CSS or in contrast weakly accelerating costs in 18 

addition to all decelerating costs can lead to a repellor. It should be noted that 19 

whenever the two invasion boundaries are superimposed in our models an 20 

optimisation principle exists (Mylius & Diekmann, 1995). This implies that a CSS 21 

will produce an intermediate trait value whereas a repellor will always lead to 22 

maximisation or minimisation of the trait value. In type III TIPs, one invasion 23 

boundary curves while the other remains linear leading inevitably to separation (see 24 

Fig. 3A, 3C). We commonly find that the f2 boundary curves such that weakly 25 
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decelerating costs lead to polymorphisms through evolutionary branching, while 1 

strong decelerating costs lead to repellors and accelerating costs lead to CSS attractors 2 

(although note the alternative configuration of Fig. 3C). Finally in type IV TIP, both 3 

boundaries curve but separate (see Fig. 4A, 4B). Here, we additionally find that 4 

weakly accelerating as well as weakly decelerating costs may lead to branching..  5 

 6 

Our work emphasises the importance of the strength as well as the nature of the trade-7 

off cost structure. Strong non-linearity always produce CSS or repellor dynamics (for 8 

accelerating or decelerating cost structures respectively) whereas weak non-linearity 9 

(and linear trade-offs) can produce the full range of evolutionary behaviour depending 10 

on the configuration and type of TIP. It is important to recognise that it is the 11 

ecological feedbacks in the system that define the type of TIP that occurs and 12 

therefore whether, for example, optimalities or disruptive selection can occur in a 13 

particular scenario. 14 

 15 

A key aim of our work is to use our models to gain insight into which ecological 16 

characteristics lead to each of our fundamental TIPs. To do this we have observed 17 

three criteria:  18 

1. Criterion A: the evolving parameters must appear in different classes or one 19 

must be repeated, appearing in more than one class/species. 20 

2. Criterion B: the evolving parameters must be characteristics of different 21 

classes or one must be a characteristic of more than one class. 22 

3. Criterion C: there must exist two density dependent per capita rates, each of 23 

which must be dependent on different densities. 24 



 22 

Satisfying these three criteria in different combinations lead to one of four distinct 1 

fundamental TIPs (Table 4).  2 

 3 

These criteria hold for the models in this study and allow the range of possible 4 

evolutionary behaviour to be predicted by inspection of the model structure and a 5 

knowledge of the evolving parameters. The first, criterion A, is that the two evolving 6 

parameters must either appear in different classes or one must be repeated, appearing 7 

in more than one class/species. Hence, because the two evolving parameters are 8 

linked, a change in these parameters will directly affect the dynamics of more than 9 

one class/species. Without this, we always get two linear boundaries and therefore a 10 

‘simple’ optimality (type I). It should be noted that this optimisation can occur in a 11 

range of multi-species or multi-class ecological interactions for particular trade-offs. 12 

If, in addition to satisfying criterion A, criterion B is satisfied such that the parameters 13 

are also characteristics of different classes then the invasion boundaries can curve 14 

with equal curvature (type II). For instance in the single species multi-class model 15 

(equation 1) the juvenile and mature death rates (b and e respectively) appear in 16 

different classes and are also characteristics of their different respective classes 17 

leading to a type II TIP. Contrast this with a trade-off between mature birth and death 18 

rates (a and e) which are characteristics of only the mature individuals or birth rate 19 

and juvenile death rate (a and b) which appear in the juvenile class only and therefore 20 

lead to type I TIPs.  21 

 22 

To move from type I or type II TIPs, where the invasion boundaries are 23 

superimposed, to type III or type IV TIPs, where they separate, requires criterion C. 24 

Whereas criteria A and B focussed on the choice of evolving parameters, criterion C 25 
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depends only upon the form of the model structure. This criterion is that the dynamics 1 

of the evolving species must contain at least two density dependent per capita rates 2 

each of which should be dependent on different densities. Density-dependent rates 3 

occur in non-linear model terms. For instance, if we consider prey evolution in a 4 

predator-prey system (equation 4) the intraspecific competition term is 2qX  and 5 

therefore the rate of intraspecific competition is qX ; in the same model the predation 6 

term is cXZ  and therefore the rate of predation is cZ . Both the rates are therefore 7 

density dependent and are associated with different densities (X and Z respectively). If 8 

criterion C is satisfied the invasion boundaries can separate which allows for the 9 

possibility of evolutionary branching. This criterion is analogous to the dimensionality 10 

of the fitness environment (Rueffler et al., 2006) however this version has the added 11 

benefit that it can be determined directly from inspection of the model without the 12 

need for calculating the fitness and hence is easier and quicker to use. Whether we 13 

observe type III or type IV TIPs depends on which of the other criteria are satisfied 14 

(Table 4) and is best highlighted using the host-parasite model (equation 8). If we 15 

consider host evolution, in the presence of a castrating parasite ( 0k ), then there are 16 

two density dependent rates associated with different densities (the infection rate 17 

associated with the density of infecteds, I , and the intraspecific competition rate 18 

associated with total host density, )( ISq  ) satisfying criterion C.  If we consider a 19 

trade-off between r and   then criterion A is satisfied (as   appears in both classes) 20 

but criterion B is not (as both r and   are characteristics of the susceptible class S). 21 

We therefore observe type III TIPs (equivalent to that in Fig. 3A). However when the 22 

infected hosts can also reproduce, 1k , criterion B is now satisfied (as r is now also 23 

a characteristic of  the infecteds I) and so type IV TIPs are observed (Fig. 4). Our 24 

three criteria also explain why all the single class, multi-species systems, as described 25 
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by equation (4), can only produce type I or type III TIPs. Criterion C may be satisfied 1 

due to the existence of a density dependent self-regulation rate and the between 2 

species interaction rate, however criterion B can never be satisfied because in single 3 

class models all evolving parameters are characteristics of a single class. Thus, we can 4 

only observe type I or type III TIPs; which of these occur depends on whether the 5 

evolving parameters contain the between species interaction parameter (which would 6 

allow criterion A to be satisfied).  7 

 8 

Although the above insights have only been demonstrated for our models we 9 

hypothesise that they will hold in all ecological scenarios that satisfy our constraints. 10 

To re-iterate, we restricted these to Lotka-Volterra, continuous time models, i.e. 11 

where the evolving parameters appear linearly in the dynamics and the densities are of 12 

order 1 or 2. It would be interesting to examine how our conclusions apply to more 13 

complex scenarios where, for example, there is a non-linear Holling type II predator 14 

functional response. However, by initially limiting our work to classical models, we 15 

have provided a baseline theory that will at least inform this family of ecological 16 

scenarios. Our criteria may therefore allow the rapid evolutionary classification of 17 

different trade-offs in a variety of ecological scenarios. 18 

 19 

The importance of trade-off shapes in life-history evolution has long been recognised 20 

(Levins, 1962).  Many of the results from classic life history theory use optimisation 21 

techniques and tend to predict attractors for accelerating trade-offs and repellors for 22 

decelerating ones (Stearns, 1992; Roff, 2002). We have shown that this is the case 23 

(type I TIP) in our single species system for a number of important trade-offs between 24 

life-history components including birth rate verses mature or juvenile death rate. 25 
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However, there are a number of trade-offs in this model where this result is not found. 1 

Strongly accelerating and strongly decelerating trade-offs always lead to the 2 

‘classical’ results, but when the curvatures are relatively weak they no longer hold 3 

(and type II TIPs are possible). We note here that curved invasion boundaries have 4 

been reported in life history examples under adaptation to temporally varying 5 

environments (Levins, 1962) and for trade-offs that link multiplicative fitness 6 

components (Schaffer, 1974). Our study has shown similar results for a trade-off 7 

between two life-history components and highlights the importance of trade-off 8 

shapes and the strength of the curvature for a straightforward model framework and 9 

trade-off. 10 

 11 

For evolutionary branching to occur, not only do criteria A and C need to be satisfied, 12 

allowing the invasion boundaries to separate (criterion B is not necessarily needed), 13 

but the interaction term between species needs to be antagonistic. Such relationships 14 

are obvious in host-parasite and predator-prey systems, where for example the 15 

evolution of predator ability clearly affects the prey’s ability to avoid predation. For 16 

branching to occur in our competitive and mutualistic systems the interaction also has 17 

to be antagonistic in the sense that an improvement in one species leads to a reduction 18 

in the competitive or mutualistic ability of the other. Clearly not all competitive or 19 

mutualistic interactions will be of this type, but one example where we might expect 20 

branching is when competition occurs for the same limiting resource. In this case, the 21 

uptake of the resource in one competitor will improve its competitive ability and 22 

reduce that of the other species (Tompkins et al., 2003). If the competition (or 23 

mutualism) coefficients of the two species are independent, or alternatively one 24 

competitor can evolve to improve its competitive ability without affecting that of its 25 
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competitor, there is no possibility of branching. We would therefore predict that there 1 

may be more polymorphism and variation in competitive ability when the competition 2 

is for a limiting resource. 3 

 4 

In the majority of our examples where branching can occur, only one of the invasion 5 

boundaries curves with the other one being linear (predator-prey, competition and 6 

mutualistic interactions as well as resistance through avoidance when infected 7 

individuals do not reproduce, including those parasites that affect immature stages and 8 

stop maturation). In these type III TIPs, strongly decelerating costs produce repellors 9 

while any degree of acceleration in the costs leads to a CSS. This behaviour has been 10 

found in other studies where there is an antagonistic relationship between species. 11 

This includes the evolution of size specific predation on prey life-history (Day et al., 12 

2002) and frequency-dependent selection of consumer types when modelled as 13 

evolving specialisation or generalisation on two prey types (Rueffler et al., 2006) 14 

(here the underlying ecological scenario is analogous to a predator-prey system). Our 15 

study, however, has shown a broader range of behaviour for systems with antagonistic 16 

interactions. There are a wide range of castrating parasites in nature including ones 17 

that affect immature stages and stop maturation, and for certain trade-offs, for 18 

example one between the growth rate of a host and the infection rate, these will 19 

produce type III TIPs characteristic of the above antagonistic interactions. However a 20 

key ecological characteristic of parasites along with the potential for recovery is that 21 

infected individuals do reproduce even if this is at a reduced rate (Boots, 2004; Boots 22 

and Norman, 2000). Once reproduction from infecteds occurs, both invasion 23 

boundaries may curve, which means that weakly curved cost structures whether 24 

decelerating or accelerating may lead to evolutionary branching in resistance (type IV 25 
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TIP). Cost structures will often depend on specific physiological mechanisms (Boots 1 

and Haraguchi, 1999), although intuitively, accelerating costs may be relatively 2 

common since gains may tend to saturate quicker than costs. One of the key 3 

predictions of our work is that these accelerating costs will lead to a CSS in most 4 

antagonistic interactions, but may lead to branching in resistance to parasites where 5 

there is either recovery or reproduction by infected individuals. Another example 6 

where accelerating costs can induce evolutionary branching is for a multiplicative 7 

trade-off in survival in different habitats in which the carrying capacity of each habitat 8 

is also dependent on the phenotype (de Mazancourt and Dieckmann, 2004).  9 

 10 

Our key result is that shapes of trade-offs matter and that different shapes may have 11 

different implications in different scenarios (Levins, 1962, 1968; de Mazancourt and 12 

Dieckmann, 2004; Rueffler et al., 2004; Bowers et al., 2005).A broad perspective has 13 

been facilitated by the relatively easy way in which the implications of trade-off 14 

shapes can be understood using our graphical approach, TIPs. Furthermore, we have 15 

defined four fundamental TIPs and are able to identify the ecological characteristics 16 

that lead to each of them solely from the dynamics and choice of trade-off. In addition 17 

our work particularly emphasises the importance of the strength of the costs, not only 18 

in causing disruptive selection leading to branching but also when an optimality 19 

principle holds where the invasion boundaries curve. It is clear that trade-off shapes 20 

are important and as a consequence, when building evolutionary models, assumptions 21 

about the relationships between traits need to be carefully considered. The outcome 22 

will tend to depend heavily on these assumptions. We would therefore argue that this 23 

approach may prove useful whenever the implications of trade-off shapes are 24 

considered in evolutionary models. Clearly measuring the shape of trade-offs in 25 
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nature is a major challenge, but we have shown that evolutionary outcomes are 1 

crucially dependent on them. There is therefore the pressing need for empirical studies 2 

that examine these relationships. Given the controversy surrounding the likelihood of 3 

branching in nature (Butlin and Tregenza, 1997) only by measuring these cost 4 

structures can we understand how relevant these processes have been in shaping 5 

natural communities. It is interesting to note that although many of our scenarios can 6 

lead to branching, it is often only found for particular (weak) curvatures. The question 7 

of how common branching is likely to be in nature is therefore likely to depend in part 8 

on how often key trade-off relationships have these shapes.  9 

 10 

 11 

12 
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Appendix 1 

 2 

Trade-off and invasion plots. - A detailed description of the use of trade-off and 3 

invasion plots (TIPs) to determine evolutionary behaviour has been given elsewhere 4 

(Bowers et al., 2005). Here we will give a brief outline of TIPs and present some of 5 

the results/conditions for determining the evolutionary behaviour of a system. This 6 

section provides the mathematical underpinning for the work carried out in this paper. 7 

 8 

Trade-off and invasion plots are a geometrical approach that makes the role that 9 

different trade-off shapes play easy to visualise. Although underpinned 10 

mathematically, TIPs are essentially geometrically based, making them a very “user-11 

friendly” method for studying evolution. A TIP is a plot between two (competing) 12 

strains of a species, labelled x  and y  say. One of these, x , is taken to be fixed while 13 

the second, y , is allowed to vary. The axes of a TIP are the two evolving parameters 14 

of the y  strain, 1y  and 2y  (only two parameters are taken to vary). The co-ordinates 15 

1x  and 2x  of the fixed strain x  define the corner or tip of a TIP. To emphasise this 16 

notation in a biological context consider the evolution of a prey species. Here 1x  and 17 

1y  may represent the prey’s ability to avoid predation for two different prey strains 18 

while 2x  and 2y  may represent the prey birth rate. An example of a TIP can be seen 19 

in Fig. 1. 20 

 21 

Two of the three curves on a TIP are the invasion boundaries, denoted as 1f  and 2f . 22 

These curves divide a TIP into regions where the varying strain y  can and cannot 23 

invade the fixed strain x  (either side of 1f ) and where the fixed strain x  can and 24 
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cannot invade the varying strain y  (either side of 2f ). If we denote the fitness of a 1 

rare mutant y  with resident x as  ysx  (Geritz et al., 1998) then on the curve 1f  we 2 

have that  ysx  is zero and therefore 1f  partitions the TIP into regions where the 3 

fitness of strain y is positive and negative. The roles of x and y are reversed when 4 

considering the curve 2f  along which  xsy  is zero. Both of these invasion 5 

boundaries pass through the tip of a TIP (a ‘neutral’ point at which both strains are the 6 

same) at which they are tangential. The third curve on a TIP is the trade-off curve, 7 

denoted as f ; this links the two evolving parameters of each strain. As all feasible 8 

pairs of parameters (and hence strains) lie on this curve, f  too must pass through the 9 

tip of a TIP, but not usually tangentially to the invasion boundaries. Therefore the side 10 

of the invasion boundaries in which the trade-off enters a TIP determines whether 11 

each strain can invade the other (when initially rare). Generically, the trade-off curve 12 

crosses the invasion boundaries at x and so the regular behaviour is invadability of x 13 

by y for y  x  (say) and non-invadability for xy   - with the opposite results for the 14 

invadability of y by x (see Bowers et al., 2005).  15 

 16 

For certain TIPs corresponding to particular values x  of x , the trade-off curve can 17 

become tangential to the invasion boundaries at the tip of a TIP (i.e. where 18 

xy  = x ); then we will have singular behaviour – no change in invadability as we 19 

move through x  These values of x  are evolutionary singularities, with the 20 

corresponding TIPs being singular TIPs (Fig. 1). It is from these singular TIPs that the 21 

evolutionary behaviour of a system is determined. (If a singular point does not exist, 22 

then invadability will prefer either always higher or always lower values of x. If more 23 

than one singular point exists then a separate TIP must be considered at each singular 24 
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point.) Comparing TIPs with x  x*  and *xx  , generically the trade-off curve 1 

crosses the invasion boundaries from above in one case and below in the other – the 2 

invadability properties change at x . Due to the coincidence and mutual tangential 3 

property of the three curves at the tip of a singular TIP, the region in which the trade-4 

off curve enters (and hence the evolutionary behaviour) is determined solely by the 5 

curvatures of the three curves; or more specifically, the curvature of the trade-off in 6 

relation to those of the invasion boundaries at the evolutionary singularity (as in 7 

standard theory mutations are assumed to be small). The two significant relations are 8 

between the trade-off and 1f  for evolutionary stability ES (the criteria for the classical 9 

evolutionarily stable strategy ESS) and between the trade-off and the mean curvature 10 

of both 1f  and 2f  for convergent stability CS. These can be written 11 
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 14 

where 
 
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
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x

x
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ys
sign

2

1 . Here 1  concerns how the fitness varies as we move 15 

vertically up a TIP (i.e. as we vary the parameter on the vertical axis). This determines 16 

whether evolutionary attractors occur towards the lower part of a singular TIP (if 17 

01  ) or the upper part (if 01  ). To make this more concrete we observe that, for 18 

01  , the singularity is ES when the trade-off curve is locally below the 1f  19 

boundary and CS when it is locally below the mean of the two invasion boundaries 20 

(this is the situation in the figures presented in this study but see Table 5 and Bowers 21 
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et al. (2005) for the 01   alternative). Combinations of these properties allow the 1 

evolutionary behaviour of the system to be determined. The possible types of 2 

singularity are evolutionary attractors or CSS (continuously stable strategy) (ES and 3 

CS), evolutionary branching point (CS but not an ES), ‘Garden of Eden’ point or ES-4 

repellor (ES but not CS) and evolutionary repellor (neither ES nor CS). 5 

 6 

We close this appendix with two points of clarification on how we draw the TIPs. 7 

First, in constructing TIPs we employ biological parameters directly from models 8 

performing no transformations on them. Hence the point x may either be in the top 9 

right corner (because f  0 ) or the top left (because 0f ). This is exemplified by 10 

Fig. 2; in A as the death rate of juveniles increases so does the birth rate; in B as the 11 

maturation rate increases the birth rate falls. Second, we display TIPs only for one 12 

side of the strategy x : globally every x, y pair is covered exactly once by this 13 

procedure, furthermore the geometry of the TIP just above x is determined when that 14 

just below x is known and so the evolutionary behaviour is entirely determined by the 15 

latter. 16 

 17 

Analysis of the models. -  Starting with the single species, stage-structured model, 18 

before any mutations occur, i.e. with only a single (resident) strain x , the population 19 

equilibrium densities are 20 
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Our analysis (for all models) is conducted subject to the condition that all feasibility 1 

and stability conditions are satisfied. In order for us to calculate the fitness function 2 

 ysx , where the x  strain is the existing resident and y  the invading mutant, we take 3 

the mutant individuals to be in the juvenile stage for an average time 1T  and in the 4 

mature stage for an average time 2T . The first of these times, 1T , is given by 5 

 6 

,
1

1

yy mb
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
          (A.2) 7 

 8 

as the only way of leaving the juvenile stage is through death, which occurs at a rate 9 

yb , or through maturation, occurring at a rate ym . The average time an invader spends 10 

in the mature stage, 2T , is found from the equality 121  TeTb yy . This stems from the 11 

fact that an invading individual can only leave the system through death either as a 12 

juvenile or as a mature; this exhausts all possibilities giving a total probability of 1. 13 

Solving this for 2T  gives 14 
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 17 

The rates of growth of the mutant population during these times are given by i  18 

( ni ,...,1 ; here 2n ). These rates are calculated by 19 
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 1 

For our juvenile and mature stages, this gives 2 

 3 

1  by,

2  ay  qy X1  X2  ey ,
       (A.5) 4 

 5 

respectively. Combining these in the form   2211 TTysx   gives 6 
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 9 

as seen in equation (2). Using the equilibrium densities of the juveniles and matures, 10 

in equation (A.1), the fitness can be re-arranged into the form 11 
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 14 

Moving onto the multi-species, single class model, again initially taking the x  strain 15 

to be existing alone with species z  at equilibrium densities 16 
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In order to calculate the curvature of the second invasion boundary, at the tip of the 20 

singular TIP, we use the result 21 
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 3 

found by Bowers et al. (2005). 4 

 5 

Finally, moving onto our multi-species, multi-class model, we again assume that 6 

initially the x  strain exists alone. In this scenario, the equilibrium densities for this 7 

SIS model are 8 

 9 

 

 
,

2

22
      1

,      0

,                   

2

q

SqrqSr
Ik

qSb

qSrS
Ik

b
S

xxxx

x

x

xxx
x

x

x
x




















   (A.10) 10 

 11 

where we have two possible equilibrium densities for the infecteds depending upon 12 

whether they can produce (susceptible) offspring at an identical rate to the 13 

susceptibles or not at all. As this is a two class model, we again need to calculate the 14 

rates of growth of the host population while the invader is in each class, S  15 

(susceptible) and I  (infected), and also the average time a mutant individual spends 16 

in each class, ST  (susceptible) and IT  (infected). Starting with the times, as the only 17 

way of leaving the susceptible class is through (natural) death or infection, we can 18 

write down the average time an invader spends in this class as 19 

 20 
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 2 

The average time an invader spends in the infected class is derived from the equality 3 

  1 IS TbbT  , which is similar to the method for maturation. Solving this 4 

for IT  gives 5 
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 8 

Now, using (A.4) to find the rates of growth while the invader is in the susceptible 9 

and the infected classes gives 10 
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 13 

Combining these in such a way that the fitness function takes the form 14 

  IISSx TTys    gives 15 
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 18 

In further manipulation based on this quantity (with a trade-off between r  and   and 19 

a non-castrating parasite) we find it convenient to use the quantity 20 

 21 
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in the main text. 3 

4 
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Figure Legends 1 

 2 

FIG.1: Example of a singular TIP, displaying the coincidence and mutual tangential 3 

property of the trade-off f  and two invasion boundaries 1f  and 2f  (denoting where 4 

  0ysx  and   0xsy  respectively) at the tip of the singular TIP (i.e. the top right 5 

corner where here  xxy ). The evolutionary behaviour in each region, deduced 6 

from the evolutionary properties is also shown. The actual evolutionary behaviour 7 

exhibited by the evolutionary singularity x  is determined by which region the trade-8 

off curve enters, for example, here the evolutionary singularity is a branching point 9 

(the singular point is convergence stable (CS) but not evolutionary stable (ES)). The 10 

evolutionary outcome of different trade-off shapes can also be considered. If the 11 

curvature of the trade-off was such that it entered the TIP below the 1f  line then the 12 

singular point would be an evolutionary attractor. If the trade-off entered the TIP 13 

above the dashed line (the mean curvature of 1f  and 2f ) the singular point would be 14 

an evolutionary repellor.  15 

 16 

FIG. 2: Singular TIPs for a stage-structured single species maturation model. In (A) 17 

the trade-off is between the birth rate, a , and either the death rate of the juveniles or 18 

matures or the intraspecific competition parameter, b , e  or q  respectively (here 19 

0f  where   fa ). In (B) the trade-off is between the birth rate, a , and the 20 

maturation rate, m  (here 0f  where  mfa  ). Note, here, the direction of the 21 

TIPs was chosen to give the most biologically direct representation of the trade-off. 22 

 23 
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FIG. 3: Singular TIPs for a multi-species, single class competition model, with a 1 

trade-off between the intrinsic growth rate, r , and the competition coefficient 2 

c (where  cfr   and 0f ). Here the cross-species competition rates are linked by 3 

the function  xzzx cgc   and therefore a change in the competitive ability of one 4 

species results in a change in the competitive ability in the other. In (A) this between 5 

species interaction is such that an increase in the competitive ability of one species 6 

leads to a decrease in the ability of its competitor (   0 cg ). In (B) the between 7 

species competition terms are independent (   0 cg ). In (C) an increase in the 8 

competitive ability of one species leads to an increase in the ability of its competitor 9 

(   0 cg ). 10 

 11 

FIG. 4: Singular TIPs for a multi-class, multi-species host-parasite model (with a non-12 

castrating parasite). Here the trade-off is between the intrinsic growth rate r  and the 13 

infection rate  . In (A) the invasion boundaries have curvature (at the tip) such that 14 

the mean curvature (dashed line) is positive, and in (B) they have curvature such that 15 

the mean curvature is negative. 16 

 17 

18 
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 1 

 Mature death 

rate, e  

Maturation 

rate, m  

Competition 

rate, q  

Juvenile death 

rate, b  

Birth rate, a 00
=
 DD

=
 00

=
 00

=
 

Juvenile death rate, b AA
=
 00

=
 00

=
  

Competition rate, q  00
=
 DD

=
   

Maturation rate, m  DD
=
    

 2 

TABLE 1: Shapes of the invasion boundaries on the singular TIP for all the possible 3 

choices of parameters for the trade-off for our single species, stage-structured 4 

maturation model. The ‘A’, ‘D’ and ‘0’ denote whether the invasion boundaries curve 5 

in the manner of an accelerating, decelerating or straight trade-off respectively, and 
=
 6 

denotes the invasion boundaries being identical (superimposed) in which case 7 

branching points are not possible. Note that due to the tangential property of the 8 

invasion boundaries about the tip of a TIP, linear invasion boundaries will always be 9 

superimposed. The left entry represents the invasion boundary 1f  and the right the 10 

invasion boundary 2f . In all cases strongly accelerating costs lead to attractors while 11 

strongly decelerating ones result in repellors, while in DD weak decelerating costs 12 

lead to attractors and in AA weak accelerating costs are repellors. 13 

 14 
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 1 

Interaction  Sign of the intrinsic 

growth of species x  

1  

Sign of the intrinsic 

growth of species z  

2  

Sign of the cross species 

interaction terms 

3  

Relation between cross-

species interaction terms 

zic ,  yxi ,  

Competition 1  1  1   izcg  

Mutualism 1  1  1   izcg  

Prey evolution 1  1  1  
izc  

Predator evolution 1  1  1    izc/1  

 2 

TABLE 2: Sign of the intrinsic growth rate of (evolving) species x  (and y ), 1 , and of (fixed) species z , 2 , sign of the cross-species interaction 3 

terms, 3 , and the relation, with izc , that the cross-species interaction term zic  takes, for each of our models defined by the dynamics in equation 4 

(4), namely competition, mutualism and predator-prey (both prey and predator evolution). 5 
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 Competition Mutualism Prey evolution Predator evolution 

Intrinsic growth rate 
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cross-species interaction 

( r  vs. c ) 
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TABLE 3: Shapes of the invasion boundaries on the singular TIP for our multi-species, single class models, for each possible choice of trade-off 3 

and possible sign of  cg  for competition and mutualism. The  cg  define how a change in interaction coefficient of one species affects that of 4 

the other species. In predator/prey interactions the interaction is always antagonistic  0g , but there may be in addition no relationship 5 

 0g  or a positive relationship  0g  in both competitive and mutualistic interactions. The ‘A’, ‘D’ and ‘0’ denote whether the invasion 6 

boundaries curve in the manner of an accelerating, decelerating or straight trade-off respectively, and = denotes the invasion boundaries being 7 

identical (superimposed) in which case branching is not possible. The left entry represents the invasion boundary f1 and the right the invasion 8 

boundary f2.9 
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 2 

 Criterion A: 

Trade-off 

parameters 

appearing in 

different 

classes/species 

Criterion B: 

Trade-off 

parameters being 

characteristics of 

different classes  

Criterion C: 

At least two density 

dependent rates 

which are 

dependent on 

different densities  

Type IV TIP    

Type III TIP  X   

Type II TIP   X  

Type I TIP All remaining combinations 

 3 

TABLE 4: Summary of the criteria required to create each of the four types of TIPs. 4 

Here type I is two straight invasion boundaries, type II is two curved, superimposed 5 

boundaries, type III is one straight and one curved boundary (and therefore 6 

separation) and type IV is two curved and separated boundaries. 7 

8 
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 021   021   

122 ff    Attractor Repellor 

 meanff 2212    Branching Point Garden of Eden Point 

 meanf 22    Repellor Attractor 

 2 

TABLE 5: Summary of the evolutionary outcomes for each shape of trade-off (in 3 

relation to the invasion boundaries). Here 
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FIG. 1: HOYLE ET AL.  1 
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FIG 2: HOYLE ET AL. 1 
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FIG 3: HOYLE ET AL. 1 
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FIG. 4: HOYLE ET AL. 1 
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