
Handling Distributed Feature Interactions in
Enterprise SIP Application Servers

M. Kolberg1, J. F. Buford2, K. Dhara2, X. Wu2, V. Krishnaswamy2

1University of Stirling, Stirling, Scotland, UK
2Avaya Labs Research, Lincroft, NJ 07738, USA

mko@cs.stir.ac.uk , {buford,dhara,xwu,venky}@avaya.com

Abstract
Several trends in SIP application server deployments exacerbate the
classic problem of feature interaction in large enterprise telephony
environments: use of distributed feature servers, mixing of legacy
and green-field feature servers, and the co-existence of multiple
third-party feature implementations provisioned in the same
environment. Next-generation SIP application servers will include
an application router (AR) to provide more control over feature
sequencing. As we discuss here, the AR can be augmented to
incorporate feature interaction detection and resolution logic.

We describe a novel design for run-time feature interaction
detection and resolution in an environment of distributed feature
servers using a SIP application server with application routing
function, such as that defined in JSR 289. The approach is based on
the algorithm of the Kolberg-Magill (K-M) method for feature
interaction detection. Here we extend the notation of the algorithm
to cover advanced call control services, enable the algorithm to
work in topologies involving B2BUAs and SBCs, and test the
approach with a substantial feature set of 32 features.

1. Introduction

One of the main drivers for the success of SIP is the
relatively easy provisioning of services. Third party service
providers and even end users may provide services. Once
fully tested and deployed, each service functions well on its
own. However, as was discussed by Wu and Schulzrinne [1],
when SIP services interwork their combined behavior may
not be acceptable. This phenomenon is known as feature
interaction (FI) or service interaction [2].
1.1 Feature Interaction
When services interwork to share communication resources,
they are compatible if the joint behavior of the resource is
acceptable. However, if the joint behavior is not acceptable,
i.e. the services are not compatible, the services are said to
interact. Compatibility does not refer to coding errors, nor to
the adherence of interfaces or protocols, but to the adequate
behavior of a resource under the joint control of
interworking services.

Some previous studies distinguish the concepts of
features and services. However, for this paper, the
distinction between feature and service is not significant,
what is crucial is the concept of interaction. Here, the terms
service and feature are used interchangeably.

In large enterprise deployments, multiple application servers
are typically used both for scaling and geographic span. This
makes it more difficult to use techniques which involve
centralized monitoring and control of calls. Further, the
mixing of legacy and green-field feature servers is a practical
solution to system evolution without forklift replacement,
but also limits the use of centralized methods. Finally, open
platform deployments mean that multiple third-party feature
implementations can be provisioned in the same
environment. Competing vendors are not likely to disclose
the workings of their implementations, a pre-requisite for
offline methods. For these reasons we require a run-time
approach which works in a distributed feature server
environment.

Further, the method described here is suitable to IMS
systems and highly distributed feature implementations that
might be implemented in the future in peer-to-peer overlays.
We describe such an architecture in [14]
1.2 Contributions
Very few existing FI approaches are suitable for distributed
architectures, even fewer are suitable for Application Servers
implementing features using SIP Servlets [3],[4]. Here we
present the first approach which works successfully in
distributed SIP Application Servers which also addresses a
number of crucial topology issues in enterprise SIP.

This approach can be used in conjunction with techniques
used inside a single Application Router, such as the DFC[5]
based Application Router (AR) [8],[9]. While approaches
focusing on a single AR cannot handle interactions between
services deployed on separate Application Servers, our the
approach uses SIP messages to deliver information on
services between Application Servers. However, the
approach can also be used to check services for feature
interactions within an Application Router.

We extend the notation of existing Kolberg-Magill (K-M)
[11][13] approach by introducing a notation for conference
services and bridged appearances. We also show how the
approach operates across SIP components commonly found
in enterprise installations which prevent the passing on of
privacy relevant information, such as B2BUAs and SBCs
(Session Border Controller). Finally, the correct operation of
the approach is verified with an extensive case study
involving 32 services.

1.3 Related Work
1.3.1 Feature Interactions

A substantial body of work exists on dealing with feature
interactions through the regular series of Feature Interaction
Workshops. Approaches can be categorized as being either
off-line or on-line. Off-line approaches are applicable prior
to deployment of the services during requirements capturing
or the design phase whereas on-line approaches are applied
during testing or post-deployment at run-time of the
services. Approaches are discussed in detail in [6] and [7].

The work in this paper is particularly related to
approaches which order services for execution allowing for
increased interworking and re-use. The Distributed Feature
Composition (DFC) [5] approach is the basis for the JSR 289
Application Router [8],[9] design. DFC is not strictly a FI
detection mechanism but rather a paradigm for feature
modularity and sequencing which avoids feature
interactions. Thus DFC is complementary to the method
described here. The SIP Steplets approach by Kocan et al
[10] has been applied to IMS. However, both approaches are
essentially designed for a single domain, in which they have
the knowledge of all the feature history information, but lack
a way to carry feature history information across domains.
Our approach can work across multiple domains.

This paper builds on work that had already been
successfully applied in a traditional telephony setting [12]
and a basic SIP environment [13]. These designs in turn
were based on a pragmatic approach [10].

1.3.2 JSR 289

JSR 289 [4] is the next version of the SIP Servlet
specification which revises JSR 116 [3]. The main
architectural difference between JSR 289 and JSR 116 is a
new application selection and composition model. The key
component is a logical entity called Application Router (AR).
Logically, the AR is separated from the application
container. It only handles application selection and routing,
but not application logic. Separating composition from
applications allows the application developers to focus on
the logic of applications. It promotes modularity and re-use,
and allows application development and sequencing to be
controlled by configuration and policy settings.

To compose applications, the application router should be
aware of the intention of applications when it sends a
request. The approaches defined in this paper can help an
application router detect potential feature interactions based
on the intention. To handle feature interaction for inter-
container application routing, the first application router
should pass feature information to the second application
router. JSR 289 suggests passing call state information in
SIP Route headers, however, the state information is not
sufficient for detecting feature interactions.

This paper uses a private SIP header called P-ConType,
which carries application-specific information from one
application router to another and facilitates feature
interaction detection in two or more application routers.
Alternately, the necessary feature state can be propagated in
the body of SIP messages using MIME encoding. The main
considerations include compliance with SIP specifications,
the ability for different implementations in different domains
to interoperate, and increasing the likelihood that the
information will be passed by various signaling elements.

We discuss how to implement our approach in the JSR
289 framework in detail in Section 2.

1.3.3 Feature Interaction Approach

The K-M approach uses high-level compact service
descriptions which are inserted in the SIP message after a
service has been active on the call. Before subsequent
services are activated on a call, an algorithm using simple
rules checks each service description carried in the SIP
message against the description of the service to be
activated. If no interaction is detected, the service is
activated as usual. However, if an interaction is detected,
only one of the involved services is allowed to be active on
the call. This might be achieved by simply disallowing the
second service, or by repeating the call such that the first
service is prevented from being activated on the call.

The approach describes the behavior of a service with the
triggering party and a connection type. The latter consists of
the connection to be set up before the service is activated,
and the connection set up after the service has been
triggered. Call Forwarding Unconditional (CFU), which
redirects all incoming calls to a predefined third user, can be
described as follows. Assume party A is the originator, B the
terminator, and C the party where the call is redirected to. In
the first part, the notation TP.: B indicates that B is the
triggering party, as CFU is triggered at the terminating end
of a call. In the connection type, (A, B) → (A, C), (A,
B) is the original connection and (A, C) is the connection
after activating the service (called resulting connection). For
a pair, such as (A, B), A is the source and B the
destination. The call starts with A attempting to connect to
B. However, due to CFU, A is connected to C instead.

Interaction cases are found by analyzing pairs of services.
Two service descriptions are checked against five rules. If a
service pair fulfills any of the five rules, then the pair is said
to interact. The rules cover the following behaviors:

• Single User – Dual Feature Control
• Connection Looping
• Redirection and Treatment
• Diversion and Reversing
• Treatment and subsequent Missed Call Handling

For brevity the rules are not repeated here, but can be studied
in [11][13].

1.3.4 The Approach in SIP

The P-ConType Header
The distributed nature of the approach helps its application
to SIP. Each service which gets activated includes its
description into the SIP message. If there is already one or
more entries in the message, these are checked against the
description of the current service. Thus the algorithm is
executed wherever necessary and a central feature manager
is not required. This makes the approach highly scalable.

For SIP, additional headers carrying the required
information have been defined and can be included with the
SIP messages. Two private headers have been defined to
carry the required information for this approach: P-
ConType and P-Forwarded-To. The P-ConType header
contains the descriptions of services which have been active
on the current session. The P-Forwarded-To header contains
the ID for an invited party when an INVITE request is
redirected to another party. As is discussed in [12],[13]
standard SIP headers do not provide sufficient detail for this.

During feature sequencing, the current SIP message is
checked for the P-ConType header. If no such a header is
found, no other service has previously been active and hence
a service interaction cannot have occurred. In this case, a
new P-ConType header is inserted into the message
describing the current service. For instance, for a forwarding
service the header is depicted below.
P-ConType: ID=Forward; TP=sip:bob@d254203.com;
OrigFrom=chris@discus.com;OrigTo=bob@d254203.com;
FinalFrom=chris@discus.com;FinalTo=alice@d254203.com

The header contains the ID field, triggering party and the
connection type. The ID identifies the service described in
the header. The TP contains the triggering party, and the
remaining four fields correspond to the four fields of the
connection type.

2. Implementation in a JSR 289 SIP AS

In the JSR 289 application selection and composition model,
there are three routing regions, namely originating,
terminating, and neutral. If an application serves the
subscriber as caller, it is in the originating region. If it serves
the subscriber as callee, it is in the terminating region. If it is
invoked without a specific subscriber, it is in the neutral
region. There are also three routing directives: NEW,
CONTINUE, and REVERSE. The NEW directive handles
initial requests, the CONTINUE directive handles relayed
requests, and the REVERSE directive can change the routing
region of applications. A more detailed description of
routing regions and routing directives can be found in JSR
289 [4]. To be compatible with JSR 289, our notations and
P-ConType header must be able to represent these concepts.
Table 1 shows the mapping for a subscriber A with
applications in different routing regions under different
routing directives. As an application in neutral region does
not have a specific subscriber, it is not listed in the table.

 NEW CONTINUE REVERSE
Originating OrigFrom = A;

OrigTo = B;
FinalFrom = A;
FinalTo = B;

OrigFrom = A;
OrigTo = B;
FinalFrom = A;
FinalTo = B;

OrigFrom = A;
OrigTo = B;
FinalFrom = B;
FinalTo = A;

Terminating OrigFrom = B;
OrigTo = A;
FinalFrom = B;
FinalTo = A;

OrigFrom = B;
OrigTo = A;
FinalFrom = B;
FinalTo = A;

OrigFrom = A;
OrigTo = B;
FinalFrom = A;
FinalTo = B;

For applications residing in the same container, the
application router for that container can keep track of the
invoked applications and check feature interactions based on
the rules defined in Section 3. Under this circumstance, it is
not necessary to use P-ConType header to carry service
history information. This also allows the algorithm examine
together all services deployed on a single Application Server
which are selected for a call. As this will occur prior to
service execution, it will help with the resolution of
interaction and also with the detection of Missed Trigger
Interactions [12] and can also influence the execution order
decision made by the Application Router.

However, once a request goes to another container, it
must carry all the service history in the P-ConType header.
The P-ConType header may be composed by the application
router when it handles the last application in its associated
container. An alternative and more consistent way would be
having each application compose the P-ConType header, as
we described in Section 3.3.6. The application router then

does not have to keep track of application invocation history,
instead, it simply processes the P-ConType header of each
request and detects feature interactions.

An architecture integrating the P-ConType header
processing with the Application Router is depicted in Figure
1. This shows the P-ConType header processing being
linked to the Application Router. Before the Application
Router decides on a final sequence of services to be executed
for a particular request, it consults the P-ConType header
processing with a preliminary list of services. The P-
ConType header processing engine will then detect
interactions among that set of services and between services
in the set and any previous services active on the call.

Initial
INVITE

Container

??

getNextApplication(req, null
NEW, null)

app = “Feature 1”
Reg = ORIGINATING
State = Feature 1 Selected

ConType header
processing

Application
Router

Application
Router

Figure 1: Integration of the P-ConType header processing
into the SIP AS application router.

2.1 Topology Issues
As the K-M approach relies on information being
transmitted in the SIP messages between SIP components, its
operation with SIP servers which restrict the information
passed through them (e.g. B2BUAs) require careful
consideration.

In the following specific examples are examined
including transparent B2BUA, monitoring B2BUA, and
B2BUA acting as session controller.

2.1.1 Transparent B2BUA

There are two cases for Transparent B2BUAs: Firstly they
may carry the P-ConType header forward as specified, and
also are able to send back the disabling of a feature due to an
interaction. There is no need altering information in headers.

UA UA

Server Server

B2BUA

INVITE
INVITE+CT

INVITE+CT

INVITE+CT

RESPONSE+CT

RESPONSE+CT

RESPONSE+CT

RESPONSE+CT

ID mapping

Figure 2: Identity mapping with transparent B2BUAs.

In the second case, B2BUAs modify information in some
headers which could impact on the feature interaction
approach. For instance, by changing the identity of the
endpoints through changes in the From/To/RequestURI, the
mapping between those headers and the information
contained in the P-ConType header is broken. Furthermore,
the P-ConType header may still reveal the ‘previous’
identity of the parties. Hence the B2BUA needs to perform
the same address mapping on the values in the P-ConType
header as in the altered SIP headers. This mapping should
happen for both upstream and downstream messages. The
mapping is illustrated in Figure 2.

In the case of a chain of transparent B2BUAs along a
signaling path, the mapping occurs at each B2BUA. Hence
the behavior if chained B2BUAs can be seen as a sequence
of the single case.

2.1.2 Monitoring B2BUA

Monitoring of a session can either be invisible (e.g. through
a feature such as Lawful Intercept) or visible (through a
feature such as Session Recording). “Invisible” monitoring
should not be detectable by other endpoints in the call.
Hence the signaling from the monitoring endpoint needs to
be hidden from the other endpoints. B2BUAs can be used to
achieve this. But clearly there are privacy issues here which
might be compromised by the P-ConType header. A number
of different cases of monitoring can be distinguished:
1) Monitoring is invisible with higher priority than the

monitored call. In this scenario, features such as Lawful
Intercept or Supervisor Monitoring should have priority
over any feature interaction issues. That is, the monitoring
should stay invisible even though this means that some
interactions due to the monitoring are not dealt with. An
example of such a scenario is when the monitoring party is
on the screening list of a party on the monitored call.

 In such scenarios, P-ConType headers from features for
the monitoring party are not to be sent to other parties the
call, and the call setup should never be repeated due to a
feature interaction (disabling one of the features) as this
can be detected at the other endpoints and reveal the
monitoring. Instead, such an interaction is resolved by
giving priority to the features of the monitoring party.

2) Monitoring party is invisible with equal or lower priority
than the monitored call. An example for this scenario is if
monitoring is active on call. Then the CEO with a feature
disallowing monitoring of calls joins the call. In this case
monitoring should then be disabled.

3) Monitor is visible. In this case, the privacy issues do not
apply and the P-ConType header can be included into the
messages as normal. Also feature interaction resolution
operates as defined in Section 3. Interaction within call
legs which have the B2BUA as origin or termination point
need resolving at the B2BUA. However, there could be
feature interactions across the call legs of a multiparty call
that cannot be made consistent. Interactions in such a
scenario are analyzed asymmetrically to the different legs.

2.1.3 B2BUA is Session Border Controller

A Session Border Controller (SBC) main purpose is to hide
domain routing and endpoint identities from external
endpoints and signaling elements. Clearly, the goals of the
SBC and the feature interaction approach conflict. A SBC
will not forward information in the P-ConType header as
this might reveal identities and features used by those
identities. An example topology involving a SBC is shown
in Figure 3.

UA UA

Server Server

B2BUA

SBC

Figure 3: Topology with Session Border Controller.

However, feature interaction analysis within one domain is
still possible by isolating the feature interaction logic within
each domain. While this will resolve interactions between
services used within one domain, it will not capture
interactions involving services from different domains.
Alternatively, the SBC could map feature interaction
feedback in a way that does not disclose the internal
topology or signaling. For instance, there could be a list of
hidden features that are filtered out of the P-ConType to
prevent visibility outside the domain. Or only public
endpoints are visible outside the domain. All these
approaches will impact on the ability to handle some
interactions, for the benefit of increased the privacy. The
exact policy, e.g. are all P-ConType headers removed, or
only some, and is a feature interaction handling within the
local domain implemented, depends very much on the
privacy requirements of a particular domain and should be
configurable.

3. Experimentation and Results

Previously, we have experimented with the approach using
nine common call control services. Here we have
significantly extended the experimental services set to 32
services. Some services required extensions to the approach
which are discussed below.
3.1 Extensions to the K-M Approach
So far the K-M approach did not cover multi-party calls and
bridged appearances as well as priority calls. In the
following notation for these features is introduced.

3.1.1 Multiparty Calls

To allow the approach to cover three-party calls, the notation
has been extended. A multi-party call (join) is represented
as:
ConfJoin: TP: A; {A,C} A,B → A,B,C

Here, party A is already in a call with party C and has
currently placed that call on hold (curly brackets). A now
calls B and after activating the join conference feature, the
two calls are joined together to form a three-party
conference.

With this extension of notation, the 5 rules are affected as
follows. Rule 1 is applied unchanged. The held call (curly
brackets) is not included in the check for an interaction.

Considering Rule 2 (loop), the final connection A,B,C
does not conflict with any forwarding feature. Consider the
following example:
ConfJoin: TP: A; {A,C} A,B → A,B,C

CFU: TP: C; A,C → A,B

Here, C has a forwarding feature for all calls to B.
However, there is no loop being created during the
conference join. Similarly, if B had a forwarding feature to
C, no interaction would occur, A would simply get Busy
tone as A is already connected to C.
CFU: TP: B; A,B → A,C

Hence, a multi-party call connection A,B,C does not
cause a loop with other two party call features.

Rule 3 involves checking all possible pairwise connection
against the other feature. Consider the following example:
ConfJoin: TP: A; {A,C} A,B → A,B,C

TCS: TP: B; C,B → C,TREAT

Here, a connection between C and B is disallowed by the
TCS service. However, as part of the conference, C and B
will be connected, arguably violating the TCS service.
However, this interaction will be detected if each pairwise
connection from the multiparty call is checked against the
other feature.

Rule 4 is applied unchanged. This rule captures
forwarded calls which are subsequently reversed. Consider
the following scenario:
ConfJoin: TP: A; {A,C} A,B → A,B,C

AR : TP: B; A,B → B,A

Multiparty calls do not fall into this category. Hence Rule
4 and does not apply to this scenario.

3.1.2 Bridged Appearances

Bridged Appearance (BA) is a common service in
enterprise environments, for instance between an executive
and their secretary. In the approach BA behavior can be
described as
BA: TP: B; A,B → A,B-C

Here A phones B, but B is on a bridged appearance with
C, so A gets connected to B with C also connected. This
scenario has the BA on the terminating end of the call. The
scenario below shows BA on the originating side of the call.
BA: TP: B; B,A → B-C, A

With this new notation, Rule 1 is not changed. Similarly,
Rule 2 is applied as before. The BA connection (e.g. B-C)
below, is not considered a connection in itself.
Consequently, Rule 2 does not apply to the example below.
CFU: TP: C; B,C → B,A

BA: TP: B; B,A → B-C, A

Rule 3 needs to consider all the parties involved in a call.
For instance, in the scenario below, C is not allowed to call
and be connected to A. However, if B phones A with B
having C on a BA, the TCS feature is violated. Hence, Rule
3 needs to consider parties on BA.
TCS: TP: A; C,A → C,TREAT

BA: TP: B; B,A → B-C, A

Applying Rule 4 to a pair of features involving BA does
not yield any interaction cases. Considering the scenario
below, the called returned by the AR feature does not
conflict with the BA feature.
BA: TP: A; A,C → A-B,C

AR : TP: C; A,C → C,A

In other words, the BA connection is not considered as a
forwarding of the call.

3.1.3 Detection and Resolution of Feature Interaction

In previous work [13] we advocated an approach in which
detection and resolution occurred only after both features
were executed and triggered. In some circumstances, the
resolution then required ‘undoing’ an executed service.
Clearly this is problematic with services changing state or
communicating with other resources. Hence the current
design employs pre-activation detection.

When a message arrives at a SIP component, the
message is checked for a P-ConType header. If a P-ConType
header is found in the message, the data from that header is
extracted and together with the description of the local
service fed into the service interaction algorithm executing
the five rules discussed in the previous section. If no service
interaction is detected, and no further P-ConType header is

found in the message, the message is processed by the to the
servlet and subsequently, the P-ConType header for the
current service is inserted into the message and the message
is sent on to its destination.

If an interaction is detected, the outcome of one of the
two services involved needs to be discarded. If the actions of
the second service are to be discarded, the service is simply
not carried out. If the actions of the first service are to be
discarded, the session setup might need to be repeated, but
only if the second service actually gets triggered (depend on
time of day, other service data). Hence the second service
will be executed. If it does not get triggered, there is no
interaction and the call proceeds as normal with just the P-
ConType header of the first service. However, if the second
service gets triggered, an interaction would occur and hence
the call attempt needs to be repeated – disabling the first
service (see Figure 4).

Do B

B not used

Next
Feature

Application

B used
Drop A

Drop B

A applied
B is next

A, B interact

Undo A
Repeat Call

Do B

B not used

Next
Feature

Application

B used
Drop A

Drop B

A applied
B is next

A, B interact

Undo A
Repeat Call

Figure 4: Algorithm for feature interaction detection and
resolution for features A and B.

A message indicating this is sent back to the originator (a
SIP Response 380 Alternative Service). The P-ConType
header for the service to be disabled is extended by the field
Status=disabled. The UA client will receive the message and
issue a new Invite request, again with the P-ConType header
and flag copied in. When this request is received by the
service which the P-ConType header matches, it will not
trigger the service.
3.2 Results
Table 1 provides details of the 32 features in the
experimental set. As with the previous case study, a number
of features have the same descriptions even though they are
quite different. This is due to the abstract nature of the
approach, and has been discussed previously [13]. Features
from previous case studies have been marked with a grey
background. Here, the features have been grouped according
to their description. Each group has been giving a name:
Originating Call Setup (OCSet), Originating Call Filtering
(OCFil), Terminating Call Establishment (TCEst),
Terminating Call Diversion (TCDiv), Terminating Call
Filtering (TCFil), Terminating Call Reversing (TCRev),
Service Call Features (SC), and Call Conference (Conf) and
Bridged Appearance (BA).

Clearly, the interactions for features within a group are
identical. Hence these feature groups can then be used to
show interactions between the different groups (Table 2).
Even though the table suggests interactions between many
feature groups, this does not necessarily translate to
interactions in all calls involving features from two
incompatible categories.

4. Table 1: Modeling and Grouping of Services.
Feature Group Feature Description in Notation

1 OCSet HL Hotline TP:A; A,B → A,B

2 LCR Last Call Return TP:A; A,B → A,B

3 PA Paging TP:A; A,B → A,B

4 LND Last Number Dialed TP:A; A,B → A,B

5 MI Manual Intercom TP:A; A,B → A,B

6 SR Save and Redial TP:A; A,B → A,B

7 OCFil OCS Call Managemet (Outgoing) TP:A; A,B → A,TREAT

8 TCEst CW Call Waiting TP:B; A,B → A,B

9 ACB Automatic Callback TP:B; A,B → A,B

10 CON Camp-On TP:B; A,B → A,B

11 TCDiv CFU Call Forwarding Uncond. TP:B; A,B → A,C

12 CFB Call Forwarding Busy TP:B; A,B → A,C

13 CFNA Call Forward No Answer TP:B; A,B → A,C

14 CFFMe Call Forward Follow Me TP:B; A,B → A,C

15 GR Group Ringing TP:B; A,B → A,C

16 CFOP Call Forward Off-Premises TP:B; A,B → A,C

17 CFR Call Forward Ringing TP:B; A,B → A,C

18 CT Call Transfer TP:B; A,B → A,C

19 SAC Send All Calls TP:B; A,B → A,C

20 COV Coverage TP:B; A,B → A,C

21 HG Hunt Group TP:B; A,B → A,C

22 TCFil TCS Terminating Call Screening TP:B; A,B → A,TREAT

23 VMS Voice Mail TP:B; A,B → A,TREAT

24 DND Do-Not-Disturb TP:B; A,B → A,TREAT

25 SCR Selective Call Rejection TP:B; A,B → A,TREAT

26 CB Call Block TP:B; A,B → A,TREAT

27 ACR Anonymous Call Rejection TP:B; A,B → A,TREAT

28 TCRev AR Automatic Ringback TP:B; A,B → B,A

29 SC W AK Hotel-wake up TP:Treat; A,Treat → Treat,A

30 REM Reminder TP:Treat; A,Treat → Treat,A

31 Conf Conf Conference Join TP:A; {A,C} A,B → A,B,C

32 BA BA Bridged Appearance TP:B; A,B → A,B-C
For an interaction to occur, the exact configuration is crucial.
Many features use feature data and are only triggered based
on them, e.g. screening lists. Some features are only
triggered in certain conditions (party busy, no answer). Thus
only calls which meet all these conditions actually lead to FI.
Table 2: Interactions between Feature Groups.

OCSet OCFil TCEst TCDiv TCFil TCRev SC Conf BA
OCSet 1 1,3 3 1 1
OCFil 1 3 3 1,3 1,3
TCEst 1 1 1,3 1 1
TCDiv 1,2 1,3 1,4 4
TCFil 1 1,3 4 3 1,3
TCRev 1,2 4

SC 1
Conf 1 1
BA 1

In a previous study looking at features deployed on SIP UAs
and Proxy Servers, we found that some interactions could
not be detected when the features are deployed on the same
component. This affected features which are triggered by an
INVITE request, but one (or both) service drops the INVITE
and generates a response message (e.g. Terminating Call
Screening). In this case an interaction could only be detected
if the service dropping the INVITE is triggered second. If
the service dropping the INVITE is triggered first, the
second service did not get triggered at all and hence the
feature interaction algorithm was not executed. This issue is
resolved by the combination of the interaction approach with
the Application Router. As the interaction algorithm can be
applied before any services have been executed (based on
the service selection by the Container), the algorithm will be
applied to all service pairs. This applies to Missed Trigger
Interactions [12] generally, as long as the services are
deployed on the same Application Server.

Conclusions

This paper prsents a novel feature interaction approach
operating on distributed SIP application servers with
application routing based on JSR 289. Besides handling
interactions, the approach can also be used to influence the
decision of the Application Router on the order in which
services are to be executed.

The Application Server environment provides the
potential to apply the algorithm to all services deployed on a
single Application Server before any of them are executed.
This helps with the detection of Missed Trigger Interactions.

This paper considers the application of the approach in
certain restrictive topologies including B2BUAs. As the
approach relies on certain information to be transmitted in
the SIP messages, components which map or filter
information contained in SIP messages are an issue. The
paper shows how the approach can operate when such
components are in the signaling path.

The notation of the approach includes complex call
control services such as conference and bridged appearance
services. The approach has been validated against a large
case study involving 32 common services.

REFERENCES

[1] X. Wu and H. Schulzrinne. Handling Feature Interactions in the
Language for End System Services, Computer Networks, Volume
51(2), pp.515-535, February 2007.

[2] M. Calder, M. Kolberg, E.H. Magill and S. Reiff-Marganiec. Feature
Interaction: A Critical Review and Considered Forecast, Computer
Networks, Elsevier Science, Vol. 41, No. 1, pp. 115-141, 2003.

[3] JSR 116: SIP Servlet API V1.0, http://jcp.org/en/jsr/detail?id=116
[4] JSR 289: SIP Servlet API V1.1, http://jcp.org/en/jsr/detail?id=289
[5] M. Jackson, P. Zave. Distributed feature composition: A virtual

architecture for telecommunications services. IEEE Transactions on
Software Engineering XXIV(10):831-847, October 1998.

[6] M. Calder, M. Kolberg, E. H. Magill and S. Reiff-Marganiec. Feature
Interaction: A critical Review and Considered Forecast, Computer
Networks J., Vol. 41(1), 2003, pp. 115-141.

[7] D. O. Keck and P. J. Kuehn. The Feature and Service Interaction
Problem in Telecommunications Systems: A Survey, IEEE
Transactions on Software Engineering, Vol. 24(10), pp. 779—796.

[8] E. Cheung and K.H. Purdy. Application Composition in the SIP
Servlet Environment, IEEE International Conference on
Communications (ICC) 2007, Glasgow, UK.

[9] E. Cheung and K.H. Purdy. An Application Router for SIP Servlet
Application Composition, IEEE International Conference on
Communications (ICC) 2008, Beijing, China.

[10] K.F. Kocan, W.D. Roome, and V. Anupam. A Novel Software
Approach for Service Brokering in Advanced Service Architecture,
Bell Labs Technical Journal, Vol. 11(1), pp. 5-20, 2006.

[11] M. Kolberg and E.H. Magill. A pragmatic approach to Service
Interaction Filtering between Call Control Services, Computer
Networks J., Elsevier Science, Vol. 38, pp. 591-602, 2002.

[12] M. Calder, M. Kolberg, E.H. Magill, D. Marples and S. Reiff-
Marganiec. Hybrid Solutions to the Feature Interaction Problem, In D.
Amyot and L. Logrippo, Feature Interaction in Telecommunications
and Software Systems VII, IOS Press, Amsterdam, pp. 295-312, 2003.

[13] M. Kolberg and E.H. Magill. Managing Feature Interactions between
Distributed SIP Call Control Services, Computer Networks J., Elsevier
Science, Volume 51, Issue 2, 7 February 2007, pp. 536-557.

[14] J. Zhou, J. Buford, K. Dhara, X. Wu, M. Kolberg. Discovery and
Composition of Communication Services in Peer-to-Peer Overlays.
IEEE Workshop on Service Discovery and Composition in Ubiquitous
and Pervasive Environments (SUPE’07). Nov. 2007.

	Introduction
	Feature Interaction
	Contributions
	Related Work
	Feature Interactions
	JSR 289
	Feature Interaction Approach
	The Approach in SIP

	Implementation in a JSR 289 SIP AS
	Topology Issues
	Transparent B2BUA
	Monitoring B2BUA
	B2BUA is Session Border Controller

	Experimentation and Results
	Extensions to the K-M Approach
	Multiparty Calls
	Bridged Appearances
	Detection and Resolution of Feature Interaction

	Results

	Conclusions
	REFERENCES

