
 

 

 

  

Abstract— This paper discusses the potential of Particle Swarm 

Optimisation (PSO) for inducing Bayesian Networks (BNs).  

Specifically, we detail two methods which adopt the search and 

score approach to BN learning. The two algorithms are similar in 

that they both use PSO as the search algorithm, and the K2 metric 

to score the resulting network. The difference lies in the way 

networks are constructed. The CONstruct And Repair (CONAR) 

algorithm generates structures, validates, and repairs if required, 

and the REstricted STructure (REST) algorithm, only permits 

valid structures to be developed. Initial experiments indicate that 

these approaches produce promising results when compared to 

other BN learning strategies.  

 
Index Terms—Particle Swarm Optimisation, Bayesian 

Network Construction. 

 

I. INTRODUCTION 

   Many algorithms have been developed which induce the 

structure of Bayesian Networks (BNs).  In general, learning the 

structure from a dataset is regarded as a NP-hard problem [1]. 

Reference [2] shows through complexity analysis the extent of 

difficulty with the task.  The underlying challenge in deriving an 

efficient network relates to the large cardinality of the search 

space. Some algorithms attempt to reduce cardinality by 

assuming knowledge about the ordering of nodes in a network 

[3, 4]. However, in a domain where such expertise is 

unavailable, or the number of domain variables is large, 

defining the ordering may not be possible.  

An alternative approach to the use of exhaustive searches  is 

to employ heuristic search techniques. Work in this area can be 

divided into two main approaches: those that attempt to measure 

the dependencies of the underlying model, and algorithms that 

search for a structure that best represents the data.   Our research 

extends the work performed in the second of these two areas. 

We examine the use of Particle Swarm Optimisation (PSO) to 

derive an optimal Bayesian network.  Although other 

evolutionary approaches have been examined for BN 
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structuring, PSO has yet to be applied in this context, thus 

rendering our research as novel and highly relevant to the BN 

community.   

In Section II we discuss existing methods for deriving BNs, 

identifying both statistical and heuristic approaches. Our 

research examining the use of PSO is detailed in Section III and 

the two algorithms developed are introduced. Section IV 

discusses the experiments conducted and the results to date are 

provided in Section V. We conclude in Section VI with a 

discussion of findings and directions for further research. 

 

II. METHODS FOR CONSTRUCTING BAYESIAN NETWORKS 

Many BN learning algorithms have been developed which 

employ heuristics to derive a network. They can be broadly 

grouped into two categories: dependency analysis approaches 

and methods based on search and score strategies. A review of 

these two approaches is provided below:  

A. Algorithms using Dependency Analysis 

Automatic learning of a BN from a dataset seeks to generate a 

directed acyclic graph (DAG) reflecting the dependencies 

existing between variables [5]. Dependency analysis techniques 

attempt to produce a list of conditional (in)dependencies using 

statistical conditional independence (CI) tests.  Evaluation of 

the networks derived is performed by testing conditional 

independence (CI) between tuples of variables.  

The most popular CI based algorithm is the PC algorithm [6]. 

It begins with the complete undirected graph, then ‘thins’ the 

graph by removing arcs with zero order CI relations, then thins 

again with first order conditional independence relations, and so 

on until an optimal BN is generated.  

One of the main disadvantages of this technique is the number 

of tests required to derive the final network structure.  CI based 

approaches become quickly computationally infeasible due to 

the number and complexity of the tests performed, thus reducing 

the efficiency of the algorithm [7-9].  

B. Search and Score methods  

Search and score approaches seek to discover the probabilistic 

dependency network which most likely generated a dataset [8]. 

This is typically achieved by an efficient search engine which is 

guided by an evaluation function. The approach begins with a 

graph containing no arcs, then recursively adds, deletes, or 

reverses the direction of arcs in an attempt to find the structure 

that maximizes the score. The best scoring network represents 

the graph that is most representative of the data.   
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1) Search strategies 

Search and score methods can be divided into sequential 

approaches (such as simulated annealing) and population-based 

approaches (such as genetic algorithms). One disadvantage of 

sequential approaches is that they are strongly subject to local 

minima given that they only refine a single candidate solution 

[10]. Using a population-based approach is a means of 

overcoming this drawback. It is a population-based approach on 

which our research is built. 

Population-based search and score algorithms for BN 

learning are generally nature-inspired. Several researchers have 

applied different nature-inspired techniques to the problem of 

BN structure learning. Such techniques include ant colony 

optimization [11], genetic programming [12], and artificial 

immune systems [13]. 

One of the most popular nature-inspired approaches used for 

BN learning is Genetic Algorithms (GAs). There exists a 

significant body of published literature which documents the 

use and empirical evaluation of genetic algorithms for deriving 

a Bayesian network. References [4, 14, 15] detail much of the 

work in this area.  

Outside the field of genetic algorithms and the other 

approaches listed above, the amount of research conducted in 

the area of nature-inspired algorithms is relatively sparse. To the 

best of the authors’ knowledge, there is no published literature 

or evidence to suggest that the use of Particle Swarm 

Optimisation (PSO) has been adopted for network derivation. 

Although the evidence in the literature suggests that GAs 

produce good results for BN learning, we believe that there is 

scope for PSO to provide comparable if not better results.   

2) Scoring metric 

The Cooper and Herskovits’s metric (CH/K2 metric) [8] is a 

widely used evaluation measure used in learning BNs.  The 

metric calculates the probability of a network structure being 

representative of a dataset by calculating the joint probability of 

a BN and a dataset. It is derived by assuming uniform prior 

distributions on the values of an attribute for each possible 

instantiation of its parent attributes. K2 is detailed in this paper, 

as it the metric we adopt in our research. 

 

III. PROPOSED APPROACH   

Our particular interest lies with the use of PSO for learning a 

BN structure. PSO [16] emerged from experiments with 

algorithms that modeled the flocking behaviour seen in many 

species of birds [17].  In PSO, particles fly through a search 

space, hunting for an optimal solution by means of 

socio-cognitive theory [18], where particles evaluate and 

compare themselves to others, and imitate the behaviour of 

those who are regarded as more successful in the search. With 

each iteration of PSO, particles compare their current position 

with that of superior neighbours, and calculate a trajectory and 

associated velocity to determine where they should move to in 

the next iteration of the algorithm. 

PSO is a population based stochastic search heuristic where 

the population is initialized with random variables, and each 

individual in the swarm is assigned a fitness score. With each 

iteration, a particle’s personal best (pBest) is referenced as well 

as the swarm’s global best score (gBest). It is these two factors 

that influence where the particle moves to in the next iteration. 

The original PSO algorithm was designed for use with real 

numbers, however this approach has been extended to include a 

binary representation of the approach.  It is this version of PSO 

that our technique utilizes. 

Evidence from the literature suggests that for certain 

problems, PSO can be seen as a superior technique to GAs.  For 

example, [19] compares the use of GAs and PSO  techniques to 

evolve an optimal chemotherapy schedule for patients suffering 

from cancer. Their results concluded that PSO was able to find 

feasible regions for possible solutions faster than GAs. In 

addition, PSO was successful in finding a better solution to the 

problem than the GA approach.  Other examples include the 

work of Mouser and Dunn [20], whose research shows PSO 

outperformed GAs when designing an optimal aircraft design. 

Furthermore there is published research that shows PSO to have 

the same effectiveness (finding the true global optimal solution) 

as GAs, but with significantly better computational efficiency 

(less function evaluations) [21].  

Although the research detailed above shows PSO as 

comparable or outperforming GAs in significantly different 

application areas to our own, we hypothesize that PSO will 

outperform GAs when applied to the problem considered in this 

research, as the fundamentals of the task are essentially the same 

as those reported. That is, the technique is used to search a large 

solution space for a solution which satisfies a given fitness 

function.   

Population-based approaches to BN learning, particularly 

when the ordering assumption is not upheld (as is the case here), 

tend to require apparatus to validate solutions in the population. 

For example, in the GA approach, crossover and mutation are 

not closed operators, thus there is a chance that these operators 

may generate structures that do not respect DAG conditions. 

Accordingly, a ‘repair’ strategy is widely used to convert an 

illegal solution into a legal solution.  In a similar way, the PSO 

approach can also find solution encodings which violate DAG 

conditions, thus again, a repair strategy is required.  

Our initial approach to using PSO for BN learning began by 

investigating PSO as a search heuristic for Bayesian network 

learning and used a repair strategy to guarantee DAG 

conditions. One of the primary concerns of this approach is that 

by using a random repair strategy (as our approach does), we 

run the risk of randomly jumping through search space rather 

than learning from previous generations as to where the best 

areas of search space lie.  

A second approach was developed which avoids the issue of 

repair operators by only permitting legal structures to be 

generated.  The possible concern of this strategy is that by never 

allowing illegal structures to be generated, potentially high 

scoring structures may be overlooked.  

The pseudocode for the implementation of CONOR and 

REST is given in Table I. As is evident, the two approaches are 

broadly the same except for the difference in network 

generation strategies. As the pseudocode suggest, the algorithm 

is repeated until a stopping criterion is reached. This critierion 

could be when solutions appear to have converged on the best 



 

 

 

C

BA

scoring network, or when a specified number of iterations have 

been performed. 

Sections III.A and III.B to follow detail the two algorithms 

developed: the CONstruct And Repair (CONAR) algorithm 

which generates structures, validates, and repairs if required, 

and the REstricted STructure (REST) algorithm, which only 

builds valid structures.   

 

 

Initialize population 

Initialize pBest 

Select arbitrary gBest 

Repeat 

 For each particle 

  Determine pBest 

  Determine gBest 

  Update velocity  

  Update position → P’ 

   [CONAR only] 

If P’ represents illegal structure 

    Repair 

    Update position  

   End If 

End For 

Until termination criterion is met 

 

A. CONAR 

The CONAR process is based on the search and score 

approach, using PSO as its search mechanism and K2 as the 

scoring metric.  K2 is widely accepted metric for evaluating 

network structures [4, 11]. At each iteration of the PSO 

algorithm, the K2 metric is used to determine the current ‘best’ 

network, and the results are used to guide the direction of search 

in the subsequent iteration. 

The network structure generated with each iteration of 

CONAR is represented as a connectivity matrix (C). The 

connectivity matrix C has n rows and n columns (where n is the 

number of variables, and i infers the row, and j the column) 

where 

Cij  =   1 if i is a parent of j  

  0 otherwise  

 

Figure 1 shows an arbitrary BN structure, consisting of n=3 

nodes and 2 arcs and the corresponding connectivity matrix.   
 

 

 

 

 

 

 

 

Thus, each particle (p) in the swarm is composed of n x n binary 

dimensions. Furthermore, each dimension of a particle p takes 

on the value of exactly one element, Cij, in C. Therefore, a 

particle represents precisely one point in the search space, 

which in turn represents a candidate BN structure. As the node 

ordering assumption is relaxed, a given particle can be 

represented as the flattened binary encoding of the matrix in the 

following form: 

 

C11, C12, …, C1n, C21, C22, …, C2n,  …, Cn1, Cn2, …, Cnn 

 

1) Illegal structures 

The CONAR update operator is not closed with respect to 

DAG conditions and as such, it is possible for the algorithm to 

generate invalid structures. This is caused primarily by the 

choice of solution representation and the stochastic nature of the 

PSO velocity update algorithm. An example of an illegal 

structure is shown in Figure 2, where a self-cycle exists for 

Node A.  

 

 

 

 

 

 

CONAR identifies cycles in a 3-stage process where it firstly 

detects self-cycles, then bi-cycles, and lastly regular-cycles. The 

method by which these are determined, and the repair strategies 

adopted are outlined below. 

a) Repairing self-cycles 

A self-cycle occurs when a node has an arc which points 

directly to itself.  An example of a self-cyclic arc can be seen 

graphically in Figure 2. In the connectivity matrix, a self-cycle 

arc is identified by the presence of a ‘1’ in any element along the 

diagonal; element 1 in the example shown in Figure 2. The 

repair strategy is simply to replace the value in the offending 

element of the connectivity matrix with a ‘0’.   

b) Repairing bi-cycles  

 

 

  

 

 

 

 

Bi-directional cycles, as shown in Figure 3, occur when two 

nodes in a generated structure are seen to influence each other.  

In Figure 3, we see the scenario where Node A influences node 

B, and in turn, Node B influences Node A. Currently, CONAR 

removes one of the arcs at random in order to resolve the 

conflict.  As such, there is a 0.5 probability that the optimal arc 

is lost.  

c) Repairing regular cycles 

Regular cycles are characterized by three or more directed 

arcs forming a cycle, as shown in Figure 4. Here, Node A 

influences node C, Node C influences Node B, and Node B 

influences Node A.  Such cycles are identified using Warshall’s 

 Aj Bj Cj 

Ai 0 0 1 

Bi 0 0 1 

Ci 0 0 0 

 Aj Bj Cj 

Ai 1 0 1 

Bi 0 0 1 

Ci 0 0 0 

 Aj Bj Cj 

Ai 0 1 1 

Bi 1 0 1 

Ci 0 0 0 

Fig 3: Bi-cycle BN with corresponding connectivity matrix 

C

BA

Fig 2: Self-cycle BN structure with corresponding connectivity matrix 

Table I: Pseudocode of CONAR and REST algorithms 

Fig 1: BN Structure with corresponding connectivity matrix 



 

 

 

algorithm [22], which calculates whether a path exists from 

Node X to Node Y (transitive closure). Sub-graphs with regular 

cycles are currently repaired in the same fashion as the bi-cyclic 

graphs, where one of the offending arc is removed randomly. 

 

 

 

 

 

 

 

 

 

 

Although the strategies outlined above for repairing illegal 

structures are simple in their approach, it was felt that these 

represented a good starting point for evaluating the potential of 

PSO for BN learning.  It is our intention to investigate the use of 

more complex strategies such as utilizing the decomposability 

property of the K2 metric to determine arc importance. This is 

discussed further in Section VI. 

B. REST 

The REST algorithm is similar to CONAR in that it again is 

built upon the search and score approach, using PSO as the 

search method and K2 as the scoring metric. However, unlike 

CONAR which permits both legal and illegal BN to be 

generated, REST restricts the structures generated to those that 

contain no cycles.  REST was developed in order to evaluate 

which of the two strategies for BN learning results in a better 

scoring network.  

 CONAR encodes a BN structure as an n x n connectivity 

matrix. However, if we restrict use of the matrix to the upper 

triangular matrix which excludes the diagonal, the binary string 

of this representation will always represent a legal encoding. 

This representation is referred to as a triangulated connectivity 

matrix (TC) and is the representation used by REST.  However, 

just adopting this policy alone is too restrictive, as only a subset 

of possible legal network structures can be represented. In the 

example shown in Figure 5, BN1 can be represented, but BN2 

cannot.  

 

  

 

 

 

 

 

 

 

 

 

 

Node B can be the parent of Node D if we assume that Node B 

comes before Node D. However, Node D cannot be the parent 

of Node B, if that same assumption of node ordering is 

enforced.  However, our aim is to derive BNs without the need 

for prior knowledge of orderings. This is achieved by virtue of 

the acyclic property inherent in the triangulated connectivity 

matrix. The TC matrix representation is still adopted but a 

mapping strategy is generated for each possible permutation of 

the nodes. This allows all possible legal structures to be 

represented using the TC matrix. Thus, using our mapping 

strategy, the representation of BN2 is represented as the 5
th
 

permutation of ABCD, ADBC. This information would be 

represented as an 11 bit string where from left to right, bits 1-6 

represent the values in the TC matrix, and bits 7 – 11 are the 

binary representation of the permutation. For BN1 and BN2 we 

would have the following strings respectively [110110 00001], 

[100110 00101]. Figure 6 shows the corresponding matrices for 

BN1 and BN2. 

 

 

IV. EXPERIMENTS 

To evaluate the effectiveness of our PSO approaches, a set of 

experiments were performed.  The experiments were conducted 

using the WEKA tool [23]. WEKA facilitates the use of 

different search algorithms and scoring metrics and thus 

allowed us to compare different approaches in the same 

development environment.  

In these experiments, CONAR and REST were tested using 

the ASIA model dataset [24] to identify their ability to generate 

an optimal BN. To evaluate their effectiveness against other 

methods, we also performed experiments using the K2 

algorithm at generating the Asia network. 

A. K2 Algorithm 

The K2 algorithm [8] is a well-known method for learning 

BNs. The algorithm uses the K2 metric to evaluate the score of a 

resulting BN. K2 requires two parameters: a domain variable 

order and an upper bound for the number of parents variables 

permitted. K2 searches for the best set of parents a variable has 

within the previous subset of variables.  

As discussed in Section III, CONAR and REST do not use 

node ordering information to generate a BN. This is seen as one 

of their advantages. However, it is recognized that to test the 

three approaches fairly, the ordering requirement of the K2 

algorithm should be considered. As such, we tested two versions 

of K2, referred to as K2_O (the standard K2 algorithm that uses 

node ordering as an input to the algorithm) and K2_NO (that 

does not take node ordering into account). As K2 is known to 

operate best when node ordering is given, a compensation factor 

is incorporated into the experiments such that the K2_NO 

method is not disadvantaged. K2_NO is run 10n times (where n 

is the number of variables), while CONAR, REST and K2_O 

are only executed 10 times. This approach is recognized by 

other researchers as a sensible way to compare K2’s 

effectiveness when no prior node ordering information is given 

 Aj Bj Cj 

Ai 0 0 1 

Bi 1 0 0 

Ci 0 1 0 

 Aj Bj Cj Dj 

Ai  - 1 1 0 

Bi  -   - 1 1 

Ci  -  -  - 0 

Di -  -   -  - 

 Aj Dj Bj Cj 

Ai  - 1 0 0 

Di   -  - 1 1 

Bi  -  - -  0 

Ci  -  -  -  - 

Fig 4: Regular cycle BN with corresponding connectivity 

matrix 
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Fig 5:  Bayesian Networks BN1 and BN2      
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Fig 6:  Mapping Matrices for BN1 and BN2   

   



 

 

 

[25]. 

B. CONAR and REST parameters 

CONAR and REST were initialized with 80 particles (10 x n, 

where n is the number of variables), and executed over 100 – 

1000 iterations (in step sizes of 100).  Executing the two 

algorithms over different iterations allows us to evaluate 

whether a better scoring BN can be generated by letting the 

algorithms run for a longer period of time. 

 

V. RESULTS 

The results from executing the CONAR and REST 

algorithms show no statistical significant difference in the score 

of the BN generated from 100 iterations and that of the BN 

generated from 200 iterations. The mean score of the BN 

generated from 100 runs was -22525.79 (2dp) and -22529.06 

for CONAR and REST respectively. Similarly, there was no 

statistical significance between the mean scores generated from 

runs 200 – 1000. We can therefore conclude that although a 

slightly better scoring BN was achieved by increasing the 

number of iterations, that there is no significant gain from 

executing the algorithms for more than 100 generations. Table 

II provides the mean best score, standard deviation, standard 

error and the 95% confidence intervals for CONAR and REST 

when the algorithms are generated for 100 runs.  

 

Table II: Statistics for 100 iterations of CONAR and REST 

 

The results obtained from executing the K2_O and K2_NO 

algorithms show that although as compensation for excluding 

node orderings, K2_NO is run 80 times, it produces the worst 

scoring BN. K2_O produces a higher scoring network, however 

its score is not as high as those generated by the networks 

derived by CONAR and REST. These results are highlighted 

further in Figure 8, which show there is a high degree of 

significance in the results produced by CONAR and REST. 

 

Table III: T-test results 

 

Two-sample T-tests where unequal variances are assumed 

were performed to evaluate the differences between the results. 

Three tests were performed: TT1(comparing CONAR with 

REST), TT2(comparing REST with K2_O), TT3 (comparing 

K2_O with K2_NO). The results are given in Table III. 

As can be seen from Table III, the P-values for each test are 

all very close to zero.  There is marginal significance between 

the scores of BNs generated by CONAR and REST.  However, 

there is high significance between REST and K2_O and K2_O 

and K2_NO. This validates further the significance of our 

findings, and clarifies the difference in the results obtained. 

 

 
 

 The known score of the original Asia network is -22521.95. 

As shown in Table I, the results indicate that all methods come 

close to this score but none actually achieve it. However, it 

should be noted that the maximum scores for each set of 

iterations performed by CONAR and REST outperform the 

original score when the algorithms are ran for 200 iterations or 

more. In addition, the mean score for CONAR executed over 

300 iterations is -22521.13, and therefore on average, returns 

networks that outperform the original.  

 The actual BN derived by the best scoring algorithm CONAR 

is depicted in Figure 9. As can be seen, it is similar to the known 

network representing the Asia dataset, but an additional 2 arcs 

are included (Tuberculosis → Bronchitis and Tuberculosis → 

XRay Result), giving a Hamming Distance of 4 between the two 

structures. 

 

 

 CONAR REST K2_O K2_NO 

Mean -22525.79 -22529.06 -22534.63 -22543.81 

Std.Dev 2.16 4.19 3.83 x 10-12 19.57 

Std.Err. 0.68 1.33 1.12 x 10-12 2.19 

95% CI 1.55 3.00 2.74 x 10-12 4.36 

 TT1 TT2 TT3 

P-value 0.047 7.023 x 10-5
 4.071 x 10-7 

T-value. -2.20 12.93 4.20 

95% CI for 

difference 

(-6.4957, 

-0.0527) 

(7.2930, 

10.3864) 

(4.8289, 

13.5397) 

Fig. 9: BN generated by CONAR 

Fig 8: Mean scores and 95% CIs for algorithms 



 

 

 

VI. CONCLUSIONS AND FUTURE RESEARCH 

The results detailed in Section V show the potential of 

harnessing PSO for BN learning. The results show both 

CONAR and REST find significantly higher scoring network 

structures than the K2 algorithm (with or without node ordering 

supplied).  The findings also allay our concerns that the 

randomness of the repair operator used in the CONAR 

algorithm would result in a random search of search space rather 

than using information to learn the best areas of search space to 

move to.  This is compounded by the fact that CONAR and 

REST were found to be comparable, and significantly better 

than K2 for producing high scoring BNs. Despite the findings, 

we do intend to evaluate the use of a more controlled approach 

to arc addition/removal within the REST algorithm. A more 

structured approach would be to score the result of removing or 

adding different arcs and only make the change that results in 

the highest scoring network. Such a strategy is learning using 

the decomposability property, a property inherent of the K2 

metric.  

Despite these promising results, we recognize that the findings 

are restrictive in that only one other algorithm is used in 

comparing CONAR and REST and only one dataset is used. 

Current research is focused on evaluating our techniques against 

the ability of GAs and Estimation of Distribution Algorithms 

(EDAs) to derive high scoring BN structures.  In addition, we 

hope to evaluate the techniques for other datasets. Current work 

is focused on testing the approaches using the well known 

Alarm dataset. We are also in the process of generating a dataset 

of possible dementia suffers with a view to generating a network 

to classify if dementia is present and the underlying syndrome 

associated with it. This builds on our existing work in the area of 

using BN for diagnosis applications [26, 27]. 
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