Sephan Reiff-Marganiec and Kenneth J. Turner. Use of Logic to describe
Enhanced Communications Services. In Moshe Vardi and Doron Peled, editors,
Proc. Formal Techniques for Networked and Distributed Systems (FORTE XV),
pages 130-145, LNCS 2529, Copyright Springer-Verlag, Berlin, November 2002.

Use of Logic to describe Enhanced
Communications Services

Stephan Reiff-Marganiec and Kenneth J. Turner

University of Stirling,
Department of Computing Science and Mathematics,
Stirling FK9 4L A, Scotland, UK
{srm,kjt }@cs.stir.ac.uk

Abstract. New functionality is added to telecommunications systems in
the form of features or services. However, this is a very provider-centric
approach, not giving much control to the user. We consider a logic that
allows the user to express preferences as to how they wish calls to be
handled. This logic is encapsulated in a user-friendly policy description
language. The transferability of a policy description language (Ponder)
developed for system management and access control is discussed.

Keywords: Enhanced Communications Services, Policies, Policy Description
Language, Ponder, SIP.

1 Introduction

Call processing systems are large, distributed systems. Traditionally, they were
either telephone exchanges or private branch exchanges under the control
of a single provider or owner. Recent developments have shifted the whole
area of call processing towards an open market and a more unified view of
communications. We now consider more than POTS (Plain Old Telephone
System) calls. Furthermore, the functionality has been largely enhanced by the
provisioning of features. Features are extensions to the basic service, developed
independently of the basic service. The latest developments allow users to
develop and deploy their own features.

In this paper we consider policies as a mechanism for enterprises and
individuals to specify their preferences for call processing. Policies are defined
as information which can be used to modify the behaviour of a system [LS99].
Considerable interest has been aroused by policies in the context of multimedia
and distributed systems. Policies have also been applied to express the enterprise
viewpoint of ODP (Open Distributed Processing) [SD99] and agent-based
systems [BGM9S].

1.1 Feature Interaction

With the growing number of features that might be developed by different
providers, a problem known as the feature interaction problem gains importance.

A feature interaction is encountered when two or more features that each
independently work as expected do not do so if provided together in the system.
A typical example is a user subscribing to a Call Forwarding on Busy feature
(which redirects incoming calls to a busy line to a different phone) and a Call
Waiting feature (which plays a tone when a call comes in to a busy line). Assume
the user is busy and an incoming call arrives. This raises the question of which
feature’s behaviour should be activated, as both together do not provide sensible
behaviour.

Feature interaction has been considered by an active research community
composed of academics and industrialists, since the late 1980s. The proceedings
of the series of International Feature Interaction Workshops, e.g. [CM00,KB98]
provide a good overview.

1.2 New Call Processing Architectures

We have already mentioned the convergence of communications systems. The
buzzword often heard from communications technology developers is “everything
over IP”. Hidden behind this is essentially the fact that data is delivered over
IP networks and that the same technology can be used to deliver voice or in fact
any mixture of communications media.

There are several aspects of delivering communications media over IP
networks, such as session control and quality of service. SIP (Session Initiation
Protocol) [HSSRO02] is concerned with establishing, adapting and terminating
sessions. Mapping traditional telecommunications onto this framework, a call is
essentially a session.

Call processing is primarily concerned with session control, and hence call
processing policies will influence session control. However, they might range
beyond that and stipulate conditions on call content (such as minimal quality
requirements).

In SIP, users exchange information about call content, required media and
quality upon setup or adaption of a session. Thus, the information required by
call processing policies is available in the SIP message exchange.

We distinguish our work from ongoing work on CPL (Call Processing
Language) [LS00]. CPL essentially allows users to define traditional features in
the SIP environment (although the intention behind CPL was to provide more
than that). We see our work at a higher level, although CPL scripts can be seen
as a subset of call processing policies.

We return to SIP in section 5, when we consider how call processing policies
can be enforced in a communications system.

1.3 Logic and Policies for Call Processing

We consider policies in the context of call processing. In this context we consider
a policy to be a high level statement as to how calls should be processed in
the system. This can be seen as a refinement of Lupu et al.’s definition[LS99]:

information is considered to be high-level statements, and the behaviour of the
system is processing calls.

Our work is novel in that policies have not been considered much for call
processing previously. The notable exception is work by Amer et al. [AKGMO00]
which considers fuzzy policies to resolve feature interactions. Related work
by Buhr et al. [BAET98] considers the use of OPI (Obligations, Permissions,
Interdictions) [BGMO98] to improve scalability in a similar (feature-oriented)
context. However, the work of Amer et al. does not follow this and instead
adapts the techniques developed by Mariott et al. [MMSS94] to handle policies
with associated truth values to express fuzziness.

This related work is distinguished from ours in that the authors allow users
to define preferences as to how their subscribed features behave rather than
lifting the user’s view completely to policies (i.e. away from features) as we
do. In addition policies can express concepts such as presence and availability,
neither of which need necessarily follow a trigger-response pattern, as traditional
features do.

2 Policies for Call Processing

Traditionally features are either subscribed to by the users of the system (user
features) or added as additional system services (e.g. billing, system features).
In contrast, policies are defined by the subjects that desire their enforcement.
This set of subjects contains many entities: users, system providers, enterprises
and roles, as well as agents representing any of these.

In more detail, users are individuals, usually identified with one or more
addresses. An example user is Bob, associated with a phone number, but also
with his email address and his mobile phone number. Enterprises are collections
of users, often with an internal hierarchical structure. An example is a company,
which has a management board and then a number of departments, which in
turn might be subdivided. At each level, policies for call processing could be
in place, applying to members at that level or below. Roles are a different,
orthogonal classification of users. A user might be in a certain department in a
company, but usually each user also plays a number of roles (within and outside
the enterprise). Examples are that Bob is a programmer, but he also provides
technical customer support and is member of the company’s wine club.

Policies can be associated with each of the above subjects, and clearly policies
might be contradictory. Maybe a user does not want to answer calls before 9:30
as he is dealing with mail, but the enterprise structure or his role therein requires
that calls be answered after 9:00 (we return to this later).

2.1 Telephony Examples

Subjects can wish for a wide range of policies. Let us consider some examples in
the domain of telephony (though the application domain is larger):

Ezxample 1. Never forward emergency calls.

This policy would need to be applied network-wide, thus it can be seen to
be a service provider policy. It requires the ability to recognise a call type, here
emergency. Other service provider policies deal with quality of service and other
service guarantees.

FEzample 2. My secretary will handle all my calls.

Considering that a call forwarding feature is by now standard in most
telephone systems, this policy could easily be judged to be a feature. However, we
claim that it is indeed a policy, since secretary as a role allows for independence
from a particular user or physical phone number (as is required by a call
forwarding feature).

Ezample 3. Members of the wine club are available at lunchtime to accept calls
to discuss fine wines.

This policy again considers the concept of role. However, here a person has a
role by being member of the wine club. Further, notions of time and the content
of the call are relevant. In this example the content can be extracted from the
context. If another wine club member rings at lunchtime, it is presumed that
they want to discuss wines. Note that this policy has an element beyond simple
call control, it contains a notion of presence or availability which can be queried
by other users.

Ezxample 4. 1 prefer to speak to Jane or Paul if John is busy.

John might forward all calls to Mary when he is busy, but the policy
holder expresses a particular, different treatment in this case. This example is
interesting in that it does not express an absolute weight (i.e. never or always)
but rather has the fuzzy notion of prefer.

Ezxample 5. If my call is not returned within one hour, send an email reminder
to the callee.

Policies might also relate calls. Note that we consider the action of sending an
email also as a call, thus leaving the territory of plain telephony (and end-to-end
connectivity).

Example 6. Always notify me when an expected visitor arrives at reception.

This example expresses a policy that is to be activated when a certain event
occurs. Again, we could see this in a much wider context than plain telephony —
the reminder could be a telephone message, but equally an alarm going off or a
computer alert could be considered.

Ezxample 7. All callers phoning regarding project X should be connected to the
project web page.

Leaving the territory of traditional telephony allows for interesting behaviour
to be requested. Here a caller is redirected to a web page which hopefully contains
the required information.

2.2 Policies and Features

The examples highlight an important difference between policies and features.
Features can be described as specific, prescriptive and imperative. For policies
the terms generic and declarative are more fitting. This distinction highlights
that features exactly prescribe how a very specific situation is to be handled
(forward my calls to extension 55 when I am busy), whereas policies require an
interpretation: forward calls to my secretary.

Crucially, features leave no space for preferences. Upon subscribing to a
feature the action will always be taken. For example a call forwarding on busy
feature will always forward calls when the user is busy. This means from a user’s
perspective that a feature is either enabled or disabled. It is not possible to
express that the user would prefer the call to be forwarded when busy. Often
when two features interact the only resolution is to disable one, indicating that
one user (at random from a user perspective) does not receive the expected
behaviour. However, assuming the policy version with preference, the user has
expressed that not receiving the expected behaviour would be acceptable, thus
the user would be less unhappy if his preference is not satisfied. The occurrence
of an inconsistency still means that only one user’s expected behaviour can be
satisfied, but the system has additional information to a obtain a resolution that
is most acceptable by the users involved.

3 Towards A Logic for Call Processing Policies

Feature descriptions are usually very imperative: the trigger events and corres-
ponding responses are defined — often by means such as state machines. Due to
the descriptive nature of policies this is not a suitable approach. We consider a
logic approach and refer to the result as a Policy Description Language (PDL).

Such a language or logic must be able to express a large number of concepts to
be usable for call processing policies. On the other hand, limiting the complexity
of the language is an important goal as it must be decidable under realistic time
constraints as well as simple enough for the average user to use.

We propose that simple policies be formulated and then composed to
formulate more complex cases.

3.1 Policy Formulation

A simple policy can be defined by a policy rule. Each policy rule is composed
of four parts: a “policy owner”, a preference, an action block and a condition
block. Note that not every policy rule will have all four of these parts (we can
imagine general policies that do not have a condition block).

The policy owner is a subject. An enterprise policy is owned by the enterprise,
whereas a personal policy is owned by the person that wishes it to be enforced.

We assume a set of preferences, the elements of which should be at least
partially ordered. We can see boundaries with “never” and “always” expressing

the strongest preferences and some form of “don’t care” the weakest. All other
values in the set take a place somewhere in between. Examples of such other
values are “wish”, “may”, “prefer” or “rather not”. Clearly each of these ordered
elements expresses either a positive or negative preference, so a mapping onto
the real numbers from -1 to 1 might be a suitable representation of this set. It
is important to know how strong preferences are in relation to each other, as
the strength needs to be taken into account when resolving conflicts between
policies.

The action block simply contains one or more instructions. These instructions
are typically actions as provided by the target system. In a call processing system
they can be actions such as “forward call”, “originate call” or “contact”. Each
action usually has a number of associated parameters (e.g. “forward call” will
have a target user as parameter), but again those are defined by the target
system.

Conditions can further restrict the applicability of a policy rule. Typical
conditions are equalities or inequalities on parameters associated with the call.
There is a large set of these parameters and we consider them next.

In summary, while the four parts of each policy allow us to define all simple
policies that we might require, the language must be flexible enough to allow
for domain-specific information to be plugged in. That is, the available actions
and condition elements are domain-specific and might need to be replaced if the
domain changes.

3.2 System Parameters for Conditions

To refine the applicability of a policy rule, each rule contains a condition part. We
have said that this considers equalities of many system parameters. The system
parameters applicable in a typical call control system are as follows. Note that
these parameters might apply to the subjects engaged in a call as well as to the
call itself.

— caller (a user or agent on behalf of a user)
We need to be able to consider originator-based conditions.

— callee (any subject)
Similarly, we require destination-based conditions. For this we require
notions of what calling enterprises or multiple users means.

— devices (mobile phone, PDA)
With growing capability differences among communications devices, it
becomes important to be able to distinguish them when considering
preferences.

— call content (email, video, language)
Depending on call content a user might wish different handling, e.g. video
might only be acceptable if a high resolution display is available.

— media (fixed, mobile, high speed)
The media used for data transfer impacts on other aspects, e.g. Quality of
Service (QoS), and so users might have different preferences depending on
the available media.

— call type (emergency, long distance, intra-company, local)
Conditions can be based on the type of call (e.g. see Example 1).
— cost
A user might not be willing to conduct calls above a certain cost threshold.
— quality
With more than plain voice being communicated, quality becomes more
important: users need the possibility to express conditions based on the
quality of the transmitted information.
— topic (wines, project x, weekend plans)
Users might accept calls with a certain topic despite being involved in
another activity and hence not accepting calls — e.g. a user in a project
meeting might accept calls concerning the project but no others.

Note that some of these classes are overlapping, or might have implications
that influence others (e.g. sending video call content via a mobile network will
probably be adverse to quality).

When considering conditions on subjects, the following are important,
especially when availability and presence are considered:

— locations (my office, at customer site)
Depending on the location of a user, different call processing options might
be chosen.

— identity, role(s) (Mary, customer service representative)
Different identities and (more importantly) roles will require distinct call
processing

— interests, capabilities (programming, Java expert)
Users should be able to provide information about their capabilities. This is
very important in call centres, where the caller should be routed to a person
who speaks the right language or is an expert in the field of the query.

It is impractical to require the user to always provide the relevant information
when establishing a call, but this is not necessary. Most of the required
information can be inferred from the context. Roles for example, may be defined
in a company organisation chart, the location can be established from the user’s
diary or mobile home location register. Note that we are not concerned with
privacy issues at this moment.

In addition to the properties of a call or subject, the more global condition
of time is relevant. Time can be relative or absolute (i.e. in one hour or at 8am
every Monday) and is also subject to different time zones. We need to talk about
time spans and might also consider laxer notions of time, such as lunch time or
Easter.

3.3 Policy Composition

Policy rules are relatively simple, but a user might wish to express more complex
situations. This should be possible by combining policy rules. Our work uses a
number of combinators for policy rules as described next.

Sequencing. Sequencing simply applies one rule after the other.

Parallel Composition. Two versions are seen: true parallel composition
where the conditions of the rules are matched before the rules are applied. A
“don’t care about order” sequencing essentially allows the system to identify a
suitable sequence. The former might lead to the two rules giving incompatible
results, which can be handled like any other policy conflict and as such is not
necessarily a disadvantage.

Choice. Choice can be unguarded or guarded. A user might not have a
preference between a number of rules, so any one can be chosen or there might
be extra conditions on each of the rules that must be evaluated first. I prefer
to speak to John or Mary is an example of an unguarded choice. We have two
policies (speak to John and speak to Mary), but the English sentence suggests
an indifference between which is actually chosen. Note that there are at least
two interpretations of this choice: try John and if he is unavailable try Mary, or
try both John and Mary and chose the one who responds first. In any case, if
one of the two is available the user should be connected to them.

Loops. Loops are problematic as they might not terminate, so we will only
allow bounded loops. It could be argued that loops should be avoided, but we
can imagine that a user wishes to have a policy which is best described by a
loop: If the other party is busy, I wish to try again in 30 seconds.

We have shown the structure of a simple policy rule, discussed the elements
thereof, and considered conditions in more detail. We concluded by showing how
policy rules can be combined to build more complex policies.

4 Using an Existing Policy Description Language

In the previous section we have outlined our requirements for a policy description
language. We have considered the essential elements and structure of such
a language. As policies have been used extensively in the context of system
management, some PDLs exist already. We will now consider the applicability
of one such language in the context of call processing.

4.1 Ponder

We consider the Ponder policy description language in some more detail now.
Ponder is being developed at Imperial College (London). Ponder provides a
language for the specification of policies [DDLS01], a framework to deploy Ponder
policies [DLSDO01], and a toolkit to support the policy life-cycle in the context
of the framework [Pon|. Ponder provides 3 types of policies:

1. positive and negative authorisation policies (auth+, auth-)
2. obligation and refrain policies (oblig, refrain)
3. delegation policies (deleg)

(1) expresses whether a subject is allowed or forbidden to apply an action
to a target. (2) describes which actions a subject has to perform/refrain from

performing on a target. (3) allows for a subject to pass its own authorisation
(temporarily) to other subjects.

Authorisation policies are seen to be enforced by the target, delegation and
refrain policies are enforced by the subject. This distinction becomes important
as two different kinds of objects are used to ensure the enforcement of the policies.

The Ponder framework comprises the language and the deployment model.
The semantics of the language is defined by the enforcement model. Thus
while maintaining the syntax, the semantics of the language can be changed
significantly by using a different enforcement model. We consider the impact of
this in more detail in section 4.2.

4.2 Ponder for Call Policies

It is non-trivial to define a mapping between typical call processing policies and
the management policies for which Ponder was essentially created. However, it
would be preferable to use an existing notation rather than develop a new one,
if this is possible.

Before attempting to express the example policies using Ponder, we need to
consider some issues. In Ponder the distinction between subject and target is
significant. However, we will simply say the subject is the entity establishing the
policy, whereas the targets are given by the call(s) and the user(s) involved in
the call. Thus, we have two basic types: <call> and <domain>, where the latter
is a domain description (essentially a graph relating subjects in a hierarchical
fashion) as used by Ponder. <call> is a type for calls. For our purposes a variable
of type call has the following fields (though more can be extracted from the
list of system parameters (see section 3.2): calltype (to denote the type of call,
e.g. emergency), caller and callee (the originator and terminating user of the
call), topic (the subject of the call) and cost (the cost of the call).

We will use authorisation policies for absolute statements such as never or
always. Obligation policies are used for cases when a trigger event exists. Using
Ponder policy types we can define generic policies that can then be specified by
defining instances.

The subject domain hierarchy contains everyone as root and then somewhere
in the domain structure we find elements for mysecretary, self and wineClub,
each of which will have one or more children of the leaf elements such as John
or Mary. Note that self is to be instantiated in such a way that it represents
the entity that established the policy.

Here we will simply show the syntactic formulation of the policies in section
2.1, assuming that the semantic interpretation is the same as for the previous
description of the examples. We return to the semantics aspect afterwards (in
section 4.3). Before describing policies, we briefly introduce the Ponder notation.

The Ponder notation allows the user to define a type for policies which then
can be instantiated with particular values in an inst statement. Both the type
and inst keywords are followed by the policy type (see section 4.1) and an
identifier. Finally parentheses contain the parameters (formal parameters for
the type and actual parameters for inst). Parameters are of the form <type of

parameter> identifier [, identifier], preceded by the optional keywords
subject and target if a parameter represents one of these.

The body of a type contains a do action() statement, where action is some
action as given by the underlying domain. This represents the action to be
executed as a result of a policy application. The when keyword allows one to
phrase conditions. Obligation policies have an extra body part called on which
introduces the event that triggers the policies.

Ponder Code for Example 1
type auth- fwdEmergencyT (subject <domain> s, target <domain> t,
<call> ¢) {
do forward(c,t);
when c.calltype = "emergency"}
inst auth- fwdEmergency (everyone, everyone, c){}

This example is clearly recognisable as a negative authorisation policy and
thus can be implemented in the expected straightforward fashion. It must be
assumed that the subject or target everyone is resolved in such a way that it
applies to any element in the domain. Forwarding is achieved by the forward
function which forwards a call ¢ to a new target t.

Ponder Code for Example 2

type oblig secretaryT (subject <domain> s, target <domain> t, <call> c) {
on incoming();
do forward(c,t);}

inst oblig secretary (self, mysecretary, c){}

The implementation here is slightly more difficult, but this is mainly due to
the fact that the policy in Example 2 does not specify the trigger event. However,
by assuming incoming as trigger event, we might have changed the intention of
the original plain language policy. The user could have wanted this policy to
mean that the secretary does in fact also make outgoing calls in the policy
owner’s name. It is necessary to resolve who will receive the call if mysecretary
is a group of people — possibilities include the first person in the list or the one
who answers first.

Ponder Code for Example 3
type auth+ wineT (subject <domain> s, target <domain> t, <call> c,
<time> t1, t2){
do acceptCall(c,t), available();
when tl1 < time < t2
and c.topic="fine wine"}
inst auth+ wine (wineClub, wineClub, c, 12.00, 13.00)

We allow other members of the wine club to contact us at lunchtime (which
in this particular instance is assumed to be from 12.00 to 13.00, but in general
could be derived from a diary). In addition to just accepting calls we also provide
other members with a query function available() to check whether we are indeed
available to accept a call.

Ponder Code for Example /

type oblig speakToT (subject <domain> s, target <domain> t, ti,
<call> c¢) {
on busy(t)
do forward(c,tl);}
inst oblig speakTo (self, John, (Jane or Paul), c)

Caused by the occurrence of a busy notification from John, we wish the call
to be forwarded to one of Jane or Paul. Note that this might easily interfere
with John’s forwarding preferences. What we are not able to express in the
Ponder language is that we prefer this behaviour rather than allowing it as the
only possibility. A potential solution for this is to provide a new argument to
the policy expressing the preferability and adapting the deployment to take this
into account when conflicts are detected. The language also does not provide
an interpretation as to how the choice between Jane and Paul is made. Possible
options would be the first who answers or a random choice. If neither is available,
the call can always revert to John’s forwarding preference. Again, this must be
resolved in the enforcement model (see section 5).

Ponder Code for Example 5

type oblig noReturnT (subject <domain> s, target <domain> t,
<call> c, <int> p) {
on returnCallActivated(startT)
do email (t,remind);
when returnStillActive(startT+p)}
inst oblig noReturn (self, everyone, c, 60)

When the return call is set up, returnCallActivated(time) is issued, thus
triggering this policy and providing the start time startT. If the call is not
answered and a period p has passed, the action is executed.

Ponder Code for Example 6

type oblig notifyT (subject <domain> s, target <domain> t, <call> c) {
on arrived(t)
do notify(s);}

inst oblig notify (self, visitor, c)

The last two examples are straightforward. Depending on the occurrence of
an event, an obligation to perform an action is created.

Ponder Code for Example 7

type oblig projectXT (subject <domain> s, target <domain> t, <call> c,
<String> topic, wp){
on incoming()
do connectToWebpage(c, wp);
when c.topic = topic}
inst oblig projectX (self, everyone, c, "Project X", "www.projectX.org")

In this policy we have a mixture of media. A caller is not connected to the
expected phone but is instead diverted to a web page if he was ringing with
respect to a project. This policy requires a more flexible interpretation of call
than traditionally thought about. It also requires information about the caller’s
device: if it can display web pages there is no issue, but if it can only produce
audio output a solution such as Text-to-Speech might be required.

4.3 Discussion

From the above examples we can see that Ponder indeed allows us to formulate
the example policies. However, this formulation is often not intuitive, and we
do not think that it could be expected that the average user could perform the
required mapping. Most actions depend heavily on the underlying system, as is
to be expected.

Ponder’s policy types allow policies to be formulated in a generic way and
then to be specialised by instantiations. This is certainly of benefit to the user,
as policy templates can be provided that are then adapted by the user.

Some ideas cannot be readily expressed in the language, and we have pointed
these out. For example, there is no concept of how strongly a user feels about a
policy being respected.

It is often not intuitive what the target and the subject are in call processing
policies. Sometimes we could phrase the policy without clearly identifying either
(e.g. the policy in Example 1 needs only to consider the call as it applies to
everyone). We have shown earlier that we only require to know who owns the
policy. The deployment should then place the policy in a network node that is
always involved in the owner’s calls. This is also the place where the policy will
be enforced. More detail will be given in the next section.

So far we have mainly considered the language, but Ponder comprises
the language, the deployment model (concerned with installing policies in the
enforcement points) and an enforcement model. We have been able to formulate
the English language versions of our policies in Ponder syntax, but we have not
discussed the semantics in detail. The semantic interpretation of the policies is
tightly connected to the enforcement model.

The enforcement model for Ponder was originally defined in the context of
management policies, where a clear distinction between subjects and targets is
possible. Both gain importance when the enforcement of policies is considered:
authorisation policies are enforced by the targets, and obligations by the
subjects. Thus a negative authorisation policy gains the meaning that the target
blocks the prohibited action, whereas an obligation policy means that the subject
will indeed perform the required action when the conditions are met.

The example provided in [DDLS00, p37] considers the patient as target,
showing a case where it is hard to see how the target can actually enforce a
policy (say, a drug treatment). This case is more common in call processing
policies, where a proxy or policy server must enforce the policies rather than the
target user or the call object.

IP Network

SIP
Proxy Sever

Policy Server |:I

Policy Server

Policy Server

«— S|P

[T—— * Non SIP protocol SiP
Proxy Sever

SIP User Agent

Fig. 1. SIP Architecture with Policy Servers

This motivated us to use the classes of obligation and authorisation policies
more loosely, namely authorisation was used for absolute statements, obligation
to describe reactions to trigger events. This is more natural than the original
Ponder interpretation in the context of call processing policies, but does violate
the enforcement model.

We will now outline the deployment and enforcement model for call
processing policies considering a particular call processing mechanism: SIP. The
deployment in other call processing systems is similar and will be discussed in
section 6.

5 Deployment and enforcement in a SIP environment

As we have seen, the ability to formulate policies is one half of the process
of enabling policy-based call processing. The other half consists of embedding
the policies into the telecommunications system in a suitable fashion. For the
purpose of this paper, we considered only how the policies could be enabled
in a SIP environment. Ongoing work is concerned with the deployment and
enforcement of policies in other environments such as a PBX or H.323 [ITU00].

Recall, SIP is a protocol to establish, modify and terminate multimedia call
sessions. The policies that we formulated can influence how these three actions
are actually performed, e.g. a policy might disallow establishing certain sessions.
In order to see how policies can be enforced in a SIP environment it is necessary
to understand the SIP architecture (Figure 1).

The figure highlights the essential components of the SIP architecture.
User agents are essentially SIP-enabled communications devices such as a SIP
telephone, a PDA or a softphone (i.e. a software implementation of a phone).
They can issue and receive SIP commands and thus establish sessions. The
path between two (or more) users is established via a series of proxy servers.
Communication is via the IP protocol. The architecture includes two further
kinds of servers: redirect servers, which essentially redirect incoming calls to a
different SIP address, and location services servers, which can detect the current
location of registered users.

The SIP protocol is based around a textual format similar to HTML. SIP
proxy servers are equipped with SIP CGI [LRS00] which permits new services
to be defined. This interface can be used to intercept messages and make the
required changes to them before passing them back into the network. Clearly, it
can be used to intercept messages and pass them to a policy server for processing.

Our policy server is a new component added to the architecture. It will
usually be co-located with a proxy server. Its purpose is to evaluate the
information in a SIP message, either to make the necessary changes (if the path
is to be changed) or to generate a suitable response (if the call needs to be
blocked). This is then passed back to the proxy server in order to enforce the
policy.

In SIP users can potentially connect directly to their call partners, provided
they know the exact address. It must be ensured that this is not allowed if
policies are to be enforced successfully. The SIP architecture usually provides
users with an outgoing and incoming proxy server, and it is desirable that these
are in fact in the communications path. Similar techniques such as those used for
firewalls can enforce that all communication passes the incoming and outgoing
proxy servers, thus policies can indeed be enforced in these points.

The enforcement model for policies in SIP is based around a policy server
that receives all communicated messages that are relevant. It considers how
they need to be handled in the context of the activated policies. Policy conflicts
are resolved at the policy server. It might be necessary to send some policy
information to the other party’s policy server, which can be done by attaching
it (in a suitable format) to the body of the SIP message. Negotiation between
policy servers is a more advanced option for conflict resolution. When considering
conflict during enforcement, is will usually be necessary to violate some aspects
of a users policies, but it is desirable to minimize such violations.

The deployment model is simply concerned with delivering policies into a
policy repository (associated with the policy server). Several options are possible
here. One is to piggy-back the policy onto a SIP register message and have the
SIP-CGI interface handle the policy upload. However, due to the possibility of
better feedback mechanisms, it would be preferable to have a direct interface
(e.g. web) to the policy server. The user would then go to a web page and
configure his/her policies. This would also allow resolution of conflicts within
one user’s policies by giving the user a chance to adapt the conflicting policies
directly.

6 Summary and Further Work

We have considered call processing policies. Call processing is performed by large
distributed systems and thus seems a natural setting to apply policies. However,
this has not previously been done. A number of telephony policies have been
indicated in the paper.

We have identified the components and constructs that a language or logic for
call processing policies needs to contain. This was done in an abstract fashion,
essentially to enable us to compare the requirements with the functionality
offered by existing PDLs.

The evaluation of the Ponder framework leads to a twofold conclusion.
The Ponder language seems a suitable mechanism to express call processing
policies, despite a number of shortcomings being detected. However, the standard
enforcement model of Ponder is unsuitable for call processing policies.

It must be evaluated whether it is productive to enhance Ponder for our
purposes and develop a new or tailored enforcement model. The benefits of using
the existing compiler and tools are removed, as they are centred on the standard
enforcement model. However, it seems preferable to reuse existing work as much
as possible, rather than providing another new language. Currently we feel that,
based on the described requirements, a new language needs to be developed. We
expect to use an XML schema to structure policies, allowing for the use of a
growing repertoire of XML tools. This will be investigated further.

We are aware that policies can interact, and that these interactions must
be resolved. Policies can interact in two different ways: they might contradict
each other or not. It is the former case that the policy server needs to resolve.
There are two dimensions to interactions. As indicated earlier, policies of the
same user can be statically analysed, whereas a dynamic analysis and resolution
is required for policies of different users, as they might only become aware of
each other when an actual call takes place.

Resolution might mean that some policies need to be violated. In this case
a penalty scheme could enable fairness. Preferences provide a means to satisfy
a user expressing stronger preferences at the cost of a user who is indifferent
(and thus not really losing much). It might prove necessary to experiment with
negotiation schemes to resolve complex cases or gain the best outcome.

Ongoing work is concerned with building a prototype SIP policy server which
will enable us to obtain empirical results. Furthermore, the policy server will
be built in such a way that it is possible to include it in different network
architectures. In particular we also consider inclusion in a PBX or H.323 setting.
The latter uses gatekeepers rather than proxies, but they essentially provide the
same extensibility. Inclusion in PBX products is facilitated by our collaboration
with Mitel, as access to the PBX’s proprietary interface is required.

Acknowledgements

This work has been supported by EPSRC (Engineering and Physical Sciences Research
Council) under grant GR/R31263 and Mitel Networks Corporation. We thank all

people who contributed to the discussion of policies in this context. Particular thanks

are due to Daniel Amyot and Tom Gray (both of Mitel Networks Corporation), and
Prof. Evan Magill and Mario Kolberg (both of Stirling University).

References

[AKGMO00] M. Amer, A. Karmouch, T. Gray, and S. Mankovskii. Feature interaction

[BAET98]

[BGMOYS]

[CMO00)]

[DDLS00]

[DDLSO01]

[DLSDO1]

[HSSRO02]

[ITU00]

[KBYS|

[LRS00]

[LS99]

[LS00]

[MMSS94]

[Pon]

[SD9Y]

resolution using fuzzy policies. In [CM00], pages 94-112, May 2000.

R. J. A. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. Gray, and
S. Mankovski. Feature-interaction visualization and resolution in an agent
environment. In [KB98], pages 135-149, September 1998.

M. Barbuceanu, T. Gray, and S. Mankovski. How to make your agents
fulfil their obligations. Proceedings of the 3rd International Conference on
the Practical Applications of Agents and Multi-Agent Systems (PAAM-98),
1998.

M. Calder and E. Magill, editors. Feature Interactions in Telecommunica-
tions and Software Systems VI. I0S Press (Amsterdam), May 2000.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman. Ponder: A language
specifying security and managements policies for distributed systems.
Imperial College (London) Research Report, 2000.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder policy
specification language. Lecture Notes in Computer Science, 1997:18-39,
2001.

N. Dulay, E. Lupu, M. Sloman, and N. Damianou. A policy deployment
model for the Ponder language. Proceedings of IEEE/IFIP Symposium on
Integrated Network Managament 2001, 2001.

M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Session
initiation protocol. Request for Comments 2543 bis, March 2002.
International Telecommunications Union ITU. ITU-T Recommendation
H.323: Packet Based Multimedia Communications Systems (Version /).
ITU-T, November 2000.

K. Kimbler and L. G. Bouma, editors. Feature Interactions in Telecom-
munications and Software Systems V. 10S Press (Amsterdam), September
1998.

J. Lennox, J. Rosenberg, and H. Schulzrinne. Common gateway interface
for SIP. IETF Internet-Draft, 2000.

E. Lupu and M. Sloman. Conflicts in policy based distributed systems
management. [EEE Transactions on Software Engineering, 25(6), Novem-
ber/December 1999.

J. Lennox and H. Schulzrinne. CPL: A language for user control of internet
telephony services. IETF Internet-Draft, 2000.

D. Mariott, M. Mansouri-Samani, and M. Sloman. Specification of
management policies. Proceedings of the fifth IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management, 1994.
Ponder. A Policy Language for Distributed Systems Management,
http://www-dse.doc.ic.ac.uk/Research/ policies/ponder.html.

M. W. A. Steen and J. Derrick. Formalising ODP enterprise policies.
Proceedings of 3rd International Enterprise Distributed Object Computing
Conference (EDOC ’99), September 1999.

