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ABSTRACT

Recent EU legislation (EC/2065/2001) requires that fish products, of wild and farmed origin, 

must provide consumer information that describes geographical origin and production 

method. The aim of the present study was to establish methods that could reliably 

differentiate between wild and farmed European gilthead sea bream (Sparus aurata).  The 

methods that were chosen were based on chemical and stable isotopic analysis of the readily 

accessible lipid fraction.  

This study examined fatty acid profiles by capillary gas chromatography and the isotopic 

composition of fish oil (δ13C, δ18O), phospholipid choline nitrogen (δ15N) and compound 

specific analysis of fatty acids (δ13C) by isotope ratio mass spectroscopy as parameters that 

could reliably discriminate samples of wild and farmed sea bream. The sample set comprised 

of 15 farmed and 15 wild gilthead sea bream (Sparus aurata), obtained from Greece and 

Spain, respectively.

Discrimination was achieved using fatty acid compositions, with linoleic acid (18:2n-6), 

arachidonic acid (20:4n-6), stearic acid (18:0), vaccenic acid (18:1n-7) and docosapentaenoic 

acid (22:5n-3) providing the highest contributions for discrimination. Principle components 

analysis of the data set highlighted good discrimination between wild and farmed fish. Factor 

1 and factor 2 accounted for >70% of the variation in the data. The variables contributing to 

this discrimination were: the fatty acids 14:0, 16:0, 18:0, 18:1n-9, 18:1n-7, 22:1n-11, 18:2n-6 

and 22:5n-3; δ13C of the fatty acids 16:0, 18:0, 16:1n-7, 18:1n-9, 20:5n-3 and 22:6n-3; Bulk 

oil fraction δ13C; glycerol/choline fraction bulk δ13C; δ15N; % N; % lipid.
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INTRODUCTION

The global demand for finfish and shellfish is increasing in line with the demands of 

increasing global populations. However, the food-grade capture fisheries have reached, or 

exceeded, their sustainable limits and increasingly the shortfall in supply must be met by 

aquaculture produce (1,2). While landings from capture fisheries are static, aquaculture 

production worldwide is increasing at around 10%/annum (2) and for this reason much more 

aquaculture produce is currently available to consumers. Currently, more than 30% of world 

seafood production is derived from aquaculture and this is likely to increase in the future (2).

Within the production chain, similar fish products can arise from different points of origin 

and there is consequently potential for fraud due to product mislabelling. As a result, in 

October 2002, the EC issued Commission regulation no. 2065/2001 to ensure that more 

details on labelling, packaging and traceability of fishery and aquaculture products would be 

available to retailers and consumers. The reason for this additional legislation is to provide 

more and clearer information to retailers and consumers who are currently more aware of the 

food they eat and the consequences of different food production methods on nutritional 

quality and safety. 

A number of recent reports have suggested that farmed salmon may contain higher levels of 

persistent organic contaminants, such as dioxins and PCBs, (3) although the levels were well 

within the accepted range (4). However, there is considerable evidence that suggests the 

benefits of eating fish, particularly oily fish, significantly outweigh any perceived risks (5, 6). 

Highly unsaturated fish oils, and eicosapentaenoic acid (20:5n-3; EPA) in particular, are 

under clinical investigation to determine their therapeutic benefit in immunomodulated 

disease (7-10). However, while the anti-inflammatory effects of EPA are well documented 

the functional activity of docosahexaenoic acid (22:6n-3; DHA) is also vital for normal 

cellular function. DHA is required for the normal growth and development of neural tissue in 

infants and is also essential for maintaining normal brain function in adults (11). The 

importance of DHA is evidenced by the fact that over 20% of the brain dry weight is DHA 

and this is the most abundant fatty acid in neural tissues (12, 13). As well as being linked 

with brain function, DHA deficiencies are also linked to reduced visual acuity, attention 

deficit hyperactivity disorder, cystic fibrosis, unipolar and bipolar depression, aggression and 

dysfunctions of the immune system (4, 14, 15). 
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In addition, the fishmeal and fish oil which have been used by the aquaculture industry as the 

basis of aquafeed formulations for over 30 years have reached limits of sustainable 

production (16) and new sustainable raw materials are now being tested and introduced in 

commercial aquafeeds. However, while the use of plant-derived raw materials can reduce the 

concentrations of organic contaminants in fish (17, 18) the concentrations of beneficial n-3 

highly unsaturated fatty acids (HUFA), particularly EPA and docosahexaenoic acids (22:6n-

3; DHA), are reduced as the cheaper vegetable oils likely to be used do not contain these n-3 

HUFA (19). Thus, farmed fish, cultured on diets containing lower levels of marine-derived 

raw materials, may have different lipid compositions compared with fish from wild capture 

fisheries (20, 21).

The present study examined whether farmed and wild gilthead sea bream (Sparus aurata) 

could be discriminated, in terms of their production origin, using a range of analytical 

measurements that have the potential to discriminate source terms, on flesh samples including 

fatty acid composition, δ13C of individual fatty acids, δ13C and δ18O of total flesh oil and 

δ15N of the choline fraction of phospholipid.

METHODS

Samples

Farmed sea bream from Greece were supplied by Bernard Corrigan Ltd, Glasgow. Samples 

of wild sea bream were caught by gill net in the Bay of Cadiz in Spain and were supplied by 

Prof. Gabriel Mourente of the University of Cadiz. Details of the fish analysed in this survey 

are given in Table 1. 

Sample preparation and extraction of lipids

The compositional and isotopic analyses were performed on the oil fraction obtained from 

sea bream flesh after evisceration using 0.88% KCl, filtration and extraction using 

isohexane:isopropanol (3:2 v/v). The lipid content (% lipid) was determined by the weight of 

oil extracted from a known weight of fish flesh. The flesh oil fraction was used to determine 

stable isotope ratios for 18O/16O and 13C/12C by elemental analyser-pyrolysis-isotope ratio 

mass spectrometry (EA-Py-IRMS) and elemental analyser-combustion-isotope ratio mass 

spectrometry (EA-IRMS (22)), respectively. 15N/14N was determined on a concentrated 
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glycerol/choline fraction by EA-IRMS. The glycerol/choline fraction was prepared by mixing 

2-5g of flesh oil with 50 ml of 1M KOH in ethanol followed by reflux extraction for 2h at 

100oC. After cooling and addition of 25 ml distilled water the solution was acidified to ~pH 1 

by dropwise addition of 37% (w/v) HCl. Twenty ml of distilled water was added to dissolve 

KCl salts and following 4 washes with 25 ml of cyclohexane the aqueous phase was dried by 

rotary evaporation at 50oC. The resulting glycerol/choline was dissolved in 30 ml ethanol, 

filtered and washed with small amounts of ethanol and dried first by rotary evaporation and 

then for 1h at 70oC under vacuum. The sample was further dried under a stream of nitrogen 

for 1h before the weight of the glycerol/choline fraction was determined. A portion of the oil 

fraction was saponified and the free fatty acids transmethylated to produce fatty acid methyl 

esters (FAMEs), which were analysed for fatty acid content by GC and 13C abundance by GC 

combustion IRMS (GC-C-IRMS).

Fatty acid analysis by GC

Fatty acid methyl esters (FAMEs) were prepared from a small quantity (50-100mg) of the 

dried flesh oil by alkali-catalysed transmethylation. Briefly, the oil was placed in a test tube 

with 2 ml of iso-hexane and 0.2 ml of 2M KOH in methanol. After shaking for 2 min the tube 

was centrifuged for 5 min at 1000 x g. One ml of the upper phase was removed and made to 

10 ml with methanol in a volumetric flask. One ml of this diluted solution was mixed with 4 

µl of 200g/ml butylated hydroxytoluene (internal standard) in iso-hexane in a GC vial. The 

sample was then ready for injection on the GC. FAMEs were separated and quantified by gas 

chromatography (GC) in the presence of an internal standard. Separation of fatty acids and 

detection by flame ionisation detection (FID) was developed to quantify the composition of 

FAME in the fish lipid extracts on a percentage weight basis. FAMEs were separated and 

quantified by GC using a Thermo Finnigan Trace 2000 GC (Thermoquest, Hemel 

Hempstead, UK) equipped with a fused silica capillary column (Chrompack CPWAX52CB, 

30 m x 0.32 µm x 0.25mm i.d.; Chrompak, London, UK) using hydrogen as carrier gas 

(2.0ml/min constant flow mode) and detected by FID at 250oC. The GC temperature program 

was: initial temp: 50oC, ramp 1: 40oC/min to 150oC, ramp 2: 2oC/min to 225oC, hold for 5 

mins at 225oC. Cold on column injection was used (1µl of 1mg/ml in iso-hexane). Thirteen 

peaks, identified as contributing to >95% of the FAME weight, were used. These were: 14:0, 

16:0, 16:1, 18:0, 18:1n-7, 18:1n-9, 18:2n-6, 20:1n-9, 20:4n-6, 20:5n-3, 22:1n-11, 22:5n-3 and 

22:6n-3.  The identification was carried out in comparison to a standard solution composed of 
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12 of the above FAME (without 20:4n-6) in equal weights. The standard solution was a 

custom preparation from Supelco Inc., (Bellafonte, PA, USA). 

Bulk IRMS analysis of fish lipid components

Isotope ratios (13C/12C, 18O/16O, 15N/14N) determined by IRMS are expressed on a relative 

scale as the deviation, referred to in delta (δ) units with the notation ‰, parts per thousand or 

per mil with respect to the isotope ratio content of an international standard, Rstd. The primary 

references standards are VSMOW (Vienna – Standard Mean Ocean Water) for δ18O ‰, PDB 

(Pee Dee Belemnite, a calcium carbonate) for δ13C ‰, and Air for δ15N ‰. These 

international standards, or secondary standards calibrated against the primary standards, are 

produced and certified by the International Atomic Energy Agency (IAEA) in Vienna. This δ
notation is routinely used by laboratories working in food and beverage authenticity using 

isotopic measurements by IRMS. The deviation of a measured isotope ratio from the ratio of 

a calibrated standard is given by:

[ ] 10001
R
R‰δ

std
i

i ×




 −=

where Ri = 13C/12C, 18O/16O, or 15N/14N

Fish oil (δ13C and δ18O), glycerol/choline (δ13C and δ15N) and free fatty acids (δ13C), 

produced from the oil fraction were analysed for their isotopic fingerprint.  δ13C and δ15N 

provide information on the diet of the fish and the δ18O affords information on the 

geographical environment of the fish.

δ13C and δ15N determinations

δ13C (‰) and δ15N (‰) were measured separately using an elemental analyser (Carlo Erba 

1500N) coupled to a isotope ratio mass spectrometer (IRMSr; ThermoFinnigan, TracerMAT). 

Samples were weighed into tin capsules (4 × 8 mm; Elemental Microanalysis, Oakhampton, 

UK) and these were dropped automatically into the "hot-zone" of the reactor where they were 

oxidised at a temperature of 1060 °C in a quartz reactor. The combustion gases (CO2, H2O, 

NOx) were swept by a flow of helium carrier gas through a bed of chromium oxide and 

silvered cobalt oxide granules. Nitrogen oxides were reduced to N2 over a bed of reduced 

copper wires, held at 650°C and water vapour was removed by a chemical trap containing 

magnesium perchlorate, and, for nitrogen analysis, CO2 was removed using a carbosorb trap. 
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The combustion gases then passed through a packed GC column filled with Porapak Q to 

separate N2 from CO2. A portion of the effluent was allowed to flow into the ion source of the 

IRMSr. For δ13C determinations, the ratio of the ions at mass to charge ratio (m/z) 45 

(13C16O16O) to the ions at m/z 44 (12C16O16O) in CO2 was determined (including correction 

for the contribution of 17O at m/z 45; the Craig correction (23)) by comparison with a 

calibrated reference of known δ13C value. The working standard used was menhaden oil 

(δ13C = -24.96‰; Sigma-Aldrich, Poole, UK) which was span-calibrated against international 

reference materials IAEA CH6 and CH7 (24). 

For δ15N determinations the ratio of the ions at m/z 29 (15N14N) to the ions at m/z 28 (14N14N) 

in N2 was determined by comparison with a calibrated reference of known δ15N value. The 

working standard used was ammonium sulphate (δ15N = -0.86‰; BDH, UK) which had been 

span calibrated against the international reference materials IAEA N1 and N2 (24).  The 

nitrogen content of the sample (% nitrogen) was determined by weighing the samples when 

dispensed into tin capsules and relating the absolute amount of nitrogen (calculated from the 

nitrogen peak area relative to the ammonium sulphate standard of known nitrogen content) to 

the amount of sample.  

δ18O IRMS determinations

Samples were weighed into silver capsules (4 × 6 mm; Elemental Microanalysis, 

Okehampton, UK) and these are dropped automatically into the "hot-zone" of the reactor 

where they were pyrolysed at a temperature of 1080 °C in a quartz reactor (Carlo Erba, 

1500N). The pyrolysis gases (CO, H2, N2) were swept by a flow of helium carrier gas through 

a bed of nickelised carbon grit (50% nickel). The pyrolysis gases then passed through a 

carbosorb/magnesium perchlorate trap to remove traces of CO2 and water respectively and 

thereafter through a packed 50cm x 6mm ID GC column filled with molecular sieves of 5 Å 

held at 30oC to separate H2, N2, and CO. A portion of the effluent was allowed to flow into 

the ion source of the IRMSr (ThermoFinnigan, TracerMAT) and the 18O/16O ratio of CO was 

used to determine δ18O.  N2 was clearly resolved from CO.

The ratio of the ions at m/z 30 (12C18O) to the ions at m/z 28 (12C16O) was determined by 

comparison with a calibrated working standard (menhaden oil, δ18O 16.85‰ vs. VSMOW) 

which had been calibrated against a secondary international standard (IAEA CH6, δ18O 36.4 

Page 7 of 31



For Peer Review

8

vs. VSMOW). Preliminary work revealed a strong matrix specific effect which resulted in 

drift of the measured δ18O values throughout the analytical cycle, which was not apparent and 

could not be easily corrected for when using a carbohydrate standard (glucose δ18O, 29.32 ‰ 

vs. VSMOW). The use of a matrix standard allowed correction for this drift in addition to the 

normal drift correction, specific to the IRMSr. Samples were drift and linearity corrected 

against laboratory standards that were interspersed throughout the analytical cycle (25).

δ13C (‰) GC-C-IRMS determinations of individual fatty acids 

FAMEs were analysed by GC-C-IRMS to derive δ13C of the free fatty acids. Briefly, this 

technique uses gas chromatography to separate individual analytes in a continuous stream of 

helium which passes through a combustion interface (to convert all analyte carbon to CO2) 

and subsequent analysis of ions m/z 44, 45 and 46 in an IRMSr. Samples were analysed on an 

Isochrom III GC-C-IRMS system (GV Instruments, Manchester, UK). Briefly, the instrument 

consisted of an Agilent 6890 gas chromatograph coupled to an isotope ratio mass 

spectrometer, through a combustion interface. The gas chromatograph was operated in 

splitless injection mode and was installed with a capilliary column (Zebron ZB-Wax, 30m × 

0.32 ID 0.25 µm; Phenomenex, UK) to effect analyte separation. The injector temperature 

was 250°C and the carrier gas (helium) was controlled to maintain a constant column flow of 

2 ml/min. The GC operating conditions were as follows: initial temperature of 80°C held for 

4 mins, ramp 7.5°C/min to 150°C, ramp 2°C/min to 225°C, hold 5 min. The column flow was 

directed to a FID, via the heart-split valve (a pressure balanced microneedle valve for 

directing column flow to either FID or IRMS), until the bulk of the solvent peak had eluted. 

The heart-split valve was closed to direct the column flow through the combustion interface, 

held at 350°C, and through the combustion furnace. The combustion furnace was made of 

similar materials as the oxidative furnace for bulk 13C analysis but of 0.5mm bore. It was held 

at 800°C. Downstream from the combustion furnace was the open split, where a portion of 

the gas stream was allowed to enter the IRMSr capilliary. A cryogenic trap was operated (-

100°C, liquid N2), between the open split and the IRMS, to remove water from the carrier 

stream. The IRMS continuously monitored ions of m/z 44, 45 and 46 and the proprietary 

software (Isochrom, GV instruments, UK) was used to integrate the major and minor peak 

areas with appropriate corrections for background and isotopic shift. 

An internal standard (pentadecanoic acid (C15:0); Sigma-Aldrich, Poole, Dorest) was used as 

both chemical and isotopic standard. A portion of the standard was derivatised using acid 

Page 8 of 31



For Peer Review

9

catalysed transmethylation and the free fatty acid (FFA) and FAME form were analysed by 

bulk EA-IRMS (Costech EA - ThermoFinnigan, Delta XP) to determine δ13C and from the 

data, δ13C of the methyl carbon added by derivatisation by mass balance. Span calibration 

(24) against the international standards IAEA CH6 and IAEA CH7 resulted in δ13C FFA = -

34.3 ‰ and δ13C FAME = -34.94 ‰ producing a derived δ13C = -44.53 ‰ for methanol used 

in derivatisation. The methanol used for this calibration was also the same methanol used in 

all transmethylation reactions. 10 µL of 20 mM internal standard in isooctane were added to 

each 100 µL of sample and samples were diluted to attain 1mg FAME/mL solvent. 0.5 µL of 

analyte mix was injected, equivalent to 200 pmoles of C15:0 on column. Over a mean area 

ratio range of sample to internal standard of 1.1 - 0.4 (max 1.62, min 0.22), a precision of 0.3 

‰ was attained (n=12). Over the area ratio range 0.3 – 0.1 (max 0.4, min 0.1), a precision of 

1.2 ‰ was attained. In practice, peaks with an area ratio of < 0.2 were not reliably 

quantifiable in terms of peak area and therefore in terms of isotopic composition. Samples 

were linearity corrected as previously described (25).

Statistical analysis: Parameters were analysed by ANOVA with post-hoc analysis to 

determine parameters of significant difference between wild and farmed sea bream. Principal 

Components was conducted using the XLSTAT add-in for Microsoft Excel (Addinsoft 

France, Paris, France) .

RESULTS

Wild sea bream had a significantly lower lipid content than farmed sea bream (p< 0.01) with 

a concomitant higher nitrogen content in wild sea bream compared with farmed sea bream 

(p<0.01). A bivariate plot of the compositional data yielded discrimination simply on lipid 

and nitrogen content (Figure 1). In terms of the fatty acid profiles, farmed sea bream 

contained significantly more 14:0, 16:1n-7, 20:1n-9, 22:1n-11, 18:2n-6, 20:5n-3 and 22:6n-3 

but significantly less 16:0, 18:0, 18:1n-9, 18:1n-7 and 20:4n-6 compared with wild sea bream 

(Table 2). Wild sea bream contained significantly higher levels of 20:4n-6 and significantly 

lower levels of 18:2n-6 compared with their farmed counterparts. In addition, the wild fish 

contained higher 16:0 and 18:1n-9. The isotopic data showed that free fatty acid δ13C 

exhibited significant differences in δ13C values in 16:0, 18:0, 16:1n-7, 18:1n-9 and 18:1n-7 

between farmed and wild sea bream (Figure 2).  Bulk δ13C analysis of the total oil fraction 

(Figure 3) and glycerol/choline fraction (Figure 4) yielded highly significant differences 
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with farmed fish lighter than wild fish. Significant differences were also observed in the 

nitrogen content (Figure 5) and δ15N (Figure 6) of farmed versus wild sea bream. Analysis 

of δ18O from total oil extracted from flesh lipid of sea bream exhibited significant differences 

between farmed and wild sea bream (Figure 7). 

Principal Components Analysis (PCA) was used to examine the multivariate structure of the 

bream data set. Table 3 demonstrates that the first two factors account for over 70% of the 

variability within the data, with Table 4 indicating the contribution of the variables to the 

selected factors. Plots of Factor 1 vs. Factors 2, 3 & 4 all demonstrate clear separation of wild 

and farmed bream with factor 1 providing greatest discrimination (Figure 8).

DISCUSSION

Recent EU legislation has dictated that the production origin of food must be clearly and 

verifiably defined for the consumer. The increase in aquaculture production to meet 

consumer demand for finfish has resulted in a number of farmed species entering the 

marketplace in the last decade. This includes gilthead sea bream (Sparus aurata). Gilthead 

sea bream were first cultured in Italy in 1970. Production has grown steadily over the past 

two decades with 2004 production reaching 91,000 metric tonnes with Greece, Turkey and 

Spain being the major producers (2). The temptation to label farmed fish as wild fish by 

unscrupulous fish merchants, retailers and restauranteurs is significant because of the price 

premium commanded by wild fish. In order to combat such mislabelling and conform with 

the legislation, verifiable methods of distinguishing farmed from wild fish are required for 

consumer confidence and for local authority enforcement purposes. This study establishes the 

utility of chemical and isotopic fingerprinting as robust methodologies for distinguishing the 

production origin of gilthead seam bream (Sparus aurata).

Analysis of the fatty acid composition showed marked differences in the lipid profiles and 

lipid content of the fish. Farmed fish contained significantly more lipid (~5 fold more lipid) 

as a fraction of flesh composition. This may partly be due to the larger average weight of the 

farmed bream, although, while larger fish generally accumulate more flesh lipid it is also the 

case that wild fish are generally leaner than their farmed counterparts (26, 27). Farmed fish 

also exhibited a lower nitrogen content compared with wild fish. The lower nitrogen content 

cannot be simply explained by the dilution effect of higher lipid content and probably reflects 
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a lower phosphatidylcholine:triacylglycerol ratio in farmed fish and a higher protein content 

of wild fish due to greater muscle mass.  The fatty acid composition reflected the dietary 

sources of, particularly polyunsaturated fatty acids. The n-3/n-6 ratio was higher for wild fish 

compared with farmed fish (4.0 (0.4) vs 3.4 (0.1)) although there were marked differences in 

the n-3 and n-6 profiles between production origin reflecting dietary intake of plant-derived 

18:2n-6 and marine fish oil-derived 22:6n-3 in farmed fish and marine derived 20:4n-6 in 

wild fish. The commercial diet formulations for sea bream utilise a range of marine and 

terrestrial products. The terrestrial products can include soybean, wheat, maize, sunflower, 

pea, lupin and rapeseed meals which can contain a significant lipid component (28). The 

plant lipid, either from the plant meals described above or added directly as vegetable oil, 

explains the higher levels of 18:2n-6 in the farmed bream flesh compared to wild fish (29). 

Wild fish also contained higher 16:0, 18:1n-9 and 20:4n-6 and evidence suggests that bream 

that tend to feed in inshore and estuarine waters often have fatty acid compositions that 

reflect the dietary fauna from those areas, whereas aquafeeds contain fish products obtained 

from the open oceans, which are quite different in their fatty acid compositions (30, 31).

Bulk δ13C analysis of the total oil fraction and glycerol/choline fraction yielded highly 

significant differences with farmed fish isotopically lighter than wild fish reflecting the 

lighter 13C content of farmed fish diets, probably containing significant terrestrial carbon 

input from vegetable meals and oils, as also evidenced by their fatty acid compositions as

described above. Marine fish diets are isotopically heavier due to the source of carbon 

(dissolved inorganic carbon pool, δ13C ~ 0‰) used by macroalgae and phytoplankton, which 

form the lower trophic levels of the marine food web, compared with terrestrial 

photosynthesis from atmospheric CO2 (δ13C ~ -7.8‰). Furthermore, marine vertebrates, 

through their trophic sequestration of zooplankton and crustacea, further enrich the isotopic 

signature to produce heavier δ13C values. The source of dietary lipids in farmed feed reflects 

a significant terrestrial signature of plant oils and appears largely to be of C3 origin, the 

photosynthetic pathway used by temperate plants, such as cereals likely to be used in 

aquaculture feeds (32).

The compound specific data highlight differences in the carbon isotope signatures of the 

major fatty acids between wild and farmed species. Whatever the route to C16:0 in wild fish, 

dietary or de novo synthesis, the source will be heavier than farmed fish, which will have a 
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significant dietary input of C16:0 from terrestrial plant origin. The de-saturation of the major 

saturated fatty acids appears to reflect dietary origin of the saturated fatty acid. Significant 

differences were observed with the most abundant fatty acids probably reflecting the 

increased precision of analysis of the major analytes. Lower abundance analytes have poorer 

precision of analysis because they suffer to a greater proportion from baseline perturbations 

and present less CO2 to the ion source, which has a significant effect on precision. The choice 

of the internal standard method for quantitation ensured that accuracy was maintained 

(against an externally calibrated isotopic standard) and furthermore allowed the quantitation 

of analyte concentration because of the excellent area ratio response of the IRMSr to CO2

concentration (33). This approach would not have been possible using the reference gas 

configuration, as is commonly used in GC-C-IRMS, and thus the analysis of compound 

specific fatty acid analysis also yields the fatty acid composition of the sample. Further 

analysis allows accurate reconstruction of the bulk δ13C value using mass balance equations 

(data not shown). Thus, the utility of compound specific analysis is clear, yielding fatty acid 

composition, individual fatty acid δ13C and bulk δ13C. 

The expectation that wild fish are isotopically heavier than their farmed counterparts was 

observed in δ15N. This heavier signal reflects the higher trophic level of wild sea bream 

within marine food webs and, for farmed fish, δ15N reflects probably significant input of 

plant protein from terrestrial sources that are commonly included in aquafeed formulations 

(28). However, extrapolating these observations across species should be undertaken with 

care because δ15N may be influenced by other factors including, maturity or growth rate, 

seasonal variations in δ15N in coastal marine environments and possible spoilage of the fish 

sample between collection and analysis. The sample fractions processed for choline analysis 

did no undergo a thorough 'clean-up' and may as a result be prone to contamination by 

spoilage amines of varying 15N natural abundance.  The differences observed between farmed 

and wild sea bream δ18O may reflect the latitudinal differences in mean ocean δ18O, which 

will be in isotopic equilibrium with fish metabolic water and therefore may discriminate 

between fish caught in different geographical locations. This may have influenced the values 

in sea bream in the present study where farmed bream were from the Mediterranean while 

wild bream were from the Atlantic. Furthermore, although the geographical location of 

farmed fish is controlled, wild fish may migrate over large geographical regions, over the 
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course of their life cycles, and the utility of using δ18O as a discriminatory factor between 

farmed and wild fish across species must be carefully considered. 

These analytical methodologies provide the basis for discriminating between wild and farmed 

fish and have the potential to be used across species, particularly the isotopic fingerprinting 

of individual fatty acids. The decreasing stocks of marine derived feedstuffs for the 

aquaculture industry entails that there will be an ever increasing terrestrial δ13C input to 

farmed fish diets, providing greater isotopic discrimination. As the industry strives to deliver 

a farmed product that reflects the wild product, sources and blends of terrestrial plants may be 

produced that mimic the fatty acid composition of wild fish more closely although the 

isotopic signature would still provide firm discriminatory evidence. The utility of nitrogen 

and oxygen isotopes, whilst useful, may be complicated by maturity, growth rate and regional 

variations in fish. The application of compound specific isotope analysis appears to provide 

robust and confirmatory data which may be used in addition to, or in place of, simple fatty 

acid composition analysis. However, it is noteworthy that the present study is based on a 

relatively small sample set and future studies should seek to assess the usefulness of the 

described methods on fish samples derived from different species and geographical locations, 

from both the farmed and wild production sectors.
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TABLES AND FIGURE LEGENDS

Table 1. Source and average weight gilthead sea bream.

Species Source Country of origin Average weight 

(g)

Farmed sea bream Bernard Corrigan Ltd1 Greece 545 g

Wild sea bream University of Cadiz1 Spain 192 g
1Bernard Corrigan Ltd., Glasgow (Fish Wholesaler) www.bernardcorrigan.com . 2Prof. 

Gabriel Mourente, Dept. de Biologia, University of Cadiz, caught by gill netting in the Bay of 

Cadiz.
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Table 2. Selected fatty acid compositions (weight % of total fatty acids) of 

farmed and wild gilthead sea bream flesh.

Fatty acid             Farmed                          Wild                         P value

_____________________________________________________________________

14:0                     5.5 ± 0.1                      2.7 ± 0.3                    <0.0001

16:0                   17.4 ± 0.2                    24.9 ± 0.7                    <0.0001

18:0                     3.2 ± 0.2                      8.4 ± 0.3                    <0.0001

16:1n-7                8.3 ± 0.1                     7.7 ± 0.6                      0.0007             

18:1n-9              18.8 ± 0.6                   25.3 ± 3.0                    <0.0001

18:1n-7                3.2 ± 0.1                     3.5 ± 0.3                       0.001

20:1n-9                2.8 ± 0.1                     1.1 ± 0.1                    <0.0001

22:1n-11              2.6 ± 0.1                     0.2 ± 0.1                    <0.0001

18:2n-6                8.0 ± 0.0                     1.0 ± 0.2                    <0.0001

20:4n-6                0.8 ± 0.0                     4.3 ± 1.0                    <0.0001

20:5n-3                9.4 ± 0.1                     6.5 ± 1.1                    <0.0001

22:5n-3                4.2 ± 0.1                     4.0 ± 0.7                         NS

22:6n-3              15.9 ± 0.4                   10.3 ± 1.5                    <0.0001

_____________________________________________________________________

Values are mean ± SD, n = 15. NS = not significant (P > 0.05) as determined by Student’s t-

test (2 tailed, paired samples). 
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Table 3. Table of Eigenvalues for Principle Components Analysis (PCA) of chemical and 

isotopic data from sea bream.

Eigenvalue

Variability 

(%)

Cumulative 

Eigenvalue

Cumulative 

%

F1 15.63 55.84 15.63 55.84

F2 5.21 18.60 20.84 74.44

F3 1.81 6.45 22.65 80.89

F4 1.23 4.38 23.88 85.27

F5 0.99 3.52 24.86 88.79

F6 0.92 3.28 25.78 92.07

F7 0.49 1.76 26.27 93.84
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Table 4. Factor loadings for bream PCA – bold type indicates loadings > 0.7

Variable F1 F2

14:0 -0.946 0.149

16:0 0.914 -0.337

18:0 0.955 -0.260

18:1n-9 0.705 -0.665

18:1n-7 0.805 0.079

22:1n-11 -0.969 0.229

18:2n-6 -0.925 0.340

22:5n-3 0.347 0.797

16:0 δ13C 0.923 0.315

18:0 δ13C 0.826 0.401

16:1n-7 δ13C 0.966 0.163

18:1n-9 δ13C 0.867 0.360

20:5n-3 δ13C 0.227 0.796

22:6n-3 δ13C 0.300 0.804

Bulk δ13C 0.931 0.240

G/C bulk δ13C 0.982 0.019

δ15N 0.706 -0.396

% N 0.949 -0.049

% lipid -0.964 0.125
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Figure 1. Bivariate plot of mean (and standard deviation) lipid versus nitrogen (choline) 

content of wild and framed sea bream.

Figure 2.  Compound specific δ13C analysis of fatty acids from farmed and wild sea 

bream determined by GC-C-IRMS of flesh lipid. 

Figure 3. δ13C of the bulk oil fraction from total lipid extracted from flesh of wild and 

farmed sea bream determined by EA-IRMS.

Figure 4. δ13C of glycerol/choline concentrated from flesh lipid extract in wild and 

farmed sea bream determined by EA-IRMS.

Figure 5. Percentage nitrogen (% N) determined by weight from N analysis of the 

concentrated glycerol/choline fraction of wild and farmed sea bream by EA-IRMS.

Figure 6. δ15N of the glycerol/choline fraction concentrated from flesh lipid extract of 

wild and farmed sea bream determined by EA-IRMS.

Figure 7. δ18O of total lipid extract from flesh of wild and farmed sea bream determined 

by EA-pyrolysis-IRMS.

Figure 8. Principle component analysis (PCA) plot of combined chemical and isotopic 

data measured from farmed and wild sea bream. Factor 1 and factor 2 combined account for 

74.4% of the variation between data sets and afford discrimination of production origin.
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