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Abstract 

 

Previously, we had shown that altering the highly unsaturated fatty acid(HUFA)/vitamin E 

ratios in sea bream (Sparus aurata) livers significantly affected their peroxidation status, with 

fish fed the diet rich in HUFA and low in vitamin E showing significantly higher values of 

lipid peroxidation products, without, however, significant effects on liver antioxidant defence 

enzyme activities.  The aim of the present trial was to further characterise the biochemical 

indicators of peroxidative stress in juvenile sea bream.  A high pro-oxidative stress was 

induced by feeding diets containing around 7% of the dry weight as n-3HUFA.  The potential 

peroxidative stress was increased by oxidising the oil, increasing the peroxide value of the oil 

some 10-fold. These oils were fed without or with supplemental vitamin E (α-tocopherol 

acetate at 200 mg.kg-1 dry diet) giving four diets in total.  Fish were sampled after 30 and 60 

days of feeding the experimental diets.  None of the diets had any serious deleterious effects 

on growth and mortality of the fish during the trial.  Similarly, there were few significant 

effects due to dietary oxidised oil or supplementary vitamin E on liver lipid and fatty acid 

profiles of livers and, in particular, the proportions of HUFA were not decreased by dietary 

oxidised oil. The vitamin E content of the liver reflected the vitamin E contents of the diets 

but was also affected by dietary oxidised oil being reduced by oxidised oil in fish fed diets 

without supplemental vitamin E but, unexpectedly, increased by oxidised oil in fish fed diets 

supplemented with vitamin E. Liver TBARS levels were significantly lower in fish fed diets 

supplemented with vitamin E whereas dietary oxidised oil had no major effects on lipid 

peroxidation products. Catalase and superoxide dismutase activities were both increased in 

fish fed dietary oxidised oil and reduced by supplementary vitamin E after 30 days feeding. 

In contrast glutathione peroxidase was less affected by the diets, and the activities of 

glutathione-S-transferase and glutathione reductase were only reduced by dietary vitamin E 

after 60 days of feeding. However, all the enzyme activities were significantly affected by the 

duration of feeding, but the number of interactions between the three factors (time, oil and 

vitamin E) showed that the relationships were complicated.  In conclusion, the present study 

showed that feeding diets containing oxidized oil significantly affected the activities of liver 

antioxidant defence enzymes and that dietary vitamin E partially abrogated these effects.  

Growth and survival of the fish were relatively unaffected suggesting that the responses in 

sea bream offered effective protection.   However,  the duration of feeding the diets of high 

pro-oxidative stress was observed to have a hitherto unknown effect, possibly the result of an 

adaptive process, but which requires further investigation. 
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Introduction 

 

 Lipid peroxidation, specifically polyunsaturated fatty acid (PUFA) oxidation is highly 

deleterious, resulting in damage to cellular biomembranes as a consequence of oxidative 

deterioration of membrane lipids (Kanazawa, 1991;1993). In fish, in vivo lipid peroxidation 

caused by oxygen radicals is a principal cause of several diseases (Kawatsu, 1969; Sakai et 

al., 1989; 1998; Watanabe et al., 1970; Murai and Andrews, 1974). Tissue lipid PUFA 

content and unsaturation index are critical factors in lipid peroxidation (Porter et al., 1995), 

and as marine fish tissues contain large quantities of n-3 highly unsaturated fatty acids 

(HUFA) (Sargent et al., 1999), there is a high risk of peroxidative attack and damage. Marine 

fish must obtain preformed HUFA in their diet as they are unable to synthesise HUFA 

themselves due to deficiencies in the desaturation and elongation pathway necessary for their 

biosynthesis (Sargent et al., 1999). Therefore, HUFA are, on one hand, essential for optimal 

growth and development of marine fish, but they also impose a significant peroxidation 

burden. 

 All animals have sysyems to combat in vivo oxidation and thus maintain health and 

prevent oxidation-induced lesions (Jacob, 1995). In consequence, the health of aquatic 

organisms is linked to overproduction of reactive oxygen species and antioxidants protect cell 

membranes against the production of free radicals. Thus, normal metabolism depends upon 

the ratio of free radical production and the activity of lipid peroxidation protection factors. 

These systems include various antioxidant compounds, principal among them being the 

dietary micronutrient tocopherol (vitamin E) which serves as a radical sink and antioxidant 

defence enzymes (Burton, 1990; Buettner, 1993). The enzymes include radical scavenging 

enzymes such as catalase and superoxide dismutase (SOD) acting on hydrogen peroxide 

(H2O2) and superoxide (O2
-.), respectively, and glutathione peroxidase (GPX) which  

scavanges H2O2 and lipid hydroperoxides (Winston and Di Giulio, 1991; Halliwell and 

Gutteridge, 1996). Associated enzymes include glutathione reductase (GR) which acts to 

maintain levels of reduced glutathione, and glutathione-S-transferase (GST) some 

isoenzymes of which may metabolize lipid hydroperoxides (Halliwell and Gutteridge, 1996; 

Martinez-Lara et al., 1996).  

 The overall objective of the present study was the characterization of antioxidant 

systems in a cultured juvenile marine fish, gilthead sea bream (Sparus aurata), of commercial 

importance in Europe. Our previous work (Mourente et al., 2000) indicated that feeding diets 

with graded PUFA/vitamin E ratios resulted in graded degrees of peroxidative stress as 
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evidenced by the leveles of lipid peroxidation products measured in juvenile sea bream, but 

the responses of the liver antioxidant defence enzyme activities were only moderate. The 

specific aim of the present trial was to induce a more stressful pro-oxidant status to enable 

further characterisation of the biochemical indicators of peroxidative stress without causing 

unneccessary suffering or high mortalities during the trials. Thus, the level of HUFA was 

increased in the present trial by increasing the content of the diet and by using an oil with a 

much higher n-3HUFA level (a high quality anchovy oil concentrate). To further increase the 

potential peroxidative stress, oxidised oil, with a 10-fold higher peroxide value was also used. 

Therefore, the dietary trial principally had a factorial two design (oxidised (X) v. unoxidised 

oil and ± vitamin E) giving four diets, HO, HE, HXO and HXE.  However, fish were sampled 

after 30 and 60 days of feeding the experimental diets adding a third factor, time.  The effects 

of dietary oxidised oil, with or without a dietary vitamin E, on survival and growth 

parameters of the sea bream were determined as well as effects on liver vitamin E, lipid and 

fatty acid contents and compositions.  In addition, the effects of dietary oxidised oil and 

vitamin E on the activities of the hepatic antioxidant defence enzymes, and liver lipid 

peroxidation products, including malondialdehyde, measured as thiobarbituric acid reactive 

substances (TBARS), and isoprostanes, were determined. 

 

Materials and methods 

 

Experimental diets 

 

The experimental diets were based on a modified commercial extruded formulation utilizing 

fishmeal as protein source (Table 1) and having a proximate composition as shown in Table 

2.  Mineral and vitamin premixes, vitamin E-stripped anchovy oil concentrate (both oxidised 

and unoxidised) and vitamin E (tocopheryl acetate) were prepared and supplied by the Lipid 

Nutrition Group, Institute of Aquaculture, University of Stirling and the diets were 

manufactured by a commercial feed producer (Ewos Ltd., Livingston, Scotland). Vitamin E 

was removed from the anchovy oil concentrate by charcoal absorption and half of the oil was 

pre-oxidised by heating at 50 oC with vigorous aeration for 24 h, with the degree of oxidation 

monitored by determination of the peroxide value at 8 h intervals. Four diets of two pellet 

sizes (500 and 1500 µm, respectively) were produced. The lipid contents, PUFA and vitamin 

E levels, peroxide values and the fatty acid content of the diets as g fatty acid per Kg of dry 

diet of the diets are shown in Table 2.  
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Experimental fish and dietary trial conditions 

 

Sea bream from the same batch, completely weaned, with a functional swimbladder, were 

obtained from CUPIMAR S. A. (Cadiz, Andalucia, Spain). After acclimatisation to the 

experimental diet and conditions in the aquarium facilities of the University of Cadiz, Cadiz, 

for two weeks, the 80 days post-hatch fish with a live mass of 1.52 ± 0.21 g were randomly 

stocked at an initial density of 5 fish/l into rectangular tanks of 100 l each. Each diet was fed 

to triplicate tanks. The ration varied from 4% to 3% of the biomass/day between the 

beginning and end of the experiment and was offered to fish 6 times during the daylight 

hours by hand. The experiment was established at a terminated after 1200 days-degree (60 

days) with a final sampling after an intermediate sampling at the mid-point, 600 days-degree 

(30 days). The tanks were in an open system continuously supplied with running borehole 

water of 39 ppt salinity at a temperature of 19.4 ± 0.2oC. Light was natural photoperiod 

conditions. The water was treated with biological filters to eliminate ammonia by nitrification 

processes. Water samples were assayed weekly after filtration through a 0.45 µm membrane 

prior to analysis. Water quality (NH3/NH4
+, NO2

-, NO3
-) variables in the rearing tanks were 

determined with a Technicon Traacs 800 Autoanalyser and water maintained to sea water 

quality criteria (1 µg/l NH3-N maximum). Oxygen was supplied by aeration with the 

minimum level observed during trials being 5.6 mg/l or 77.8% saturation. Water renewal was 

set at 10 times total volume per day (0.7 l.min-1).  

 

Sample collection and biometric determinations 

 

There were three sampling points, at the beginning (initial), mid-point (day 30) and final end- 

point of the experiment (day 60). The fish were sampled after 24 h starvation to avoid 

interference of gut contents in the analysis. All measurements and determinations were 

performed in triplicate. Length was measured, and live mass/dry mass ratios determined for 

both whole fish and liver. Live masses were determined by blotting fish and liver on filter 

paper before weighing, and dry mass was determined after heating in an oven at 60oC for 24 

h and cooling in vacuo before weighing. Hepatosomatic index (HSI) was calculated and 

growth assessed by measuring the specific growth rate (SGR) as %weight gain·day-1 

(Wootten, 1990). Mortality was measured at the end of the experiment and expressed as 

percentage of fish surviving. 

 Three samples of liver per treatment were collected for lipid and fatty acid analysis, 

vitamin E content,  lipid peroxidation status (lipid oxidation products, TBARS and 
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isoprostane) and liver antioxidant defence enzyme activities. Each sample consisted of the 

pooled livers from ten fish to provide enough material for all the required analyses. The diets 

and dissected livers were immediately frozen in liquid nitrogen and stored at –70oC before 

analysis. 

 

Gross composition, total lipid extraction, lipid class separation and quantification 

 

Protein content was determined by the Folin-phenol reagent method, according to Lowry et 

al. (1951). Total lipid contents were determined gravimetrically after extraction as described 

below. Carbohydrate contents were determined by a colorimetric method using the phenol-

sulphuric acid reagent (Dubois et al., 1956). Ash contents were measured gravimetrically 

after total combustion in a furnace at 550oC. 

 Total lipid was extracted after homogenisation in chloroform/methanol (2:1, v/v) 

containing 0.01% butylated hydroxytoluene (BHT) as antioxidant, basically according to 

Folch et al. (1957). Lipid classes were separated by high-performance thin-layer 

chromatography (HPTLC) on silica gel 60 plates, using the single-dimension double-

development method described previously (Tocher and Harvie, 1988; Olsen and Henderson, 

1989). The classes were quantified by charring (Fewster et al., 1969) followed by calibrated 

densitometry using a Shimadzu CS-9001PC dual-wavelength flying spot scanner (Olsen and 

Henderson, 1989). 

 

Total lipid fatty acid analyses 

 

Fatty acid methyl esters (FAME) from total lipids were prepared by acid-catalysed 

transmethylation for 16 h at 50oC, using tricosanoic acid (23:0) as internal standard (Christie, 

1989). FAME were extracted and purified as described previously (Tocher and Harvie, 1988) 

and were separated in a Hewlett-Packard 5890A Series II gas chromatograph equipped with a 

chemically bonded (PEG) Supelcowax-10 fused silica wall coated capillary column (30 m x 

0.32 mm i. d., Supelco Inc., Bellefonte, USA), "on column" injection system and flame 

ionisation detection. Hydrogen was used as the carrier gas with an oven thermal gradient 

from an initial 50ºC to 180oC at 25ºC/min and then to a final temperature of 235oC at 3ºC/min 

with the final temperature maintained for 10 min. Individual FAME were identified by 

comparison with known standards and quantified by means of a direct-linked PC and 

Hewlett-Packard ChemStation software. 
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Measurements of thiobarbituric acid reactive substances (TBARS) 

 

The measurement of TBARS was carried out using a method adapted from that used by Burk 

et al. (1980). Up to 20-30 mg of tissue per sample was homogenised in 1.5 ml of 20% 

trichloroacetic acid (w/v) containing 0.05 ml of 1% BHT in methanol. To this was added 2.95 

ml of freshly prepared 50 mM thiobarbituric acid solution. The reagents were mixed in a 

stoppered test tube and heated at 100º C for 10 min. After cooling the tubes and removing 

protein precipitates by centrifugation at 2000 x g, the supernatant was read in an 

spectrophotometer at 532 nm. The absorbance was recorded against a blank at the same 

wavelength. The concentration of TBARS expressed as nmol TBARS/g of tissue, was 

calculated using the extinction coefficient 0.156 µM-1cm-1. 

 

Determination of 8-isoprostane levels 

 

The levels of 8-isoprostane, a novel lipid peroxidation product formed non-enzymatically, 

and thus a potentially good indicator of lipid peroxidation in tissue, were determined by 

enzyme immunoassay (EIA). Isoprostanes were determined in the same homogenates of liver 

and whole fish that were prepared for TBARS analyses.  Samples were assayed after storage 

at –80oC, to avoid artifacts of prolonged storage at temperatures above –80oC.  Most of the 8-

isoprostane is esterified in lipids, so an extraction and hydrolysis was performed in order to 

determine total amounts of 8-isoprostane. Briefly,  2ml ethanol was added to 1.5 ml of 

sample, mixed, and allowed to stand for 5 minutes at 4oC before precipitated protein was 

removed by centrifugation. The supernatant was decanted into a clean test tube and 3.5ml 

15% KOH added and incubated for 60 minutes at 40oC. The solution was diluted to 10ml 

with ultrapure water and the pH lowered to below 4.0 with 2 ml concentrated formic acid. 

Isoprostanes were purified by applying the solution to a C18 reverse-phase mini-column 

(“Sep-Pak”, Millipore UK, Watford, UK) after rinsing with 5ml methanol followed by 5ml 

ultrapure water and 5 ml HPLC grade hexane. Isoprostanes were eluted with 5ml ethyl 

acetate containing 1%  methanol, solvent evaporated under a stream of nitrogen and 1ml EIA 

kit buffer added.  Recovery of prostaglandins and prostaglandin-like compounds after 

extraction by this method  was reported as being 95-100%  (Powell, 1982). Total isoprostane 

is quantified using an EIA kit and 8-isoprostane standard as per manufacturers instructions 

(Cayman Chemical Co., Ann Arbor, USA). 
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Determination of vitamin E content 

 

Vitamin E concentrations (as tocopherol plus α-tocopheryl esters) were measured in tissue 

samples using high-performance liquid chromatography (HPLC). Samples were weighed, 

homogenized and saponified as described by Bieri (1969), but using a single-step hexane 

extraction (Bell et al., 1987). Recovery of α-tocopherol using this method was reported as 

100.5% ± 1.3. (Huo et al.,  1996).  HPLC analysis was performed using a 250 x 2 mm reverse 

phase Spherisorb ODS2 column (Sigma Chemical Co, St. Louis MO, USA) essentially as 

described by Carpenter (1979). The isocratic mobile phase was 98% methanol pumped at 0.2 

ml/min, the effluent from the column was monitored at a wavelength of 293 nm and 

quantification achieved by comparison with (±)-α-tocopherol (Sigma Chemical CO, St. 

Louis, MO, USA) as external standard (10 µg/ml). 

 

Determination of enzyme activities in liver homogenates. 

 

Samples of liver were homogenised in 9 volumes of 20 mM phosphate buffer pH 7.4, 1 mM 

EDTA and 0.1% Triton X-100, the homogenates were centrifuged at 600 x g, to remove 

debris, and the resultant supernatants used directly for enzyme assays. Catalase activity was 

measured by following the reduction of hydrogen peroxide at 240 nm using the extinction 

coefficient  0.04 mM-1 cm-1 (Beers and Sizer, 1952). Immediately before assay, 50 ml of  67 

mM potassium phosphate buffer pH 7.0 was mixed with 80 ?l of 30% (v/v) hydrogen 

peroxide. The assay cuvette (quartz) contained 3.0 ml of above buffered hydrogen peroxide 

solution plus 25 µl of sample.  

 Total superoxide dismutase (SOD) activity was assayed by measuring the inhibition 

of the oxygen-dependent oxidation of adrenalin (epinephrine) to adenochrome by xanthine 

oxidase plus xanthine (Panchenko et al., 1975). Plastic mini-cuvettes containing 0.5 ml of 

100 mM potassium phosphate buffer pH 7.8 / 0.1 mM EDTA, 200 µl adrenaline, 200 µl 

xanthine and 50 µl distilled water (uninhibited control) or 50 µl sample were prepared and 

the reaction initiated by the addition of 10 µl xanthine oxidase. The reaction was followed at 

480 nm and 1 unit of superoxide dismutase activity is described as the amount of the enzyme 

which inhibits the rate of adenochrome production by 50%. 

 Glutathione peroxidase (GPX) was assayed by following the rate of NADPH 

oxidation at 340 nm by the coupled reaction with glutathione reductase (Bell et al., 1985). 

Plastic mini-cuvettes containing 0.75 ml of 60 mM potassium phosphate buffer pH 7.4/1 mM 
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EDTA/2 mM sodium azide, 50 µl reduced glutathione, 100 µl NADPH and 5 µl glutathione 

reductase were prepared. The basal reaction was initiated by the addition of 50 µl hydrogen 

peroxide solution and the non-enzymic rate without sample added was measured for later 

subtraction.  Sample (50 µl) was then added and the assay continued by measuring 

absorbance at 340 nm with specific activity determined using the extinction coefficient of 

6.22 mM-1 cm-1. 

 Glutathione-S transferase (GST) activity was determined by following the formation 

of glutathione-chlorodinitrobenzene (CDNB) adduct at 340 nm. Standard plastic cuvettes 

containing 2.5 ml of 120 mM potassium phosphate buffer pH 6.5, 100 µl GSH and 100 µl 

CDNB were prepared and the reaction initiated by the addition of 50 µl sample. Specific 

activities were determined using an extinction coefficient of 9.6 mM-1.cm-1 (Habig et al., 

1974). 

 Glutathione reductase (GR) activity was assayed as described by Racker (1955) by 

measuring the oxidation of NADPH at 340 nm using the extinction coefficient  6.22 mM-

1.cm-1. Plastic mini-cuvettes containing 0.6 ml of 0.2 M potassium phosphate buffer pH 7.0 /2 

mM EDTA, 200 µl oxidised glutathione and 100 µl NADPH were prepared and the reaction 

initiated by the addition of 100 µl of sample. 

 Protein content in the homogenate supernatants was determined by the Folin-phenol 

reagent method, according to Lowry et al. (1951) following digestion in NaOH/SDS.   

 

Experimental design and statistical analysis 

 

The experiment was performed basically to a two factorial design with the factors being 

dietary HUFA and vitamin E resulting in four experimental diets containing high HUFA +/- 

vitamin E and low HUFA +/- vitamin E. However, a third factor, time (duration of feeding of 

diets) was introduced due to the two sampling points (intermediate and end of trial). Results 

are presented as means ± SD (n = 3 or as otherwise stated). The data were checked for 

homogeneity of the variances by the Bartlett test and, where necessary, the data were arc-sin 

transformed before further statistical analysis. Differences between mean values were 

analysed by two- and, three-way analysis of variance (ANOVA). Differences were reported 

as statistically significant when P < 0.05 (Zar, 1984). 

 

Results 

 

 The diets had a high PUFA content of around 80 g.kg-1 of diet and a consequently 
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high unsaturation index of around 345. The high PUFA content of the diets was primarily due 

to very high levels of n-3HUFA (Table 2). The TBARS contents were all similar but the 

peroxide values were significantly higher (up to 9-fold) in the diets containing the oxidised 

oil.  The vitamin E contents of the unsupplemented diets were around 36 mg.kg-1 diet 

whereas they were significantly greater in the supplemented diets at between 200 and 260 

mg.kg-1 diet and, as a result, the PUFA/vitamin E molar ratios were 5 to 8-fold higher in the 

unsupplemented diets (Table 2).  

 None of the diets had any serious deleterious effects on growth and mortality of the 

fish during the trial (Table 3). Dietary oxidised oil decreased growth slightly after 60 days of 

feeding whereas it had a slight stimulatory effect after 30 days. Conversely, dietary vitamin E 

tended to increase growth at 30 days but  depressed growth at the end of the trial. Mortality 

was very low during the experiment but Vitamin E supplementation slightly decreased 

mortality at 30 days although the effect was not apparent at 60 days (Table 3). Liver weights 

and HIS tended to be lower in fish fed the vitamin E supplemented diets (Table 3). 

 Dietary oxidised oil increased the proportions of triacylglycerol total neutral lipid in 

sea bream livers after 30 days feeding but not at 60 days (Table 4). There was virtually no 

significant dietary effects due oxidised oil or supplementary vitamin E on the total lipid fatty 

acid profiles from livers of fish fed the different dietary treatments (Table 4). In particular, 

the proportions of PUFA were not decreased by dietary oxidised oil. 

 The vitamin E content of the liver was significantly affected by the diets and reflected 

the vitamin E contents of the diets, being significantly increased in the livers of fish fed the 

diets supplemented with vitamin E (Table 5). Similarly, the liver PUFA/vitamin E molar ratio 

was significantly reduced by feeding the diets supplemented with vitamin E. Dietary oxidised 

oil also significantly affected liver vitamin E levels although the precise effects were 

dependent upon dietary vitamin E as evidenced by the significant interaction. Thus, dietary 

oxidised oil tended to result in lower liver vitamin E levels in fish fed the diets without 

supplemental vitamin E whereas the opposite was the case in fish fed diets supplemented 

with vitamin E (Table 5). All these effects on liver vitamin E levels were observed at both 30 

and 60 days.   

 Catalase and SOD activities were both increased by dietary oxidised oil and reduced 

by dietary vitamin E after 30 days feeding (Table 5). At 60 days, oxidised oil had no 

significant effect on these enzyme activities but vitamin E still reduced catalase activity 

whereas it now increased SOD activity. Catalase activity increased significantly from 30 to 

60 days feeding in fish fed fresh oil and decreased significantly in fish fed oxidised oil, 

independent of the level of dietary vitamin E. In contrast, glutathione peroxidase was less 
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affected by the diets and glutathione-S-transferase was only reduced by dietary vitamin E 

after 60 days of feeding. Liver TBARS levels were significantly lower in fish fed the diets 

supplemented with vitamin E whereas dietary oxidised oil had no major effects (Table 5). In 

contrast, the levels of liver isoprostanes showed no consistent patterns. 

 Table 6 shows the results of three-way ANOVA of selected data from Tables 4 and 5.  

Combining the data for both time points (as occurs with ANOVA) showed that the significant 

effect on growth parameters and lipid peroxidation were primarily due to dietary vitamin E 

whereas the overall effects on enzyme activities were primarily due to dietary oxidised oil. 

The three-way ANOVA was also able to quantify the effects of time with the biometry highly 

dependent on time, obviously due to fish growth but also that the fatty acid composition was 

affected significantly by time with liver PUFA tending to increase and monoenes decrease 

from 30 to 60 days. All the enzyme activities were significantly affected by time but the large 

number of interaction between the three factors shows that the relationships were complicated 

and as aresult difficult to interpret. Liver TBARS were lower after 60 days compared to 30 

days when measured relative to mass but were higher per liver due to the increased size of the 

liver. 

 

Discussion 

 

 Our previous study investigated the antioxidant systems in cultured juvenile gilthead 

sea bream (S. aurata) by feeding diets varying greatly in PUFA/vitamin E ratio through 

having either high or low levels of fish oil (n-3HUFA) combined with the presence or 

absence of vitamin E (Mourente et al., 2000). None of the diets in that study had serious 

deleterious effects on growth or survival of the fish, but the different dietary regimes were 

successful in significantly altering the PUFA/vitamin E ratios in the fish livers. This had 

effects on the peroxidation status of the fish as evidenced by the significantly altered levels of 

in vivo lipid peroxidation products measured in liver, with fish fed the diet rich in HUFA and 

low in vitamin E showing significantly higher values of TBARS and isoprostane. However, 

no significant effects on antioxidant enzyme activities were observed suggesting that more 

severe conditions of oxidative stress were required to affect the enzyme activities. In the 

present study, feeding diets containing oxidized oil, has had significant effects on the 

antioxidant enzyme activities.  The present study also showed that time or duration of feeding 

was an important additional factor to consider in relation to determiniong the biochemical 

responses to oxidative stress. 

 As in the previous study, none of the diets in the present study had any grossly 
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deleterious effects on the overall health and well-being of the fish, which showed excellent 

growth with very low levels of mortality. The different diets had only relatively minor affects 

on lipid and fatty acid compositions.  In an earlier study in juvenile African catfish (Clarius 

gariepinus), dietary oxidised oil (cod liver oil/corn oil, 1:1) in the presence of low vitamin E 

reduced growth and supplementation with vitamin E partially abrogated this effect (Baker 

and Davies, 1997).   The growth of fish fed fresh oil was not increased by elevated dietary 

vitamin E.  The level of vitamin E in the livers of catfish fed the oxidised oil was greatly 

reduced (Baker and Davies, 1997).  This effect had been observed previously in sea bass 

(Dicentrarchus labrax) where tissue α-tocopherol levels were reduced in fish fed diets  

containing oxidised fish oil (Obach et al., 1993).  In the present study,  the level of hepatic α-

tocopherol was reduced in sea bream fed the diets without supplemental vitamin E, consistent 

with the previous data.  Baker and Davies (1996) also observed apparently increased 

production of docosahexaenoic acid (22:6n-3; DHA) in response to feeding oxidised oils in 

catfish.  However, in the present study, there was no evidence of increased production of 

DHA, or PUFA in general, in response to dietary oxidised oil which could be due to 

environmental and dietary differences and/or differences in fatty acid metabolism among fish 

species (Sargent et al., 1995; 1999). 

  Overall, many of the effects on the enzyme activities observed in the present study 

were generally consistent with the commonly perceived biochemical mechanisms of these 

enzyme systems (Winston and Di Giulio, 1991; Miller et al., 1993; Halliwell and Gutteridge, 

1996). Previous studies in which these enzyme activities have been measured in fish have 

often focussed on their role in pollutant detoxification (Livingstone et al., 1992, 1993; Peters 

et al., 1994; Martinez-Lara et al., 1996) or developmental aspects (Aceto et al., 1994; Otto 

and Moon, 1996; Peters and Livingstone, 1996). No interactions were observed between 

dietary vitamin E and antioxidant defence enzyme activities in Atlantic salmon (Lygren et al., 

2000) and no clear relationship between dietary or tissue PUFA/vitamin E ratios and liver 

antioxidant enzyme activities were observed in gilthead sea bream (Mourente et al., 2000). 

The present study has indicated that a more direct peroxidative stress, such as that induced by 

feeding oxidised oil is required before clear effects on the liver antioxidant enzyme activities 

are observed. 

 However, both dietary oxidised oil and supplemental dietary vitamin E had significant 

effects on liver antioxidant defence enzyme activities and lipid peroxidation products. The 

activities of the liver enzymes were significantly affected by dietary oxidised oil and vitamin 

E supplementation.  As a result of enzymic activity, feeding oxidised oil did not generally 

increase lipid peroxidation products in liver of sea bream but they were generally reduced by 
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dietary vitamin E.  Interestingly, the activities of the liver enzymes were also significantly 

affected by the time of exposure to the dietary treatments.  Thus, the activities of the two 

primary radical scavenging enzymes, catalase and SOD, were increased by dietary oxidised 

oil and reduced by supplementary vitamin E after 30 days of feeding.  The activities of these 

two enzymes would be expected to parallel each other based on the known mechanisms of 

the enzymes and the fact that superoxide anions are known to be efficiently scavenged by 

vitamin E in biological systems (Cay and King, 1980).  However, after 60 days, the effects on 

catalase and SOD activities were less apparent, due to a diminished effect of oxidised oil in 

the case of catalase, and vitamin E no longer reducing the activity of SOD.  It was also 

interesting that the effects of dietary oxidised oil on the activities of GPX and GST, which, 

based on their probable roles in the antioxidant system may be expected to be more 

influenced by lipid peroxides, were inconsistent, but also significantly affected by time of 

exposure.  In particular, GST activity was not significantly different between treatments at 30 

days, whereas both dietary vitamin E and oxidised oil decreased it’s activity at 60 days. 

Effects on GR activity were also highly dependent on the time of exposure and, as with GST 

activity, both dietary vitamin E and oxidised oil decreased the activity of GR after feeding the 

experimental diets for 60 days.  

       The precise reasons for the effects of length of exposure to the experimental diets on the 

liver enzymes was unclear.  However, the data perhaps suggest that the mid-point sampling 

(30 days) occurred while the enzymes were in a supra-induced state and that the end-point 

(60 days) represents an adapted state.  Additionally, the data suggest that the level of 

hydrogen peroxide may play a critical role in the regulation and expression of antioxidant 

defence enzymes, at least in sea bream.  Thus removal of hydrogen peroxide by catalase and 

GPX (primarily catalase due to it’s much higher affinity and specificity and, thus, overall 

activity) may be rapid in sea bream, due to the fact that both these enzymes activities were 

high irrespective of the dietary treatment.  However, the different responses of catalase and 

GPX may also indicate a different mechanism for regulation of gene expression for GPX, 

perhaps related to the fact that  GPX is more involved in the  removal of organic peroxides 

and, only to a much lesser extent, hydrogen peroxide.  

      Furthermore, the regulation through gene expression of antioxidant defence enzymes, 

particularly catalase, differs from one cell system to another (Rohrdanz and Kahl, 1998).   It 

has been established that the activities of antioxidant defence enzyme activities in fish vary in 

different organs of fresh water and marine fish (Wdzieczak et al., 1982; Lemaire et al., 1993), 

depending upon feeding behaviour (Radi and Markovics, 1988) and other ecological 

conditions (Winston and Di Giulio, 1991).  Furthermore, it can be assumed that low 



14 
molecular weight antioxidants (urea, ascorbic acid and α-tocopherol) appeared earlier in the 

process of evolution than antioxidant defence enzymes, and antioxidant systems in fish 

depend not only on taxonomic position of the fish species but also on their ecological 

peculiarities, particularly natural mobility (Rudneva, 1997). These are perhaps other reasons 

why studies with fish have generally failed to reveal consistent responses in antioxidant 

defence enzyme activities (Di Giulio et al., 1995).   

      In conclusion, the present study showed that feeding diets containing oxidised oil 

significantly affected the activities of liver antioxidant defence enzymes, in particular 

increasing the activities of two of the primary radical scavenging enzymes, catalase and 

superoxide dismutase,  and that dietary vitamin E partially abrogated these effects.  Growth 

and survival of the fish were relatively unaffected indicating that the responses gave effective 

protection against this pro-oxidative dietary stress.  This suggested that gilthead sea bream 

has a well-developed and efficient liver antioxidant defence enzyme system and mechanisms 

for a marine teleost.   However,  the duration of feeding the diets of high pro-oxidative stress 

was observed to have a hitherto unknown effect, possibly the result of a further adaptive 

process, but which warrants further investigation. 
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