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Abstract

Planetary  heat  flow probes measure heat  flow (depth-resolved temperature  and thermal

conductivity) to provide insight into the internal state of a planet.  The probes have been

utilized extensively on Earth, twice on the Moon, and once on the Surface of comet 67P-CG.

Mars is an important target for heat flow measurement as heat flow is a critical parameter in

Martian thermal history models. Earlier studies indicate that Martian planetary heat flow can

be accessed at 5 m below the surface in dry regolith monitored over at least one Martian

year. A one Martian year monitoring period is necessary because, in the shallow subsurface,

heat flow from the interior is superposed with time varying heat flow contributions, primarily

due to insolation. Given that a heat flow probe may not achieve its target depth or monitoring

period, this study investigates how the depth (2-5 m), duration (0-1 Martian year) and quality

of measurements influence the accuracy of planetary heat flow. An inverse model is used to

show that, in the preceding scenarios, the accuracy of planetary heat flow directly estimated

from depth-dependent thermal conductivity with 10-20 % precision errors, temperatures with

50-100 mK precision errors and modelling uncertainties up to 500 mK, can, on average, be

improved  by  a  factor  of  27 with  optimization  to  13  %.  Accuracies increase  with  sensor

penetration depth and regolith monitoring period. Heat flow optimized from instantaneous

measurements  or  those  with  the  shortest  regolith  monitoring  periods  have  increased

accuracy where the frequency and amplitude of the temperature variation are lowest. The
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inverse  model  is  based  on  the  Function  Specification  Inversion  method.  This  study

demonstrates that  a solution subspace can be identified  within  a space of  uncertainties

modelled  for  the  temperature  measurements  and  planetary  heat  flow:  the  subspace  is

defined by a constant log-ratio of their respective standard deviations. Optimized heat flow

estimates display reduced correlation with increasing temperature precision and systematic

conductivity errors, with the constraint of other known model parameters. Consequently, the

model permits upper bounds to be placed on the conductivity estimate without conductivity

optimization,  as  heat  flows  are  optimized  to  a  limiting  value  with  increasing  systematic

conductivity errors for any given parameter set. Overall,  the results demonstrate a 52 %

chance of achieving a direct heat flow estimate accurate to within 40 %, with the same being

82 % after optimization.

1 Introduction

1.1 Planetary Heat Flow

Planetary heat  flow quantifies heat flow from the interior of  a planet  and sheds light on

related  interior  processes  (e.g.  Hagermann,  2005  ):  it  is  the  product  of  the  thermal

conductivity and background (mean) subsurface temperature gradient and can therefore be

obtained,  to  first  order,  by  performing depth-resolved measurements of  conductivity  and

temperature. In a planet’s shallow subsurface, planetary heat flow is superimposed with heat

flow due to insolation, which is usually several orders of magnitude greater. However, heat

flow  from  insolation  is  exponentially  damped  with  depth;  therefore,  planetary  heat  flow

becomes more isolated at depth. The skin depth, over which the amplitude of the heat flow

due to insolation drops by a factor of e, quantifies the former. If the depth of measurement is

not sufficiently far below the skin depth, or the duration of measurement too short to fully

sample the temperature variation, advanced methods to isolate the planetary heat flow are

required (e.g. Spohn et al., 2001  ; Grott et al., 2007  ).
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1.2 Measuring Martian Heat Flow

Grott et al. (2007)   model Martian skin depths of 0.65 and 1.45 m. They estimate that a heat

flow probe (a linear suite of temperature and conductivity sensors emplaced to a given depth

– e.g. Spohn et al., 2001  ; Hagermann, 2005  ) can measure an associated Martian heat flow

of 20 mW/m2 to an accuracy within 30 %, given measurements over at least a Martian year,

depths of at least 3 or 5 m corresponding to each skin depth, temperature measurement

precision of 0.1 K and conductivities at least 20 % accurate. Dehant et al. (2012)   demand a

higher temperature precision of 0.05 K for depths up to 2 m.

Heat flow probes have been used to take heat flow measurements thousands of times on

Earth (e.g.  Pollack et al., 1993  ) and twice on the Moon (e.g.  Langseth et al., 1972  ;  1976  ;

Heiken  et  al.,  1991  ).  The  measurements  have  provided  insights  into  the  radioisotope

distribution within the crusts of the Earth (e.g. Rudnick and Fountain, 1995  ; Boehler, 1996  )

and the Moon (e.g. Warren and Rasmussen, 1987  ; Hagermann and Tanaka, 2006  ). Similar

insights are possible with a heat flow measurement on Mars (e.g. Dehant et al., 2012  ). Heat

Flow and Physical  Properties Package (HP3)  is a proposed heat  flow probe on NASA’s

InSight  lander,  which satisfies the measurement  depth,  time and precision requirements

outlined at the beginning of this section (Banerdt et al., 2012; Spohn et al., 2012; Golombek

et al., 2014  ; NASA, 2014  ).

If a measurement falls short of the requirements, inverse modelling of critical parameters can

potentially  recover  the Martian  heat  flow;  this has been used to  similar  effect  on Earth,

though over km depth  scales (e.g.  Shen and Beck,  1991  ;  1992  ;  Wang,  1992  ),  avoiding

shallow  depth  effects  of  the  temperature  variation.  Mass  and  cost  restrictions  limit  the

current generation of planetary probes to shallow-depth measurements. Here, a numerical

inversion algorithm is tested against the potential measurement shortfalls that can occur at

shallow depth with a heat flow probe measurement on Mars.
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1.3 Experimental Procedure

The investigation proceeds as follows: in Section 2, a theoretical model of the Martian heat

flow environment is presented (Section 2.1) with a procedure for inversion of a temperature

profile for heat  flow,  and potentially  other critical  parameters (Sections  2.2 –  2.3.  Errors

associated with the models are discussed in Section 2.4; in Section 3, critical parameters of

the heat flow model are discussed in the context of the Martian environment; in Section 4,

example simulations with the heat flow model parameters are presented and discussed with

associated synthetic measurement scenarios. Results of applying the inversion procedure to

the synthetic measurements are presented in Section 5 and discussed in Section 6.

2 Model of Martian Thermal Environment

2.1 Heat Flow Equation

The flux of heat through the surface of a planet can be expressed using the one-dimensional

heat flow equation. For the current purposes, it is most useful to partition the equation into

two components: the first due to the surface temperature variation, such that

ρc ( z )
∂T

U ( z , t )
∂ t

−
∂

∂ z (k ( z )
∂T

U ( z , t )
∂ z )=SU (z , t )=0, z∈ [ zS , zB ] , t∈¿ ,

1

with boundary and initial conditions

a.
T
U (z , t )=TS

U (t ), z=zS , t∈ ¿ ,

2
b.

−k ( z ) ∂T
U ( z , t )
∂z

=FB
U ( z , t )=0 , z∈ [ zS , zB ] , t∈ ¿ ,

c. T
U ( z ,t )=TU 0 ( z)=0 , z∈ [ zS , zB ] , t=t B ;

and the second due to the planetary heat flow, such that

−∂
∂ z (k (z) ∂T

S (z)
∂ z )=SS(z ) , z∈ [ zS , zB ] ,

3
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with boundary conditions

a.
T
S(z )=T S

S
, z=zS ,

4

b.
−k ( z ) ∂T

S ( z )
∂ z

=FB
S
, z=zB ,

where  t  is time when the monitoring period begins (t B) and stops (t S); z is depth at the

surface (zS) and base (zB) of the regolith section; ρc (z) is the thermal capacity, the product

of the depth dependent density ρ(z ) and specific heat (at constant pressure) c; and k ( z) is

the thermal conductivity. S
U (z , t) and S

S (z) are terms representing heat sources and sinks,

where  S
U (z , t),  while  conventionally  set  to  0,  is  expressed  here  as  it  is  an  important

parameter in  FSI inversion (it  can also be used to reproduce the effects of  temperature

dependent  thermal  properties).  The  temperature  variation  T
U ( z ,t ) and  the  background

(mean) temperature due to the heat flow T
S(z ) sum to the physical temperature T ( z , t ). The

boundary conditions reflect a temperature variation entirely due to the surface temperature

variation  T S
U (t) (Equation  a)  while  T S

S

 (Equation  a)  represents  the  background  (mean)

surface temperature. The lower boundary condition of the background temperature equation

(Equation b) is the planetary heat flow FB
S

. Equations - can be solved either analytically or

numerically to give the physical temperature T ( z , t ).
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2.2 Inverse Theory

To determine heat flow, measurements of the temperature and conductivity profiles must be

made as noted in Section  1.1. The measurements will  contain noise (Section  2.4), which

decreases  the  accuracy  to  which  planetary  heat  flow  can  be  directly  determined.  The

accuracy of planetary heat flow, directly measured in the former manner, can be improved by

inverting the temperature measurement for the planetary heat flow  FB
S

 and other unkown

parameters.

The  temperature  measurement  can  be  represented  by

d⇔T
U ( z , t )+T S ( z )+η(z ,t )=T ( z ,t )+η(z , t );  T ( z , t ) being the pristine temperature (solution

of Equations  -) and η(z , t) being the noise associated with a temperature measurement,

such that

d=g (m ) .
5

Variable m=[T SU ,T SS , FBS , k , ρ ,c , S ] is a vector of thermal model parameters where  g (m ) is

the constraining model. Because  g (m ) may be largely unknown and  d  is noisy, Equation  

represents a sparse linear system and can be solved using relevant methods.

In  this  investigation  a  Bayesian  least  squares  functional  space  inversion  method  (e.g.

Tarantola and Valette, 1982  , Shen and Beck, 1991,1992; Tarantola, 2005  ) is used to invert

the temperature measurements. The critical procedure with this method is the optimization of

a misfit function ∑, defined as

∑=
1

2
[ (g(m)−d0 )

T
Cd

−1 (g(m)−d0 )+ (m−m0 )T Cm
−1 (m−m0 ) ] .

6
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Variable m0 is a vector of initial parameter estimates (measurements) and d0 is a vector of

temperature measurements. Cd and Cm are covariance operators which respectively quantify

the uncertainties in  the temperature  measurements and initial  thermal  model  parameter

estimates.  ∑ is  optimized  using  the  quasi-Newton  method  of  steepest  descent  (e.g.

Tarantola, 2005  ) where m is updated from the gradient γ of ∑ according to (Shen and Beck,

1991  )

mi+1=mi−μi γi=mi−μi( ∂∑∂m )
i
.

7

The calculation of gradient γ is summarised in Appendix A.

2.3 Mis't Function Optimization

For the quasi-Newton descent optimization method, the stepping factor μ≈1, with its precise

value  dependent  on  the  geometry  of  the  problem.  The  method,  in  principle,  allows  for

simultaneous optimization of all components of m (see Shen and Beck, 1992  ), though here

the focus is on optimization of FB
S

, the planetary heat flow, therefore m=[FB
S ]. The procedure

starts from an initial estimate of Martian heat flow such that m0=[FB
S0 ] which can be obtained

from, for  example,  the temperature and thermal  conductivity measurements.  It  proceeds

iteratively, ideally with the respective minimisation and maximization of L2 norms ‖g(m)−d0‖

and ‖m−m0‖ in Equation , with the consequent optimization of misfit function ∑.
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The iterative  path  (convergence)  of  ∑ is  dependent  on the magnitudes of  the  standard

deviations within Cm and Cd, which may be unknown to some degree. If planetary heat flow

standard deviation 
σ
F
B

S in Cm is set too small relative to temperature measurement standard

deviation σ d in Cd, the minimum of ∑ may not correspond to the maximum of ‖m−m0‖ which

contains the most optimal model in  m (Figure 1a). To mitigate this uncertainty, Cm and  Cd

can be used to define a two-dimensional, finite problem space with optimal points of  ∑, a

subspace of which contains the required solutions to the inverse problem (Figure 1b). The

solution subspace is well defined for planetary heat flow FB
S

 – it is a region where the log-

ratio of σ FBS to σ d is at least equal to a constant rd
FB
S

, here called the stability ratio, such that

+}

log10σ FBS ≥rd
F
B

S

log10 σd+b ,b∈R
¿

8

The stability ratio for a given problem can be discerned by inverting the given parameter set

over a range of 
σ
F
B

S and σ d, and plotting the resulting values of ∑ in the problem space. As

illustrated in Figure 1b, the former should clearly reveal a linear region, intersecting the 
σ
F
B

S-

σ d plane, thus identifying rd
FB
S

 and the solution space (given the parameter set is physically

meaningful and/or close enough to the true values). The distinct form of ∑ in the 
σ
F
B

S-σ d

space is analogous to a potential barrier (Figure 1c) located at the line defined by Equation ,
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where the gradients of ‖g(m)−d0‖ and ‖m−m0‖ respectively achieve maxima and minima,

with respect to 
σ
F
B

S. The most viable solutions are located beyond the potential barrier in the

more stable region of the 
σ
F
B

S-σ d space. The planetary heat flow estimates FB
S

 can be plotted

instead of ∑, which should reveal a distinct dichotomy, marked (intersected) by the rd
FB
S

 line,

where, for σ FB→0, FB
S

 is close to FB
S0

 and for σ FBS
→∞, FB

S

 is close to the optimal heat flow

value for the given parameter set  (Figure 1d). The stability ratio  rd
FB
S

 is  equivalent  to the

gradient of the line, calculated from the logarithm of the standard deviations.

a b

c d

Figure 1. Properties of misfit function ∑ and solution space of optimal ∑ values (idealised): a. iterative path (convergence) of

∑ (solid curves) with the dashed curves being the maximised model parameter misfit  ∑ (m )=‖m−m0‖ and the dotted
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curve the minimised data misfit ∑ (d )=‖g(m)−d0‖; b. form of ∑ in the 
σ
F
B

S
-
σ d space. Note the significant decrease in

∑ due only to the  increasing values of  
σ d (this effect is normalised in plot c); c. form of  ∑(d ,m) and it’s components

∑ (m ) and ∑ (d ) as 
σ
F
B

S
 increases. Note that each of the six sets of ∑ representations correspond to a different value of 

σ d,

with the value of ∑ normalised to the effects of increasing σ d seen in b; d. form of the optimal values of m plotted in the 
σ
F
B

S
-

σ d space such that the solution subspace can be identified immediately from a distribution of FB
S

 values.

2.4 Model Errors

The inverse simulations can be run from an initial  background heat  flow estimate (FB
S0

)

calculated directly from the mean heat flow through the two lowest sensors (Figure 4) in

each measurement. Equations b and b allow a theoretical estimate of the error in a directly

calculated heat flow F, given errors in conductivity, temperature and/or depth according to

∆ F

F
=√( Δkk )

2

+( ΔdTdT )
2

+( Δdzdz )
2

,
9

where  dT  (0.02-0.1  K)  and  dz (23  cm)  account  for  temperature  and  depth  differences

between the uppermost and lowermost sensor used in the calculation. There are two ways

of calculating the background heat flow: 1. the mean of a series of temperatures measured

at m discrete times can be found at each depth over the entirety of the monitoring period,

and then used to calculate a mean heat flow such that 
ΔdT=T

√2m∆Tm
∑
m

Tm  or; 2. m discrete

heat  flows can be calculated at  each sensor  depth,  then averaged over  the monitoring
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period  to  give  the  mean  heat  flow  such  that  
ΔF=F

√m∆ Fm
∑
m

Fm  where  ∆ Fm is  given  by

Equation .

Given accurate and precise sensor location data (Δz=0), temperature measurement errors

ΔT  of 50 mK (precision) – 500 mK (modelling), conductivity measurement errors of 10-20 %

and pristine heat  flows of  5-25 mW/m2,  the calculated heat  flows are typically  15-35 %

accurate  where  669≥m≥167 temperature  profiles  (1  per  Sol)  are  averaged  to  get  the

background temperature, then used to calculate a heat flow (method 1 above). However, the

calculated heat flows are inaccurate by factors of 0.06 (for 25 mW/m2 pristine heat flow) to 8

where the corresponding heat flow profiles are calculated, then averaged to get background

heat flow (method 2 above). For single temperature profiles where m=1 (an instantaneous

measurement), the inaccuracies are the same for both methods. Method 1 is more sensitive

to conductivity errors than to temperature errors (which are averaged); the converse holds

true for method 2.

The precise results of optimization using the steepest descent method outlined in Sections

2.2-2.3 display marginal dependence on the initial heat flow estimate; therefore, optimization

is carried out with heat flows calculated from both methods (1 and 2 above) as different

starting points for each measurement scenario.

3 Martian Heat Flow Parameters

3.1 Measurement Locations

The choice of heat flow measurement location is critically important. Generally, locations are

ideally dry, to avoid transient perturbation of thermal properties by ices (e.g.  Grott et al.,
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2007  ), flat and homogeneous, to avoid perturbations of the temperature gradient by surface

and subsurface geology (e.g. Wang, 1992  ; Golombek et al. (2014)  . For the purposes herein,

measurements are synthesised from properties and timings of the proposed InSight landing

ellipses (within 134°E 3°N and 139.5°E 5°N around Ls 252.7; Golombek et al., 2014  ) in the

Elysium region, which is relatively flat (e.g. Golombek et al., 2013  ; Wigton et al., 2014  ), with

a  fine  regolith  layer  (e.g.  Ruff  and  Christensen,  2002  ;  Nowicki  and  Christensen,  2007  ;

Warner et al., 2014  ) typically 10 m thick (Golombek et al., 2013  ). The equatorial location

reduces the chance of encountering ices in the regolith (e.g Boynton et al., 2002  ).

3.2 Martian Heat Flow

Different thermal models use combinations of so-called plate cooling models (involving plate

tectonics; e.g.  Breuer and Spohn, 2003  ) and/or stagnant lid models (involving a one-plate

lithosphere; e.g. Hauck and Phillips, 2002  ) to nominally estimate current Martian global heat

flow in the range 5-25 mW/m2  (e.g.  Dehant et al., 2012  ). Mars is currently thought to be in

the stagnant lid regime with heat flow from the selected region in Section 3.1 estimated to be

of  the  order  of  15-20  mW/m2 (Grott  and  Breuer,  2010  ).  For  comparison  purposes,

measurements from the region are synthesised with end-member heat flows of 5 and 25

mW/m2.

3.3 Surface Temperature Mean and Variation

The Martian surface temperature can be modelled from large scale simulations such as

Mars  Climate  Database  (MCD  –  Millour  et  al.,  2012  )  and  Mars  Global  Reference

Atmospheric Model (Mars-GRAM – Justh et al., 2011  ) which integrate climate data from the

many orbiters, landers and rovers which continually study the planet. Figure 2 shows Mars-

GRAM surface temperature for a measurement site within the region identified in Section

3.1; the temperature varies diurnally (light-toned red curves) over 90 K and seasonally (mid-

toned red curves) over 30 K.
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Figure  2. Mars-GRAM simulated surface temperatures for site in the Elysium region within 134°E 3°N and 139.5°E 5°N. The

simulation begins on November 1, 2016 (Ls 252.7) and is time stepped at 1 Martian hour over 1 Martian year. The dark line is the

mean temperature over 1 Martian year,  the midtone curve the mean temperature over 1 Sol  and the light-toned curve the

calculated temperature plotted every Martian hour. See Mars Climate Database (2013)   for guidance on timing used.

A mean surface temperature can be derived from temperature measurements taken over 1

Martian year – this is used for the demonstration purposes herein (Figure 2, dark red line).

For shorter measurement periods or scenarios involving transient climatic phenomena (like

dust storms), the mean temperature may be obtained from a long term climate simulation

which can take into account any probe measurements and minimise the influence of the

transient climatic event on the derived mean temperature.  Grott et al. (2007)   use climate

models to show that surface climatic perturbations of the medium- to long-term (>> 1 Martian

year) steady temperature should not perturb the Martian heat flow beyond 15 %.

3.4 Thermal Conductivity and Capacity

A heat flow probe in situ conductivity measurement can be based on the principles of the line

heat  source  technique  (or  transient  hotwire  method  –  e.g.  Seiferlin  et  al.,  1996  ;

Banaszkiewicz et al., 1997  ). The surface conductivity can be estimated from surface thermal

inertia (the product of the square root of conductivity and thermal capacity; e.g. Kieffer et al.,

1977  ;  Mellon et al., 2000  ;  Christensen et al., 2001  ). This is achieved by using the known

association of thermal inertia with regolith particle size, both of which correlate strongly with

thermal conductivity at given temperatures and pressures (Nowicki and Christensen, 2007  ;

Piqueux and Christensen, 2009a,b; Piqueux and Christensen, 2011  ).
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While Martian thermal properties show some temperature dependence, these are mostly

apparent over the large diurnal temperature variation. The focus here on seasonal average

thermal properties should mitigate the influence of perturbing effects due to the temperature

variation. Thermal properties of the regolith can be assumed to be constant over the annual

temperature ranges considered in this model. In cases where temperature dependence is

vital to achieving physically meaningful results, the effects of temperature dependence can

be  replicated  by  including  artificial  heat  sources  or,  where  the  temperature  variation  is

effectively sampled and sufficiently small, centrally estimated parameter values.

Surface  conductivities  are  derived  here  using  measured  thermal  inertia  from  sites  at

135.10°E 4.37°N and 138.23°E 3.31°N within the Elysium region identified in Section  3.1;

these are fairly high (0.05 and 0.07 W/m/K) for a fine regolith layer. The preceding result can

be interpreted – based on the < 1% rock abundance (> 25 cm diameter) results of Golombek

et al.  (2014)   – as rocks smaller than 25 cm contributing to the sub-pixel  thermal  inertia

signature; though it may also signal a temperature dependent surface thermal conductivity

similar to that on the moon (e.g. Heiken et al., 1991  ). Given these results, regolith properties

are assigned based on a silicate sand composition (≤ 1 mm diameter;  e.g.  Robie et al.,

1970  ; Ruff and Christensen, 2002  ; Piqueux and Christensen, 2011  ; Golombek et al., 2013  ),

to give surface conductivities of 0.015 and 0.05 W/m/K, corresponding to surface densities

of  1100  and  1700  kg/m3,  and  a  homogeneous  specific  heat  of  700  J/kg/K  to  produce

respective low and high thermal inertia surfaces.

The depth dependence is modelled such that thermal property m(z)=m∞(z+a)/(z+b) (Grott

et al., 2007  ):  m∞ is the asymptotic thermal property value; constants  a and  b are chosen

such that m(z) equals the surface value at z=0 and m(z)=c m∞ at a given depth (10 m); c

is  an  arbitrary  constant.  Here,  the  depth  variation  represents  an  idealised  fines  layer,
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modelled to a thickness of 10 m. The depth profiles for each site are plotted in Figure 3 with

the  low  skin  depth  site  (k∞≈0.07  W/m/K,  ρ∞≈1737  kg/m3)  being  highly  heterogeneous

towards the surface and the high skin depth site (k∞≈0.12  W/m/K,  ρ∞≈2353 kg/m3)  being

nearly homogeneous, with depth.

a b
Figure 3. Thermal properties showing: a. conductivity and; b. density for low skin depth (solid blue) and high skin depth (dashed

green) heat flow measurement environments representing idealized fines layers.

4 Synthesised Measurements

4.1 Simulation Results

Simulation results of the low skin depth regolith profile (Figure 3, solid blue) are shown in

Figure 4 (left) while results from the high skin depth profile (Figure 3, dashed green) are

shown in  Figure  4 (right).  Each thermal  profile  is  simulated with  end member high (25

mW/m2)  and low (5  mW/m2)  pristine background (planetary)  heat  flows as discussed in

Section  3.2 (Figure  4c-f,  light  grey  background  plots).  In  the  low  skin  depth  model,  a

planetary heat flow of 25 mW/m2 can be directly measured at 2 m as the gradient of the

surface temperature variation is damped to magnitudes within that due to the planetary heat

flow; likewise, a planetary heat flow of 5 mW/m2  can be directly measured at 3.5 m. In the

high skin depth model, a planetary heat flow of 25 mW/m2 can be directly measured at 3.25

m, while that of 5 mW/m2 can be accessed at 5.25 m.
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4.2 Temperature Measurements

Fifteen sensors (1 surface + 14 subsurface) are used to synthesise measurements from the

forward models; the sensor distribution is shown in  Figure 4 (grey squares). Temperature

measurement errors are simulated with additive Gaussian noise of amplitude 50, 100 and

500 mK, the lower extreme related to instrument precision and the higher extreme related to

parameter modelling and potential sensor depth inaccuracies.

Independent  of  the  temperature  noise  level,  considered measurement  scenarios include

sensor penetration depths of approximately 2, 3 and 5 m and regolith monitoring periods of

0.25 (~vernal  equinox),  0.5  (~summer solstice),  0.75 (~autumn equinox)  and 1  (~winter

solstice) Martian year from Ls 252.7 (based on the original InSight mission profile), along

with  four  instantaneous  measurements  at  the  end  of  the  monitoring  periods.  These

scenarios can arise from obstacles such as sedimented layers, large rocks in the regolith

and/or instrument failure after a given depth or time period.

The  profiles  in  Figure  4 can  be  used  to  visualise  all  other  temperature  measurement

scenarios:  measurements  which  fall  short  of  one  Martian  year  form  sub-profiles  of  the

presented temperature profiles, being cut off as indicated by the coloured (bold) curves (the

purple curves also indicate the starting point of all monitoring periods); measurements which

fall short of the desired depth are cut off at depth (the grey sensor squares migrate upwards

such that the linear array terminates at approximately 2 or 3 m); increasing noise levels have

random deviations of increasing magnitude from the true profiles.

a b
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c d

e f
Figure 4. Thermal profiles from Mars Elysium sites with low skin depth (left) and high skin depth (right). Plots a and b show the

variation of temperature with time (from Ls 252.7) at different depths (larger amplitudes towards the surface):  the coloured

squares, which represent sensors, illustrate the location of an instantaneous measurement, or the termination point of a long

period measurement. The lower plots show the variation of temperature (c, d) and heat flow (e, f) with depth at different times

over  a  period  of  669  Sol  in  13.5  Sol  steps  (overlapping  contours  indicate  periods  of  relatively  constant  diurnal  mean

temperatures):  the darker  dotted lines running through the contours  represent  the  mean temperature and heat  flow;  bold

coloured lines correspond to instantaneous measurements in a and b; the grey squares show sensor locations, illustrated for a

heat flow of 25 mW/m2; the light background contours show simulations with a heat flow of 5 mW/m2.

4.3 Conductivity Measurements

Conductivity  measurements  are  synthesised  with  10-320 % noise  added  to  the profiles

presented in Section  3.4 at depths of approximately 2, 3 and 5 m. These are: Gaussian

random noise to produce random errors (10-20 %); negative of the modulus of Gaussian

random noise to produce a systematically low estimate (10-50 %); modulus of Gaussian

random noise to produce a systematically high estimate (10-320 %);  mean of Gaussian

random noisy conductivity to assess the viability of using bulk conductivity to estimate the

heat  flow  (10-20  %).  The  noisy  measurement  profiles  are  tested  against  the  true

conductivities to  assess the effect  of  the conductivity  noise  amplitude on the calculated

Martian heat flows.
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5 Heat Flow Estimates

5.1 Optimization Scenarios and Heat Flow Solution Space

The inverse simulations are time stepped in 1 Sol increments over 669 Sol where the diurnal

mean surface temperature is applied at each timestep. All other model parameters are used

in  their  pristine  forms  (Sections  3.3 and  3.4)  except  for  the  noisy  temperatures,

conductivities and heat  flows,  as outlined in  Section  4.  The shallowest  two sensors are

ignored to avoid instabilities introduced by the diurnal temperature variation.

For a select number of measurement scenarios (the primary optimization set) the standard

deviations in covariances  Cm and  Cd are set such that 10-4σ d≤σF
B

S ≤104σ d, where 0.025 K

≤σd≤1 K. These are where the measurement noise amplitude is 0.05 K, monitored over a

period  of  669  Sol  from  Ls  252.7  and  the  conductivities  are  errorless  or  with  ±20  %

systematic noise (high and low estimates). For the full range of measurement scenarios (the

secondary optimization set), σ d is calculated from the temperature errors and related to the

heat  flow  standard  deviation  by  
σ
F
B

S=10σ d.  For  all  optimizations,  the  conductivities  are

assumed accurate and are therefore not included in m and Cm.

a b
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Figure  5. Solutions space defined by standard deviations  
σ
F
B

S
 and  

σ d for temperature measurement inversions with misfit

function value (left) and heat flow relative error magnitude (right). For each pair: a and b represents a central estimate of the

shape of the space over all  the tested scenarios – the grey diamonds identify the locations at which the secondary set of

scenarios are run; c and d represent the most pathological scenarios (high skin depth with a conductivity systematically high by

20% and low heat flow of 0.005 W/m2); d. and e. represent the well-behaved scenarios (low skin depth with accurate conductivity

and high heat flow of 0.025 W/m2). Notes: 1. there is missing data at the lower right corner of each contour plot; 2. the contours

of plot f. are linearly interpolated, while the rest are quintically interpolated.

The  inversion  results  are  thus  quantifiable  with  a  multi-dimensional  results  space

comprising:  the  skin  depth;  depth  of  measurement;  duration  and,  for  instantaneous

measurements,  time  of  measurement  relative  to  seasonal  period;  planetary  heat  flow;

temperature measurement errors; conductivity measurement errors; and in the selection of

primary optimization scenarios, covariances. The inverse results are considered acceptable

if they fall nominally within the range of the solution space defined by the covariances Cm
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and  Cd (or standard deviations  
σ
F
B

S and  σ d), discussed in Section  2.3 (Figure 5; compare

Figure 1).

The solution space for the primary set of optimization scenarios, as defined in the  
σ
F
B

S-σ d

plane (Figure 5) shows that the most accurate heat flow solutions can be found in the region

of the line which defines rd
FB
S

≥0.1 (dark blue and violet contours). Above the rd
FB
S

 boundary, all

optimized heat flows show significant improvements in accuracy on the initial estimates in

nearly all measurement scenarios. Those with least accuracy (Figure 5c-d) have high skin

depth, systematically high thermal conductivity and low pristine heat flow. Conversely, the

most accurate scenarios (Figure 5d-e) have low skin depth, accurate thermal conductivity

and high heat flow. Note that the secondary optimization scenarios (grey diamonds in Figure

5a-b) are all run within the heat flow solution space; the rest of the discussion takes account

of results from both the primary and secondary set of optimization scenarios.
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Figure  6. Distribution of heat flow relative error for scenarios with initial heat flows calculated using method 1 (lower middle

bars) and method 2 (base) and corresponding optimized distributions. Each bar represents the number of scenarios with errors

greater than the previous error value, up to and including the value under the bar (e.g. the bar at -0.1 represents values in the

interval (-0.25, -0.1]. These results include conductivities with Gaussian and systematic errors up to 20 %.

Initial heat flow estimates, calculated directly from the mean temperatures (method 1) are,

on average, 61 % more accurate than those calculated with the mean heat flows from each

timestep (method 2). The latter heat flows are, on average, incorrect by a factor of 3.6 –
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within  the  range  theorised  in  Section  2.4.  Heat  flow  values  calculated  by  the  different

methods are  the same for  instantaneous measurements,  as predicted.  The optimization

results are approximately the same for the background heat flow, regardless of which initial

estimate is used (Figure 6), therefore, for brevity, only results using method 1 are further

presented. The distribution of results in Figure 6 shows the general improved accuracy of the

initial  (direct)  heat  flow  estimates  calculated  using  method  1  (T  Averaged)  over  those

calculated using method 2 (F Averaged). Optimization substantially modifies the initial heat

flow distribution such that it peaks where the relative error is close to zero.

5.2 Accurate and Noisy Conductivity

5.2.1 General Results and Depth of Measurement

Where the conductivity-depth profile is accurate (but potentially contains noise up to 20 %),

the initial heat flow accuracy is significantly improved by optimization in most measurement

scenarios.  Exceptions  occur  at  the  shallowest  sensor  depths  for  high  skin  depth,

instantaneous measurement or short monitoring period (0.25 Martian years) scenarios; in

these scenarios the influence of the temperature variation is large such that the initial heat

flow estimate is already of optimal accuracy for the given parameter set. Generally,  with

basal  sensor  depths  at  2.13,  3.28  and  4.6  m,  heat  flows are  respectively  optimized  to

accuracies of 29, 7, and 4 % (accordingly 10, 34 and 38 times more accurate than the direct

estimates). The conductivity noise up to 20 % has a relatively negligible impact on the heat

flow accuracy.
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5.2.2 Instantaneous Measurements
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Figure 7. Distribution of heat flow relative error for instantaneous measurement scenarios. The four lower (light coloured) bars

represent initial errors and the four upper (dark coloured) bars represent errors after optimization for the relevant measurement

time after Ls 252.7 in Martian years. Each bar represents the number of scenarios with errors  greater than the previous error

value, up to and including the value under the bar (e.g. the bar at -0.1 represents values in the interval (-0.25, -0.1]. These results

include  conductivities with Gaussian errors up to 20 %.

The accuracy of  heat  flow  optimized from an instantaneous measurement  is particularly

sensitive to the shape of the measurement in terms of the temperature gradient due to the

temperature variation, the skin depth relative to the sensor depth, and the rate of change of

the  surface  temperature  at  and  prior  to  the  time  of  measurement. For  example,

measurements taken at 0.5 Martian years (~summer solstice), on average, yield the most

accurate optimized heat flows (17 %; 25 times more accurate than the corresponding direct

estimate)  while  measurements  taken  at  0.75  Martian  years  (~autumn  equinox)  are,  on

average, optimized to an accuracy of 26 % (roughly 17 times the accuracy of the direct

estimate). With the former measurement, temperature increases monotonically with depth

while the latter has more oscillations and a steeper surface temperature gradient (Figure 4a-

d). Figure 7 shows the distribution of results, illustrating a bias towards higher optimized heat

flows  from  measurements  at  1  Martian  year  (~winter  solstice),  and  the  reverse  for

measurements at 0.75 Martian years; this can be traced back to the respective temperature

gradients underestimating and overestimating the background heat flow (see Figure 4c-d).
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5.2.3 Long Period Measurements
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Figure  8. Distribution of heat flow relative error for long period measurement scenarios. The four lower bars represent initial

errors and the four higher bars represent errors after optimization for the relevant measurement period after Ls 252.7 in Martian

years. Each bar represents the number of scenarios with errors  greater than the previous value, up to and including the error

value under the bar (e.g. the bar at -0.1 represents values in the interval (-0.25, -0.1]. These results include  conductivities with

Gaussian errors up to 20 %.

Where the regolith is monitored over long periods (0.25-1 Martian year), the optimized heat

flow accuracy  increases  with  the  length  of  the  monitoring  period  (11-3  %,  on  average,

approximately 5 times the corresponding direct heat flow accuracy). There is appreciable

divergence from the former trends for the direct heat flow estimates. For example, for a

monitoring period of  0.75 Martian  years  inaccuracies are higher  than the corresponding

values for 0.5 Martian years. For the optimized heat flows, at 4.6 m there is no dependence

of the heat flow accuracy on monitoring period, the cause of which can be traced back to the

damping of the temperature variation at depth, such that instabilities are introduced only by

the temperature measurement noise.  Figure 8 shows the distribution of results, which are

markedly less pathological than those for the instantaneous measurements, demonstrating

the importance of a monitoring period of appropriate length.
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5.2.4 Temperature Measurement Errors
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Figure  9.  Distribution  of  heat  flow  relative  error  for  temperature  measurements  with  varying  precision  errors.  Each  bar

represents the number of scenarios with errors  greater than the previous value, up to and including the error value under the

bar (e.g. the bar at -0.1 represents values in the interval (-0.25, -0.1]. These results include  conductivities with Gaussian errors

up to 20 %.

The temperature measurement errors of 50-500 mK, on average, produce optimized heat

flows accurate to 10 %, 10 times more accurate than the corresponding directly measured

heat flows. The rate of increase of the heat flow errors with temperature errors is smaller for

the optimized heat flows such that for the 50 mK errors, the accuracy of the optimized heat

flow estimate improves from 87 % to 9 % (factor of 9.67) while for the 100 mK errors, the

corresponding figures are 113 % to 11 % (factor of 10.27). If 500 mK errors are included that

factor increases to 24.6 (468 % to 19 %). Figure 9 illustrates the distribution, which shows

significant correlation between the different precision errors, indicating a uniform response of

the algorithm to the different noise levels in the measurements.
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5.2.5 Pristine Planetary Heat Flow
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Figure 10. Distribution of heat flow relative error for different pristine heat flow environments. Each bar represents the number

of scenarios with errors greater than the previous value, up to and including the error value under the bar (e.g. the bar at -0.1

represents values in the interval (-0.25, -0.1]. These results include  conductivities with Gaussian and systematic errors up to 20

%.

Given higher pristine planetary heat flow, the heat flow estimates are recovered with greater

accuracy, as suggested in Section  4.1. For instantaneous measurements, optimized heat

flow estimates are, on average, accurate to 7 % at 25 mW/m2 and 35 % at 5 mW/m2; roughly

20 times more accurate than the direct estimates. For long-period measurements, heat flows

are,  on average,  optimized to approximately  3 % accuracy at  25 mW/m2 and 9 % at  5

mW/m2, respectively 3 and 7 times more accurate than the direct estimates. The distribution

in Figure 10 illustrates the relatively pathological nature of the low heat flow environment.

5.2.6 Skin Depth
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Figure  11. Distribution of heat flow relative error for different skin depth environments. Each bar represents the number of

scenarios with errors  greater than the previous value, up to and including the error value under the bar (e.g. the bar at -0.1

represents values in the interval (-0.25, -0.1]. These results include  conductivities with Gaussian errors up to 20 %.

Naturally,  the  lower  skin  depth scenarios  generally  provide  more  accurate  initial  and

optimized heat flow estimates, where the deeper measurements provide the more accurate

heat flow estimates.  Directly  measured,  the heat  flow at  low skin depth  (0.94 m) is,  on

average, accurate to within 192 % while optimization increases the accuracy to 5 %. At high

skin depth (1.27 m), the former figures are revised upwards to 253 % and 21 %. Figure 11

illustrates the distribution of results.

Note  that  the  results  relative  to  each  parameter  discussed  above are  filtered  only  with

respect to the specific parameter, and conductivity. For example, if heat flow magnitude is

considered in  the skin depth results:  at  low skin  depth  the heat  flows are,  on average,

optimized to an accuracy of 2 % at 25 mW/m2 pristine heat flow, while at high skin depth the

heat flows are, on average, accurate to 35 % at 5 mW/m2. The preceding figures represent

improvements on the direct estimates by factors of 33 in the former case and 12 in the latter.

The evolution of heat flow estimates with respect to the preceding parameters are shown in

Appendix B.

5.3 Systematic Conductivity Errors

Systematically inaccurate conductivities introduce instabilities, with results depending on the

profile  of  the  conductivity.  For  example,  for  the  low  skin  depth  scenario,  where  the

conductivity  changes rapidly  at  shallow depth,  using bulk  conductivity leads to the most

inaccurate  optimized  results  (30  %),  while  for  the  high  skin  depth  scenario  with  near

homogeneous conductivity,  using bulk conductivity is more permissible (10 % error after

optimization). These results are illustrated in Figure 12, where the bulk conductivities in the

low skin depth cases (left plots) produce the largest deviations from the true temperature

gradient. Generally, overestimated conductivity (with a resulting low temperature gradient)

leads to overestimated optimized heat flow, and vice versa (also see Figure 13).
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Figure  12.  Background  temperature  profile  results  for  temperature  measurement  inversions  with  low  skin  depth  (0.94  m)

scenarios  (left) and high skin depth (1.27 m) scenarios (right). The upper middle and lower pairs represent measurement depths

of 4.6, 3.28, and 2.13 m, respectively. The different curves (see legends) show results for conductivities with no errors (0), and

respective mean (< >), Gaussian random (~), systematic high (+| |) and systematic low (-| |) errors for 10 % and 20 %  noise

amplitudes. The grey squares are sensor locations.

More  specifically,  where  conductivity  estimates  are  high  by  10-20  %,  heat  flows  are

optimized to accuracies in the range 19-39 %, on average, while similarly underestimated

conductivities produce heat flow estimates which are respectively 20-24 % inaccurate. The

preceding figures are in contrast to conductivities with accurate, but noisy profiles where

conductivity noise of 10-20 % produces optimization errors in the range 9-24 %. The former

cases are typically 7-25 times more accurate than corresponding direct estimates.
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Figure 13. Heat flow estimates (a) and relative errors (b) relative to thermal conductivity estimates and relative errors. These are

for long period subsurface temperature measurement scenarios taken at 1 Martian year from Ls 252.7, with measurement depth

4.6 m, errors up to 50 mK, skin depth of 0.94 m and a pristine heat flow of 25 mW/m2. Note that the bulk conductivities and those

with Gaussian noise up to 20 % are not included in the plots.

Data  for  conductivities  with  systematic  errors  larger  than  20  %  are  produced  only  for

measurements monitored over (or taken at) 1 Martian year from Ls 252.7 at 4.6 m depth,

with 50 mK temperature errors (Figure 13). Where conductivities are high by 40-320 % the

heat  flow  inaccuracies  are  in  the  range  34-131  %  (optimized)  and  56-219  %  (direct).

Conductivities  low  by  40-50  %  produce  heat  flows  with  errors  in  the  range  40-55  %

(optimized) and 37-46 % (direct). Note that the direct estimates approach a 1:1 relationship
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with the conductivity errors as the influence of temperature measurement errors and the

temperature variation are minimised.

Direct heat flow estimates have similar tolerance to systematic conductivity errors up to ±40

% and optimized heat flow estimates, likewise, up to ±20 % (Figure 13). The preceding result

also holds with the use of bulk conductivities. Figure 13 shows that heat flows are optimized

to  a  limiting  value  (while  direct  estimates  increase  linearly)  with  increasing  systematic

conductivity errors; this behaviour holds for any given scenario, with variation in the curve

parameters (equation) based on that of the model parameters across individual scenarios

(pristine heat flow, monitoring period, skin depth, temperature measurement errors).

6 Discussion

6.1 Scenarios

The results show that inverting a depth-resolved subsurface temperature measurement can,

in the majority of tested scenarios, lead to planetary heat flow estimates more accurate than

those  directly  determined  from  the  temperature  gradient  and  estimated  thermal

conductivities.  Calculating  heat  flow  by  taking  the  mean  temperature  across  several

measurements over a given period generally gives more accurate estimates than calculating

heat  flows  from  individual  measurements,  then  averaging  them;  this  is  because  the

temperature measurement errors tend to be averaged out in the former method, whereas

they are amplified in the latter. The opposite happens with conductivity errors, therefore a

comparative assessment is required where the conductivity errors are significant – further,

using  both  calculation  methods  can  deliver  insight  into  the  relative  importance  of  the

contributing error parameters.

Optimization  increases  the  accuracy  of  direct  estimates  by  factors  between  1-1000,

depending  on  the  characteristics  of  the  measurement  scenario.  Direct  estimates  have

accuracies  between  0-444  %,  likewise,  optimization  between  0-478  %  –  the  critical
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difference being, as Figure 6 shows, the Gaussian distribution about 0 % for the optimized

heat flows. Optimization tends to provide the most useful results with instantaneous or short

period  measurements  taken  at  the  shallowest  depths,  where  direct  estimates  typically

achieve poor results. The overall results demonstrate a 52 % chance of achieving a direct

heat flow estimate more accurate than 40 % (using the temperature averaging method) with

the same being 82 % after optimization.

Directly calculated, the heat flow increases linearly with higher assumed bulk conductivity,

while optimized, the heat flow estimates tend to a limiting value with higher bulk systematic

errors in the assumed conductivity, as illustrated in  Figure 13; optimization with unknown

conductivity can therefore be used to place bounds on the true conductivity profile.  The

background heat flow estimate is also less sensitive to temperature precision errors with

optimization,  which  can  be  gathered  from  the  columns  of  Table  1 in  Appendix  B.  The

reduced sensitivity to errors in optimization is due to the constraining effect of the other

model parameters (boundary and internal conditions), therefore, the other parameters must

be robustly known for the behaviour to be used effectively.

Use  of  bulk  conductivity  is  permissible  where  the  conductivity  profile  is  relatively

homogeneous  over  a  given  depth;  if  there  is  substantial  variation,  use  of  the  bulk

conductivity is likely to produce relatively inaccurate heat flow estimates over said depth, as

evidenced in  Figure 12. Precision errors in conductivity have a negligible impact given an

accurate  depth-profile.  The  conductivity  depth-profile  can  be  discerned  from  the  mean

temperature gradient with depth, given the regolith is successfully monitored over one or

more Martian years.

Longer  monitoring  periods  and  deeper  measurements  lead  to  more  accurate  heat  flow

estimates in general.  Optimized heat flows are less sensitive to monitoring period in the

tested scenarios of  0.25-1 Martian year after  Ls 252.7,  though sensitivity increases with

exposure to the temperature variation through higher skin depth or shallower measurement

depth. For instantaneous measurements, the heat flow estimates depend on the degree of
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masking of the mean subsurface temperature by the temperature variation; results indicate

that the most accurate optimized heat flows can be expected from measurements taken

around  the  vernal  equinox  (0.25  Martian  years  from Ls 252.7)  or  towards  the  summer

solstice (0.5 Martian years from Ls 252.7) where the temperature variation is low.

6.2 Methodology

The  initial  heat  flow  estimates,  obtained  directly  from  the  temperature  gradient  and

conductivity, are applied here in a strictly generalised sense – i.e. the heat flow is calculated

in exactly the same manner for all measurements, as noted in Section  5.1, to achieve a

consistent  bulk  analysis  of  the  results.  For  any  particular  measurement  scenario

(instantaneous measurements, in particular), the use of the two lowest sensors to calculate

the heat flow may not be the best approach; the use of more or different sensors may be

more appropriate.

The inverse parametrization used herein allows the solution space of a given scenario to be

systematically characterized with a range of standard deviations and covariance operators;

previous approaches with the method appear to involve a mixture of trial  and error and

educated guessing to identify suitable standard deviation values.  The space of standard

deviations permits the identification of a distinct subspace from which viable solutions can be

taken. The relative error of the basal heat flow is used here to effectively illustrate the errors;

however,  in  a  real  scenario  this is  not  available.  Therefore,  the values of  the heat  flow

estimates and/or the form of the misfit  function space require examination to identify the

region of the solution space, as discussed in Section  2.3 (also see  Figure 5a, c and e).

Effectively, for heat flow, the solution space can be found for any given value of standard

deviation for  the temperature measurement  errors by varying the value of  the heat  flow

standard deviation.

The most ill-determined problems may not provide any physically meaningful solutions within

a given solution  space.  This  usually  points to  significant  systematic  errors in  the model
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parameters  or,  a  flaw  within  the  model  itself;  for  example,  where  the  temperature

dependence of the model parameters is significant. The effects of temperature dependence

can be simulated by the introduction of time- and depth-dependent regolith heat sources in

the primal heat flow equation, though the complex effects may be difficult to reproduce. The

method presented here is useful where the perturbing effects of temperature dependence

can be minimised – it would benefit from an extension of the theory to explicitly account for

temperature dependence.

It is important to note that the work presented here assumes a horizontally homogeneous

medium, such that the background heat flow determined corresponds to the planetary heat

flow from the interior.  Extrapolating the estimated background heat flow to a regional or

global mean value requires further work similar to that presented in Grott and Breuer (2010  )

which  takes  account  of  lateral  inhomogeneity  across  the  Martian  surface.  The  global

estimates presented therein can, for example, be normalized to the local measurement to

provide an updated global mean estimate of Martian heat flow.

Appendices

A. Gradient of the Mis't Function

The gradient γ is found by analytical development of the duals (e.g. Shen and Beck, 1991  ;

Tarantola, 2005  ) of Equations -. The dual equations take the same form as Equations - (the

primals), except with a reversal of the time component of Equation  to −ρc ( z )
∂T

DU ( z , t )
∂ t  and

all boundary parameters homogeneous (D superscript distinguishes the dual parameters).

By setting the source terms and dependent variables of the primal-dual  pairs as mutual
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duals, such that the scalar product ⟨T
DU ( z , t ) , SU ( z , t ) ⟩ is set equivalent to ⟨ S

DU ( z ,t ) ,T U ( z , t ) ⟩

and likewise ⟨TDS ( z ) , SS (z)⟩−⟨SDS ( z ) , T S ( z ) ⟩=0,  T
DU ( z , t ),  the  dual  temperature  variation,

becomes  equivalent  to  S
U ( z , t ) in  Equation   (and  T

U ( z ,t ) to  S
DU ( z ,t ))  with the  same

following in Equation .

The  homogeneous  boundary  conditions  of  the  dual  equations  allow  straight  forward

analytical development of the  dual of  
∂d

∂m
≡
∂g (m )
∂m  in  γ; calculation of  

∂d

∂m  is usually non-

trivial (e.g. Wang, 1992  ). With the equivalence of the primal temperature and dual source, a

perturbation δ d=g(m)−d0 in misfit function ∑ (Equation ) represents a perturbation δT ( z ,t )

in the temperature and δ S
D ( z ,t )=δSDU (z , t )+δSDS(z ) in the dual heat sources, which gives

δT
D ( z , t ) upon solution of the duals of Equations -. The dual of γ can therefore be calculated

with the dual of 
∂d

∂m , from which γ can be obtained by application of a weighting operator; in

the quasi-Newton procedure, the latter is the inverse of the dual of the Hessian of ∑, 
∂ γ

∂m .

For the planetary heat flow, 
∂d

∂FB
S
=−TDS

.
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B. Evolution of Heat Flow Estimates Relative to Monitoring

Period,  Temperature  Precision,  Measurement  Depth  and

Skin Depth

Table 1 shows a selection of the model data (with initial heat flow directly calculated from the

mean temperature and excluding 500 mK temperature modelling errors).  Table 1 and the

presentation  of  parameter-specific  results  in  Section  5.2 illustrate  which  parameters

contribute to different peaks and trends in the general distribution of results in  Figure 6. It

can be gathered, for example, that optimization results with heat flow relative error between

0.75-10 typically reflect high skin depth scenarios with instantaneous measurements taken

at 0.75 Martian years up to 2.13 m depth.
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Table 1. Relative errors in heat flow for the low skin depth measurement (blue, upper) and high skin depth measurement (green,

lower) across conductivity scenarios with 10-20 % Gaussian and systematic error, temperture measurements with 50-100 mK

errors and all pristine heat flow scenarios. For each pair of errors shown, the left value is that for the heat flow calculated from

the temperature and thermal conductivity while the right value (shaded cells) is for the optimized heat flow estimate. Time is

measured from Ls 252.7.

D
ep

th
 [

m
]

Instantaneous Measurement Time [Martian Years] Measurement Monitoring Period [Martian Years]

E
rro

r [K
]

0.25 0.5 0.75 1 0.25 0.5 0.75 1

2.
13

0.83 0.16 2.34 0.20 2.50 0.56 3.25 0.20 0.75 0.18 0.37 0.14 0.21 0.10 0.18 0.13 0.1

0.56 0.16 1.14 0.19 0.80 0.56 1.35 0.19 0.69 0.18 0.38 0.14 0.18 0.10 0.16 0.13 0.05

3.
28

1.64 0.12 1.02 0.10 2.61 0.21 1.50 0.11 0.34 0.06 0.37 0.06 0.15 0.08 0.14 0.10 0.1

0.67 0.07 1.24 0.08 1.56 0.21 0.40 0.08 0.28 0.06 0.26 0.06 0.18 0.08 0.15 0.10 0.05

4.
6 1.74 0.07 0.53 0.09 2.86 0.12 0.48 0.09 0.14 0.08 0.12 0.08 0.11 0.09 0.11 0.09 0.1

0.90 0.07 0.33 0.08 0.76 0.12 0.57 0.10 0.11 0.08 0.14 0.08 0.11 0.09 0.11 0.09 0.05

▲LOW SKIN DEPTH [0.94 m] ▲ ▼HIGH SKIN DEPTH [1.27 m] ▼

2.
13

0.55 0.43 1.61 0.50 0.70 1.00 4.07 0.81 1.04 0.56 0.13 0.32 1.00 0.11 0.17 0.07 0.1

2.14 0.38 1.71 0.48 1.00 0.98 5.77 0.84 0.92 0.56 0.13 0.32 0.97 0.11 0.12 0.07 0.05

3.
28

2.21 0.15 3.55 0.06 0.68 0.38 2.11 0.08 0.91 0.11 0.52 0.10 0.28 0.03 0.10 0.07 0.1

1.08 0.13 2.28 0.04 2.32 0.38 2.26 0.07 0.91 0.11 0.58 0.10 0.15 0.03 0.10 0.07 0.05

4.
6 1.09 0.09 3.82 0.07 2.53 0.12 1.46 0.11 0.22 0.05 0.31 0.04 0.28 0.04 0.11 0.06 0.1

1.88 0.04 2.08 0.07 0.82 0.12 0.81 0.08 0.18 0.05 0.22 0.03 0.17 0.04 0.10 0.06 0.05

1 (-) 167 (1) 335 (1) 502 (1) 669 (1)

Number of Measurements (Measurement Frequency [Sol-1])
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