Under consideration for publication in Formal Aspects of Computing

IEEE 1394 Tree Identify Protocol:
Introduction to the Case Study

Savi Maharaj', Judi Romijn? and Carron Shankland!

IDepartment of Computing Science and Mathematics
University of Stirling, United Kingdom

2Department of Computing

University of Nijmegen, The Netherlands

Keywords: IEEE standard, FireWire, comparative case study, formal methods.

Abstract. We introduce a comparative case study on the application of formal methods and techniques
to the Tree Identify Protocol of the IEEE standard 1394 serial multimedia bus. The Tree Identify Protocol
makes an ideal subject for this purpose because it is small yet complex, and may be modelled in a variety of
ways. We provide an informal explanation of the protocol, describe how the case study was conducted, and
give an overview of the results.

1. Background

Networks of multimedia devices and equipment are increasingly common in homes and offices. Sophisticated
systems have been developed for connecting the components of such networks, such as the Universal Serial
Bus (USB) and the IEEE 1394 High Performance Serial Bus (“FireWire”, “Lynx”, “i.Link”). A key feature
of these interconnection systems is that they allow dynamic reconfiguration of the network without requiring
devices on the network to be switched off, a feature known as “Plug-and-Play”, “hot-plugging”, etc. To
support such versatility, these systems have a complex architecture and behaviour, involving multiple layers
of structure and multiple phases of activity, each of which may incorporate a variety of protocols and
algorithms.

A full understanding of such a system is difficult to achieve. Many factors need to be taken into account,
from the abstract, high-level structure, to low-level details such as timing characteristics. Complex behaviours
must be analysed, both within each phase of the system’s functioning and at the inter-phase boundaries,
where subtle, unexpected behaviours may emerge. Yet there are high requirements for reliability, accuracy,
and performance placed upon such systems, and widespread commercial interest in their correctness, so it
is essential that they are well understood.

Formal methods can be of great value in helping to understand such a system. By appropriate choice
of formal method, and of an appropriate formal model within the possibilities afforded by that method, it
is possible to study the system at different levels of abstraction, or to zoom in on particular aspects of its
behaviour. The papers in this special issue of Formal Aspects of Computing give an idea of the wide range
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of choices for modelling and analysis that are provided by formal methods at the present state of the art.
The majority of the works presented deal with the formalization of the same problem, namely the protocol
used in the Tree Identify Phase in the physical layer of the IEEE 1394 serial multimedia bus. This collection
therefore constitutes a comparative case study in the use of formal methods, and adds to the growing body
of work of this kind (e.g., [ABL96, BG00, BMS96, FHO01, L195]) which serve an important purpose in
broadening awareness of the scope and possibilities of formal methods.

1.1. The workshop

The papers in this collection were submitted following a workshop held in Berlin in March 2001, as a satellite
of the Formal Methods Europe conference. The IEEE 1394 bus was chosen as the subject of this study
for several reasons. Firstly, it is an international standard, therefore there is a clear and widely available
statement of its definition [IEE95]. Secondly, there have already been several efforts at applying formal
methods to aspects of IEEE 1394 ([BSdART00, BST00, D’A99, DGRV00, GV98, Rom01, SvdZ98, SV01,
SS01, SV99], also see surveys in [MS00, Rom01, Sto02]), which provide a departure point for new modelling
attempts. Finally, there is a wide and varied range of technical issues to be considered in formalizing IEEE
1394, so that it poses a challenge to the capabilities of formal methods.

The main focus of the workshop was the protocol prescribed for the Tree Identify Phase of IEEE 1394.
For convenience, we shall refer to this protocol as the “Tree Identify Protocol”, though this name is not used
in the standard. Before the workshop, would-be contributers were provided with excerpts from IEEE 1394
comprising the description of the Tree Identify Protocol. After the workshop, participants were encouraged
to evaluate their contribution by comparison with those of other participants, and by reflecting upon the
answers to a number of questions, given in Section 3.

1.2. Structure of this paper

Section 2 gives an informal but detailed explanation of the salient aspects of IEEE 1394, and in particular,
the Tree Identify Phase. This section is intended to complement the remaining papers in this collection by
providing explanations of all technical terms relating to IEEE 1394. Section 3 reproduces the points of self-
evaluation which the authors were asked to address. Finally, Section 4 gives an overview of the contributions
that were accepted for this collection.

2. IEEE 1394
2.1. Overview

The 1394 bus is designed to connect together a number of distributed components (multimedia systems and
devices). To provide maximum usability, the bus must be scalable and cope easily with changing network
configurations. Each node has a number of ports which may be connected to other nodes.

To render the complexity of the system more accessible, the behaviour of the bus is described in layers in
the style of OSI, with physical, link, and transaction layers, and a vertical management layer, as illustrated
in Figure 1. In this collection of papers we are concerned with behaviour of the physical layer (referred to
in the standard [IEE95]! as PHY). The behaviour of each layer is in turn split into different phases, each
associated with a different task. Figure 2 shows the PHY layer comprises the four phases Bus Reset, Tree
Identify, Self Identify, and Normal Operation.

The Tree Identify Phase spans a tree in the network, and the node that is the root has the special task of
being the cycle master (which we will not explain further). The idea behind the Tree Identify Phase is that
since the network configuration is not fixed it makes no sense to expect a particular component to always

I In the following “the standard” should be taken to mean [IEE95]. The changes described in the Supplement [TEE00] do not
affect the basic description of the protocol (although some important time parameters are changed).
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Fig. 1. Overall Architecture of IEEE 1394

Fig. 2. Phases in PHY layer of IEEE 1394

be present and be the root. Therefore, any of the components may be the root?, and a new root is elected
every time the network configuration changes. The Tree Identify Phase elects the new root.

The description of the whole bus was published as an IEEE standard in 1995 [IEE95], and amended
in the Supplement of 2000 [IEE00]. These documents use a combination of informal English text, state
transition diagrams, and C code to describe the behaviour of the bus. We present the protocol informally,
but in detail, below. The authors of the other papers in this collection worked directly from the standard
IEEE 1394 documentation, including the C code which describes the activity in each state more formally and
concretely. Figure 4-23 Tree-ID state machine and Table 4-45 Tree-ID actions and conditions reprinted in the
Appendix with permission from IEEE Std 1394-1995 “IEEE Standard for a High Performance Serial Bus”
Copyright(©1996, by IEEE. The IEEE disclaims any responsibility or liability resulting from the placement
and use in the described manner.

For analysis purposes, the liveness and safety properties required of the protocol are:

1. A root is eventually chosen.
2. Only one root is chosen.

Further, the protocol is designed for use on connected networks, will correctly elect a root if the network is
acyclic, and will report an error if a loop is detected.

2.2. Tree Identify Phase

On entering the Tree Identify Phase all nodes in the network have equal status. They have only information
about themselves; in particular, they know which of their ports are connected to other nodes. This is
illustrated in Figure 3; there are connections, shown by solid lines, but no tree structure. Note that each link
connects exactly two ports. Note also that nodes may actually enter the Tree Identify Phase at different times,
caused mainly by the difference in times at which they signalled the preceding bus reset. We shall not go into

2 Actually, not all nodes may have the capabilities to be cycle master. If a node turns out to be root and not capable of being
cycle master, other 1394 functionality tries to find a more suitable candidate, sets the FORCE_ROOT flag at that node, clears
the FORCE_ROOT flags at all other nodes and forces a new bus reset. The implications for the Tree Identify Protocol of setting
this flag are discussed in Section 2.2.3.
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Fig. 3. Sample Network Topology

signal meaning

IDLE explicitly transmit “no message”

TX_PARENT_NOTIFY transmit “be my parent”

RX_PARENT_NOTIFY receive “be my parent”

TX_CHILD_NOTIFY transmit “you are my child”

RX_ROOT_CONTENTION receive “root contention”
RX_PARENT_HANDSHAKE receive acknowledgement “I am your parent”
RX_CHILD_HANDSHAKE receive acknowledgement

Fig. 4. Signals in the Tree Identify Phase and their interpretation

the details here; see the contribution of Romijn which deals specifically with this timing problem [Rom02].
All nodes behave in essentially the same way, modulo differences between manufacturers (which should
still comply with the IEEE standard). This ensures that the election protocol is unbiased in the normal
case. Special cases, including the use of a parameter (FORCE_ROOT) to bias the choice, are described in
Section 2.2.3. The Tree Identify Protocol operates by constructing a spanning tree of the network, through
nodes interacting with their neighbours.

Messages between nodes are defined in [IEE95, Tables 4-27 and 4-28] as combinations of voltages on
wires. All signals of the Tree Identify Phase are shown in Figure 4, together with their intended meaning.

Signals are continuous, allowing new signals to be composed by combining existing signals, as illustrated
in Figure 5. In fact, all signals starting RX are such combined signals. Note that, due to signal delay, what
node A receives on a port is actually the result of what node A is currently transmitting and what the
neighbour of A has been transmitting a little while ago.

As we shall see, the authors have used a variety of approaches to modelling communication, necessarily
abstracting from the actual physical implementation. We discuss the implications of these choices in Section 4.

2.2.1. The Tree Identify Phase

The basic operation of the Tree Identify Phase is shown in Figure 6, which is based on [IEE95, Figure 4-23].
In the simplest situation, a node will move through the three states T0: Tree-ID Start, T1: Child Handshake
and T2: Parent Handshake, and pass on to the Self Identify Phase. Broadly, the decision to move from one

A transmits B (neighbour of A) transmits  resulting signal on the wire connecting those nodes
IDLE IDLE IDLE

IDLE TX_PARENT_NOTIFY RX_PARENT _NOTIFY

TX_PARENT_NOTIFY TX_PARENT_NOTIFY RX_ROOT_CONTENTION
TX_PARENT_NOTIFY TX_CHILD_NOTIFY RX_PARENT _HANDSHAKE

IDLE TX_CHILD_NOTIFY RX_CHILD_HANDSHAKE

Fig. 5. Combined Signals in the Tree Identify Phase
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Fig. 6. States of the Tree Identify Phase

state to the next is based on the number of neighbour nodes requesting to be a child, ¢, the total number of
neighbours, n, and interactions with those neighbours.

The node enters T0: Tree-1D Start from the Bus Reset Phase. If n —c¢ > 1 in T0 the node waits in T0 for
RX_PARENT._NOTIFY, “be my parent” requests, from its neighbours (potential children). As each request
arrives, it is noted that that neighbour is now a child, and c is updated. When n — ¢ < 1 the node transitions
to state T'1: Child Handshake.

Upon entering state T1: Child Handshake, the node starts transmitting TX_CHILD_NOTIFY, “you are
my child” acknowledgements, to all children. In the case that n — ¢ = 1 (in state T1) then the node has
one neighbour which did not transmit a “be my parent” request. It asks to be a child of that neighbour by
transmitting its own TX_PARENT_NOTIFY, “be my parent” request, on that port.

Then, in state T1 the node waits for a handshake with each of its children. The handshake corresponds
to receiving an RX_CHILD_HANDSHAKE, “I know you are my parent” acknowledgement. This signal is
produced by the combination of TX_CHILD_NOTIFY from the parent and IDLE from the child. Upon
reception, the node transitions to state 72: Parent Handshake. The IDLE signal from the child means it has
transitioned to state S0: Self-ID Start, which is not described here. So the children of a node must finish the
whole Tree Identify Phase before the node itself can move beyond state 7'1.

In state T2: Parent Handshake the node waits only for a handshake with its parent. The handshake
corresponds to receiving an RX_.PARENT_HANDSHAKE, “I am your parent” acknowledgement. This signal
is produced by the combination of TX_PARENT_NOTIFY from the child and TX_CHILD_NOTIFY from
the parent. Upon reception, the node transitions to state S0: Self ID start, and starts transmitting the IDLE
signal to all its neighbours. It takes no further part in the election; it knows its children and its parent. One
node will make this transition instantly, because it has n — ¢ = 0, has no parent with whom to perform a
handshake and is therefore the root node.

In the case where n —c = 1in T0 (i.e. leaf nodes), n — ¢ < 1 is true immediately and the nodes transition
from T0 without waiting for parent requests. The spanning tree over the network is therefore built from the
leaves inwards.

2.2.2. Ezxample

To illustrate the tree identify process, given the network in Figure 3 and assuming D is transmitting IDLE
initially, the following sequence of signals might be observed on the link between node D and E.
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E D TX_PARENTNOTIFY D detects RX_.PARENT_NOTIFY

D E TX_CHILD_NOTIFY E detects RX_ PARENT_HANDSHAKE

E D IDLE D detects RX_.CHILD_HANDSHAKE

D E IDLE D and E have established parent-child relation

The signals and growing tree structure of the entire network are depicted in Figure 7. Here, labels inside
nodes indicate the state of that node in the tree identify process. Dotted arrows are labelled with the signal
that is sent in the direction of the arrow. The absence of an arrow indicates the IDLE signal. Solid arrows
indicate that a parent-child relationship has been established, with the arrow pointing in the direction of
the parent.

Problems occur if the expected confirmation is not received in state 72; this leads to root contention.
Root contention is rather complex, and is dealt with in the next section.
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2.2.8. Special Cases

Root contention Since signals experience a delay and may cross, requests are not atomic and root con-
tention may arise (two nodes simultaneously transmit TX_PARENT_NOTIFY, “be my parent” requests,
to each other yielding RX_LROOT_CONTENTION). This can only occur on one connection in the network,
between the last two nodes that transition from state 70 to T1, and the node that wins the contention will
be the root of the tree.

Since only one node can be the root, the contention must be resolved; this is achieved through ran-
domisation and timing. The standard specifies that each node chooses a random Boolean and waits for a
long or short time, depending on the value of that Boolean. If, after the wait period is over, there is an
RX_PARENT.NOTIFY signal from the other node (“be my parent”) then this node becomes the root.
If there is no such message then this node retransmits its own TX_PARENT_NOTIFY, “be my parent”
message, and root contention may result again.

With reference to the state transition diagram of Figure 6, this works as follows. The root contention
situation is recognised by each of the two nodes (although possibly at different times) in state 72 upon
reception of RX_LROOT_CONTENTION. At this point a node transitions to state T'3: Root Contention and
starts transmitting IDLE to the neighbour on the link in contention.

In state T3: Root Contention a random Boolean is drawn, and a timer is set to expire after a short
time (ROOT_CONTEND_FAST, if the Boolean is 0), or a long time (ROOT_CONTEND_SLOW, if the
Boolean is 1). The node then waits for the timeout. When this occurs, if the node receives IDLE on the link
in contention it transitions to state T2, starts transmitting TX_ PARENT_NOTIFY to the neighbour once
again, and waits for a parent handshake, or root contention. If the node receives RX_PARENT_NOTIFY, it
transitions to state T'1, where it transmits the TX_CHILD_NOTIFY, “you are my child” acknowledgement,
and waits for a child handshake. When a node ends up in state 71 from T3, it is the winner of the contention
and the root of the tree.

For example, given the network status in Figure 3 and assuming both B and D are transmitting IDLE
initially, the following sequence of signals might be observed on the link between B and D.

B signals D signals meaning
TX_PARENT_NOTIFY TX_PARENT_NOTIFY B and D detect RX_LROOT_CONTENTION
IDLE IDLE back off and wait
Assume D chooses short and is receiving IDLE from B.
IDLE TX_PARENT_NOTIFY D asks B to be its parent

At this point D will be in state T2. B is either still waiting in state 7'%, or has sent a parent request and is
also in T2, but network delay means that D did not see the request before sending its own request again.
In the first case the spanning tree shown in Figure 7(f) results, while in the second case contention results
again.

The protocol here is similar to one presented in Distributed Algorithms [Lyn96, page 501] where a
different method of contention resolution is used (the node with the highest identifier becomes the root).
This approach will not work for IEEE 1394 because the nodes do not have usable identifiers during the
Tree Identification Phase®. Such identifiers are not assigned until the Self Identify Phase. The protocols were
developed independently.

Loop detection The protocol of the Tree Identify Phase automatically detects loop configurations. If there
is a loop in the network, as in Figure 8, then for each node on the loop the transition from T0 to T1 does
not get enabled because they will be waiting for 2 neighbours to communicate, so n — ¢ > 1. Instead, a
timeout generates an error message. The states resulting when the Tree Identify process gets stuck can be
seen in Figure 8.

With reference to the state transition diagram of Figure 6, this works as follows. Upon entering state 10,
a timer is started. When this timer reaches the value CONFIG_TIMEOUT, a loop is detected, and an error
message for other 1394 layers is generated.

3 The nodes do have hard-wired, unique identifiers but these are 64 bits long. Only the simple signals described above are
transmitted during the Tree Identify Phase, and these can not carry such information.
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Fig. 8. Network topology with a loop

name definition 1394 values 1394a values
CONFIG_.TIMEOUT detect a loop in TO 166.6us — 166.9us 166.6us — 166.9us
ROOT_CONTEND_FAST the short time 0.24us — 0.26us 0.76us — 0.85us
ROOT_CONTEND_SLOW  the long time 0.57us — 0.60us 1.59us — 1.67us
FORCE_ROOT_TIMEOUT  wait in TO 83.3us — CONFIG_TIMEOUT  83.3us — 162.0us

Fig. 9. Time constants in 1394 and 1394a

The FORCE_ROOT flag Lastly, the Tree Identify Protocol can be biased by use of the FORCE_ROOT
parameter. This is a local Boolean parameter to the physical layer of each node, which can be set and cleared
locally by the node itself, or remotely by any other node in the network. If the FORCE_ROOT parameter
is set this builds in extra delay to state T0, potentially stopping the node from taking the T0:T1 transition
when n — ¢ < 1 is true, and waiting for a timeout, at which point n — ¢ = 0 should hold.

The intention is that if exactly one node in the network has FORCE_ROOT set, that node becomes
the root of the tree in the Tree Identify Phase. The 1394 management layer ensures that this is the case.
However, because of the dynamic plug-and-play functionality, a network may (temporarily) have more than
one node with FORCE_ROOT set, in which case any node on a path between two biased nodes may become
root in the Tree Identify Phase.

With reference to the state transition diagram of Figure 6, this works as follows. Upon entering state 70,
a timer is started (the same timer as used for loop detection). The transition to state T'I is enabled if either
n—c=0,orif n—c=1and FORCE_ROOT is not set, or if n — ¢ =1 and FORCE_ROOT is set and the
timer has reached the value FORCE_ROOT_TIMEOUT.

2.3. Timing constraints of the Tree Identify Phase

The standard [IEE95, Table 4-32] and the amendment [IEE00, Table 8-14] define certain timing constants
used in root contention. These are presented in Figure 9.

The standard also lays down certain physical limitations, which in turn affect timing values. Cable length
is defined to have a maximum value of 4.5m. Signal velocity is defined to be less than 5.05ns/meter. These
two determine the maximum delay in transmitting a message from one node to its neighbour of 22.725ns.

2.4. 1394-1995 versus 1394a-2000

The amendment [IEE00] to the IEEE 1394 standard [IEE95] contains some adjustments to the 1394 func-
tionality. Any device being sold as IEEE 1394 compliant may now be compliant with either [IEE95] or as
amended by [IEE00], hence with all the adjustments of that amendment. For the Tree Identify Phase the
adjustments in the amendment concern only the timing constraints. This means that a 1394 network may
consist of nodes, some of which have the 1394 timing constraints, with the others having 1394a [IEE00]
timing constraints.

In all contributions to this special issue, networks are assumed to have uniform timing, i.e. either 1394 or
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1394a time constants, but not both. We defer a more detailed explanation of the use of the timing constraints
in these contributions to Section 4.

3. Points to Address

Taking our lead from the helpful questions posted by Abrial et al in the Steam Boiler case study [ABL96],
we asked authors to evaluate their contribution by considering the following questions:

e Which parts of the system are specified, at which level, and in which way (informally, rigorously, formally)?
Do you consider your chosen approach to be particularly expressive or particularly awkward for this sort
of problem?

e Which parts of the system are analysed, and in what way (manual, informal, partially or fully automated)?

e Have assumptions about the architecture or the behaviour of the system been made explicit and are they
documented?

e Is the solution easy to change? Following a change, can analyses be reused, or are all proofs invalidated?
e How long did it take:
— How much time has been spent on producing the solution? Give the number of person months, if
possible, for the various parts of the solution.

— How much preparation is needed to become sufficiently expert in the used specification framework in
order to be able to produce a solution to such a problem in that framework? Indicate the number of
weeks of training which is believed necessary for an average engineer to learn the methods.

e What are the premises for a good understanding of the proposed solution?

Is a detailed knowledge of the used formalism needed?
Can an average engineer understand the solution (with no special training)?

How much time do you believe is necessary for the average engineer without knowledge of the used
specification methods to learn what is needed to be able to understand the solution? Could you discuss
this solution with a non formal methods literate person, e.g. a customer?

Do you believe your solution provides a suitable alternative formalisation to the IEEE standard?

e Which of the other solutions are comparable with yours, and what are the major differences with respect
to them? Which other solutions complement your solution and in what respects?

The answers to these questions are given by the authors in their respective papers. Below, we attempt
to answer the the last question in more depth, i.e. how do the solutions compare to each other?

4. Results

The papers submitted after the workshop were refereed by at least one other workshop participant, and at
least one external reviewer supplied by the Formal Aspects of Computing editorial team. This modified co-
refereeing approach allowed the reviewing process to benefit both from the domain expertise of the workshop
participants, and the independence of the external reviewers.

Eight contributions were accepted for publication. Seven of these are formalizations of the Tree Identify
Protocol. Section 4.1 contains a brief overview of these. The eighth paper, by Stoelinga [Sto02], is a survey
of formalizations of the strategy for resolving root contention that is used in the Tree Identify Protocol, and
is regarded as an interesting companion to the other papers in this collection.

4.1. The Formalizations of the Tree Identify Protocol

For each contribution, we give the following information: the formalism that is used; the techniques and tools
used to support that formalism; the aspects of the Tree Identify Protocol that are formalized; the properties
that were verified. The discussion in this selection is very brief; the reader is encouraged to consult the papers
directly for full explanations.
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[ACM] Abrial, Cansell, and Mery [ACMO02] use the B Method formalism, which is applied using an event
driven approach. The technique used is proof-based development, which is supported by the tool Atelier
B. The Tree Identify Protocol is modelled as a series of refinements, starting from an abstract description
of the underlying graph. The models do not cover real-time behaviour, performance, or probabilistic
issues, and the treatment of root contention is left at an abstract level. The correctness of the protocol
is demonstrated by proving basic graph properties as well as proof obligations arising from refinement.

[VPM] Verdejo, Pita, and Marti-Oliet [VPMOO02] use the formalism of rewriting logic. The techniques
used are formal specification, execution of the specification, formal model-checking analysis, and formal
proof. The proof was carried out manually, while the other techniques were supported by the tool Maude.
The model consists of three descriptions, at different levels of abstraction, and covers both synchronous
and asynchronous communication, and timing aspects of the protocol. The properties that were verified
include safety, liveness, and total correctness.

[CM] Calder and Miller [CMO02] use the modelling language Promela and the model-checking tool SPIN. A
Perl script is used to automatically generate all network configurations within certain bounds, and model-
checking is used to verify a number of safety and liveness properties, expressed in Linear Temporal Logic
(LTL), for each of these configurations. There is a discussion of how these results can be extrapolated to
any size of network with a particular shape.

[SB] Schuppan and Biere [SB02] also apply a model-checking approach, this time using various implementa-
tions of the tool SM'V. The protocol is modelled using state machines and the properties to be verified
are stated using LTL and computation tree logic (CTL). Various models are checked, including some
representing a specific network configuration, and some which leave the network topology unspecified.
Timing constraints are modelled using counters, and the FORCE_ROOT flag is also represented. Bounded
model-checking is used to verify a number of safety and liveness properties for the given configuration.

[FS] Fidge and Shankland [FS02] use the probabilistic Guarded Command Language to model the
root contention aspect of the Tree Identify Protocol in a highly abstract fashion. Formal proof (conducted
manually) is used to derive probabilistic and timing results about the root contention protocol. Note that
time is not part of the model, but that timing results are derived from those on probability.

[KNS] Kwiatkowska, Norman, and Sproston [KNS02] also deal with probability, using the formalism of
probabilistic timed automata and the technique of probabilistic model checking. Like the previous
paper, they focus on the behaviour of the root contention protocol. The aim of their analysis is to calculate
the probability of successful contention resolution within a particular deadline. Their analyses are carried
out with the help of the tools PRISM and HYTECH, and their paper includes a comparison of the
performance of these tools.

[Rom] Romijn [Rom02] uses the formalism of timed automata and the technique of model-checking, as
supported by the tool UPPA AL. Her model concerns both the Bus Reset and the Tree Identify Phase
of IEEE 1394 and is focussed on a specific, problematic network configuration. She demonstrates the
presence of a bug in the Tree Identify Protocol: in certain situations, the protocol will falsely conclude
that there is a loop present in the network, and will generate an error message accordingly.

4.2. Comparison of the Contributions

To aid the reader in comparing the above approaches, we summarise in the following table how (and if)
particular issues are dealt with by each contributor. An “e” entry means that a feature is explicitly addressed
W,

or used in the paper. A blank means not relevant or not addressed. Some entries have an “o”; these are
explained below.
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[ACM] [VPM] [CM] [SB] [FS] [KNS] [Rom]

Which part of the protocol?

Tree spanning ° . ° ° .
Root contention o . o °

Probability

Timing . °

Force root

Loop detection ° o .

Method of Analysis

Manual Proof . . ° °
Refinement .

Model Checking . . . °
Fixed Topology . . .

- generated automatically )

Computer-Assisted Proof .

Which part of the protocol? Most of the contributions to this special issue choose to address the tree
spanning algorithm as described in the Tree Identify Phase. Some ([KNS] and [FS]) focus more tightly
on analysis of the sub-protocol of root contention resolution, using probability and/or time in the modelling.
Other authors ([VPM] and [SB]) model root contention explicitly but do not particularly analyse this aspect,
while others ([ACM] and [CM]) simply model contention resolution by nondeterminism or a single coin toss
(this is represented in the table by a “o” since contention resolution is modelled rather abstractly).

The model can be made more realistic by incorporating details such as probabilistic choice, or timing;
the point then is to carry out an analysis using that extra detail, as is done for probabilities in [FS] and
[KNS]. The contributions dealing with timing do so in different ways.

In the table, [FS] has a “o” for time, since time is not included in their model, but the final analysis
makes some comments about time. In [SB], and [VPM], counters over the domain of the natural numbers
are used. In [SB], one counter per node is incremented from zero to the timeout value in one-tick steps,
where one tick is exactly the delay of a message. The model is synchronous, in that each node in the network
must perform exactly one transition (possibly without effect) per time tick. The timeout values used in
[SB] are not related to the values of the standard. In [VPM], there is one counter for each message being
transmitted, and per node one counter for the FORCE_ROOT flag (if set) and one for loop detection. All
counters are decremented from the timeout value to zero in delay steps which are as large as possible, but
minimally Ins. The delays steps are performed only when no other step is possible. The timeout values for
the FORCE_ROOT flag and for loop detection are within the 1394 value ranges. The timeout values for
communication delay are constrained only in the analysis, and not by the 1394 physical limits. In [KNS] and
[Rom], clocks over the domain of the real numbers are used, corresponding directly to the timers in the 1394
state machines. Both contributions assume one rate for all clocks. In [KNS], the timeout values are from
1394a. The communication delay varies: in some experiments this is the value as constrained by the 1394
physical limits (rounded up somewhat), and in some it is the larger, maximal value for which root contention
was earlier shown to be correct (see also the survey contribution [Sto02]). In [Rom], the timeout values are
from 1394a. The communication delays are not modelled, but it is argued that these are not significant for
the error that is shown.

The overall behaviour of the protocol is affected by the FORCE_ROOT parameter. This is ignored by
many authors. Although FORCE_ROQOT affects timing in the protocol overall, and is intended to influence
the choice of root, it does not, for example, affect the time to resolve root contention, and it should not affect
the fact that a root is chosen. However, see [Rom] for a particular situation in which it has an effect on loop
detection.

Loop detection as implemented in the standard is explicitly modelled by some ([VPM], [SB] and [Rom])
and plays an important part in the analysis. [CM] uses a more abstract means of modelling loop detection:
in the analysis a stronger condition is checked by detecting infinite paths (in which the node does not make
the desired transition, T0 to T1 in this case). This approach is represented in the table by a “o”. Others,
such as [ACM] and [FS], describe the system at a more abstract level, and assume the network is acyclic.
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Method of Analysis Although modelling the system can on its own be very useful, the advantage of using
a formal method is that the modelling language is supported by analysis and reasoning techniques, and
often tools to automate reasoning. A variety of analysis techniques were used. While [FS] made a manual
proof, all other authors used tools to support their reasoning. In some cases, manual proof supported the
abstractions made in the model checking (as in [KNS]), or extended the results given by the model checking
(as in [CM]). [ACM] are unique in using a refinement approach to the problem. This is supported through
formal computer-assisted proof.

Most approaches use some form of model checking. An important question for those using model checking
relates to the range of models checked; is a single, fized topology checked, or is the analysis somehow more
abstract? The analysis done by [Rom] is focussed on a specific, problematic network configuration, and the
question of generalising the results is not tackled. By contrast, although the basic method of model checking
used by [VPM], [SB] and [CM] uses a fixed topology, they all also generalise their results in some way. [CM]
for example uses Perl scripts to automatically generate configurations up to a fixed size and run the model
checker automatically. In addition, manual proof is used to generalise the result to all networks of a particular
form (of any size). [VPM] uses model checking as a prototype stage, building confidence in the description
before a full (manual) formal analysis is carried out. Similarly, [SB] go on to further model checking using
a symbolic model checker to check networks of unspecified topology. They also use a C preprocessor to
help them set up particular topologies for checking. [KNS] also use a symbolic model checker, since using
probabilities adds to the complexity of the model checking problem.

Other Modelling Issues Finally, we note that several authors make modelling decisions which diverge to
some degree from the IEEE description of the protocol. For example, [VPM] model messages as discrete,
and assume that the network is secure - no messages are lost or corrupted. This is a useful abstraction used
by many authors, and makes the protocol simpler; however, in some models, the effect of assuming no loss
is that there is no “child acknowledgement” phase, and the parent node spends less (or even zero) time in
T1. In contrast, [SB] and [Rom] model line states, rather than discrete messages.

Another simplification is the decision of [CM] to model contention resolution in one step. In a model
checker it is important to reduce state space as much as possible. In this case, adding more attempts to
resolve contention would not have affected the validity of the properties checked, but would have seriously
affected the performance of the model checker. Moreover, if an artificial limit is to be imposed on a value,
then it makes sense to choose as small a value as possible.

A different modification of the root contention procedure can be seen in [VPM] where contention reso-
lution is modelled in an eager way. That is, rather than waiting the specified time and then checking for a
message, the node constantly monitors for a message while waiting. [VPM] allows the wait to be aborted
early, meaning that a contention round may take less than the time specified in the standard. This does not
affect the final result, i.e. the same node will become root; however, the time taken to resolve contention is
likely to be lower than in the standard.

In fact, the crux of successful formal modelling is choosing a sensible abstraction. The aim is to remove
detail which unnecessarily complicates the model or reasoning about that model, but without throwing
away crucial information. Some of the models presented are relatively high level: they view the network
as a whole, and simply model the changes from one network state to another. [FS], for example, does not
make the topology of the network explicit, therefore modelling all state changes over all possible network
topologies. The approach taken by [ACM] is similarly general, though in their final refinement the global
view of the network is augmented with local views from the point of view of each node.

One of the benefits of a comparative case study like this one is that it helps to draw out the differences
and similarities in approach of various formal methods (and their proponents).

4.3. Conclusions

In an ideal world we would like to see more widespread use of formal methods in developing standards such
as the IEEE 1394; however, the people who develop such standards often have no training in formal methods
and are perhaps not yet appreciative of the benefits of using them. As part of a drive to promote the use
of formal methods, comparative studies such as this have an important role to play. For formal methods
practitioners this study is offered as a benchmark, allowing them to apply their particular language, method
and tools to a well understood but tricky problem. For industrialists, we hope that this issue of Formal
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Aspects of Computing will be educational, allowing them to use their understanding of the basic problem
to gain understanding of the formal approaches being applied.

The contributions contained herein span a range of different techniques and styles of abstraction. Many
techniques used previously in the literature have been event based models; while there are some more of those
here, there are also state based models and property based models. More than anything, the papers which
follow demonstrate that there is no ideal formalisation which meets all needs (even for this relatively small
example). Each approach described here has something new to offer, some aspect in which it is particularly
useful. For example, the benefits of refinement are shown in the contribution of [ACM], allowing the model to
be developed highly abstractly at first. The model of [F'S] is also rather abstract, but this allows concentration
on the probabilistic aspects of the protocol while ignoring other concerns. In contrast, the analyses of [KNS]
and [Rom] are much more detailed, bringing out particular timing and probabilistic details. The model
checking approaches of [CM], [SB] and [VPM] allow the model to be executed in some sense, which may be
a more appealing technique for industrialists more used to programming.

Formal approaches are most effective when applied in tandem with the system development process, so
that bugs can be detected early. In this case, the IEEE 1394 and 1394a standards were developed without the
benefits of formal methods; therefore all formal analysis is post-hoc, with the disadvantage that there is no
possibility to change the standard when errors are discovered. Since the standards have been fixed for some
time, and explored by others fairly extensively, we did not expect any bugs to turn up. We were therefore
surprised that a significant yet rare error situation was detected by [Rom]. Other authors have identified
areas where the standard is ambiguous, or where there is a seeming inconsistency between different areas of
the standard. We are grateful to one of the anonymous referees for alerting us to an ambiguity of this kind.
We hope that the experience of work on formalising and analysing the Tree Identify Protocol will be useful
in future efforts to incorporate the use of formal methods in the development of such standards.
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A. Excerpts from the IEEE standard

The main description of the tree identify protocol is in Section 4.4.2.2 of the IEEE standard [IEE95]. The
major transitions of the protocol are described using state machine diagrams, and the actions of the states
themselves are described by C code and informal text. Other information about the protocol (such as the
physical realisation of messages as voltages, and timing information can be found elsewhere in Section 4
(Cable PHY Specification). There is an informative example of operation of the protocol in Annex E of the
standard [IEE95].

For reference purposes we reproduce here the Tree-ID state machine diagram of Figure 4-23 of the
standard [IEE95] and the accompanying C code of Table 4-45 of the standard *.

void tree_ID_start_actions () {
int i, temp_count;

arb_timer

0;

while (true) {
temp_count = 0;
for (i = 0; i < NPORT; i++)
if (“connected[i] || portR(i) == RX_PARENT_NOTIFY) {
child[i] = true;
temp_count++;
child_count = temp_count;

4 From IEEE Std 1394-1995. Copyright ©1996 IEEE. All rights reserved
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}
}

void child_handshake_actions () {
int i;
root = true;
for (i = 0; i < NPORT; i++) {
if (connected[i] && child[i])
portT(i, TX_CHILD_NOTIFY);
else if (connected[i]) {
portT(i, TX_PARENT_NOTIFY);
parent_port = i;
root = false;
}
}

boolean child_handshake_complete () {
int i;
for (i = 0; i < NPORT; i++)
if (child[i] && connected[i] && (portR(i) !'= RX_CHILD_HANDSHAKE)
return false;
return true;

}

void root_contend_action () {
int i;
contend_time = (random_bool() 7 CONTEND_SLOW : CONTEND_FAST);
for (i = 0; i < NPORT; i++) {
if (child[il)
portT(i, TX_CHILD_NOTIFY);
else
portT(i, IDLE);
}
arb_timer = 0;

}

Note that there appears to be a right brace missing from tree_ID_start_actions and child handshake_actions.
These omissions are copied from the standard, but their position can be inferred from the indentation of the
code.

4 From IEEE Std 1394-1995. Copyright ©1996 IEEE. All rights reserved



