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Abstract 33 

 34 

The digestibility of a suite of raw materials was determined when fed to black tiger shrimp 35 

(Penaeus monodon) in a series of three experiments.  A total of 29 commercial and research raw 36 

materials were evaluated using the diet replacement digestibility method.  Each of the reference and 37 

test diets were fed to tanks of shrimp for one-week prior to commencing faecal collection. The 38 

collected faecal samples were kept separate from any feed residue through using a discrete feeding 39 

period, after which uneaten feed was removed before a separate faecal collecting period. The same 40 

reference diet and soy protein concentrate diet were used across each of the three experiments and 41 

demonstrated consistent digestibility using this method. Most raw materials demonstrated some utility 42 

for use in diets for shrimp, with digestible protein or energy values greater than 0.800. However, there 43 

were some raw materials (e.g. Camelina meal) that provided very little nutritive value for shrimp. 44 

This study presents data on the digestibility and digestible nutrient content of a wide variety of raw 45 

materials, providing a clear basis for progressing to formulating shrimp diets on a digestible protein 46 

and energy basis, thereby optimising dietary formulation, maximising ingredient utilisation and 47 

reducing impacts of uneaten feed. 48 
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1. Introduction 49 

Progress in the use of raw materials, other than fishmeal and fish oils, in diets for shrimp has 50 

resulted in significant advancements in the ability to utilize a range of different terrestrial derived 51 

grain and animal resources (Davis and Arnold, 2000; Davis et al., 2002; Alvarez et al., 2007; Cruz-52 

Suarez et al., 2001; 2007; Smith et al., 2007; Luo et al., 2012; Carvalho et al., 2016). However, the 53 

capacity to effectively utilize raw materials in diets for any aquaculture species, including shrimp, 54 

relies on an ability to formulate diets to consistent digestible nutrient and digestible energy 55 

specifications (Glencross et al., 2007). Failure to formulate on an equivalent digestible nutrient and 56 

energy basis can result in a misleading interpretation of the value of a raw material through a failure 57 

of diet specifications, not a failure in the raw material per se. However, in many cases, the assessment 58 

of alternative raw materials has occurred with excess nutrient supply masking any potential 59 

deficiencies through the formulation of diets to crude nutrient and gross energy specifications only 60 

and as such the variability in the nutritional value of those alternatives is missed because of that over 61 

supply of nutrients (Glencross et al., 2008).  62 

Over the past twenty years there have been a suite of studies that have evaluated the 63 

digestibility of specific raw materials (Merican and Shim, 1995; Brunsen et al., 1997; Glencross and 64 

Smith, 1997; Smith et al., 2007, Cruz-Suarez et al., 2007; 2009; Yang et al., 2009; Carvalho et al., 65 

2016). Most of these studies have focused on specific ingredients. However, very few studies have 66 

examined the digestibility of a comprehensive suite of raw materials, with those that do focused on 67 

Litopenaeus vannamei (Lemos et al., 2009; Yang et al., 2009; Carvalho et al., 2016). In the study by 68 

Lemos et al., 2009, the authors compared the digestibility of protein against the in vitro digestibility of 69 

protein but did not report any of the other nutritional parameters (e.g. digestible dry matter, energy or 70 

lipid). The study by Yang et al., 2009 assessed a range of plant and animal meals without assessing 71 

their specific origin or the effects of post processing. Whereas the study by Carvalho et al., (2016) had 72 

a focus on the use of various animal and vegetable meals but did also include an analysis of the effect 73 

of inclusion level and reported variable effects of inclusion level across those raw materials studied. 74 

Such databases on the digestible value of ingredients remain highly useful resources to underpin 75 

future formulation of both practical and research diets and form the basis of understanding the key 76 

raw material attributes that affect nutritional quality of raw materials. 77 

In the present study, a series of digestibility experiments were undertaken with black tiger 78 

shrimp (Penaeus monodon) to define the digestible nutrient and energy values of a suite of raw 79 

materials for use in shrimp diets. It was postulated that shrimp would exhibit different capacities to 80 

digest this range of different raw materials. We considered that the generation of this data is an 81 

essential step to improve the basis by which shrimp diets are formulated. The variation in chemical 82 

and digestible composition of the different raw materials is discussed, as are some of the key 83 

observational determinants of variability in digestibility values encountered in this study.84 
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2. Materials and Methods 85 

2.1 Raw material preparation 86 

A suite of raw materials with potential for or currently being used in the shrimp feed sector 87 

were sourced from a commercial feed company (Ridley Aquafeeds, Narangba, QLD, Australia) and 88 

raw material producers throughout Australia. A mixture of plant protein and rendered animal by-89 

products were obtained. Some additional raw materials for use in research diets were also evaluated 90 

(e.g. vitamin-free casein). Each of the raw materials was milled using a Retsch mill (ZM200 91 

Centrifugal Mill; MEP Instruments, Brendale, QLD, Australia) with a 750 m screen to create a 92 

consistent flour from each product. After milling, all raw materials were held at -20ºC pending diet 93 

manufacture. Details and composition of all raw materials used in this study are presented in Tables 1 94 

and 2. 95 

 96 

2.2 Diet manufacture 97 

 A diet design strategy based on the diet-substitution ingredient digestibility method was used 98 

as the basis for this study (as reviewed by Glencross et al., 2007). As the basis for this strategy a 99 

reference diet was developed using a formulation specification of 42% protein and 7% lipid which 100 

was a mimic of the commercial feeds typically used in the Australian shrimp farming industry and 101 

which also acts as our industry equivalent performance benchmark (Glencross et al., 1999). A large 102 

(100kg) batch of reference mash was prepared with a subsample pelleted to make the reference diet. 103 

Test diets were made by blending a sample of the test ingredient with a subsample of the reference 104 

mash in a 30:70 ratio on an as is basis (Table 3). Each diet was prepared by mixing samples of the test 105 

raw material and reference mash in an upright planetary mixer (Hobart, Sydney, NSW, Australia). 106 

Water was then added during the mixing to form a dough which was subsequently screw-pressed 107 

(Dolly, La Monferrina, Castell’Alfero, Italy) through a 1.5mm die and cut to pellet lengths of about 108 

6mm. The pellets were then steamed using a commercial steamer (Curtin & Son, Sydney, Australia) 109 

at 100ºC for 3 minutes before being oven dried at 60ºC for 24h. Diets were kept at -20ºC when not 110 

being fed. 111 

 112 

2.3 Shrimp collection and trial management 113 

 Several hundred individuals (~3.0 g/shrimp, subsample weight of n=40) of black tiger shrimp 114 

were collected from two commercial farm grow-out ponds (Truloff’s Prawn Farm, Alberton, Qld 115 

4207 and Melivan Pty Lt, Kurrimine Beach, Qld 4871) by cast-netting and transferred to a holding 116 

tank (10,000 L) where they were held pending allocation to trial tanks. During the holding period (~7 117 

days) they were fed a standard commercial grower diet (Prawn Enhance™, Ridley Aquafeeds, 118 

Narangba, QLD, Australia). 119 

 For the faecal collection part of the study, five shrimp were allocated to each of 60 x 100 L 120 

circular (60cm D x 45cm H) tanks in an indoor laboratory system. Each of the tanks of shrimp were 121 
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maintained with flow-through seawater at a rate of 1 L/min. The temperature (assessed daily) across 122 

all tanks was 28.9 ± 1.0ºC and dissolved oxygen at 6.4 ± 0.14 mg/L over the experimental period. 123 

Light was maintained on a 12 : 12 light : dark cycle for the duration of the study. All work undertaken 124 

in the laboratory was done using red-light to ensure the shrimp were not disturbed. For each 125 

treatment, each tank was used as the replicate unit (n = 5 per treatment). Three sub-experiments with 126 

up to 12 treatments were conducted consecutively. In each of these sub-experiments the reference diet 127 

and the SPC diet used were the same to provide two cross-trial references. 128 

 To acclimate the shrimp to their diets they were fed a fixed ration (1.0 g/tank/d) of their 129 

respective treatment diet for one week prior to faecal collection commencing. During the faecal 130 

collection period the shrimp were twice fed a ration (approx. 1.0g) 4 hours apart and allowed 30 131 

minutes to consume the ration, before all uneaten food was siphoned to waste. Two hours after the 132 

feed was first offered, all faeces were siphoned into a labelled bucket and allowed to settle briefly 133 

before the faeces were then transferred to a 10 mL centrifuge tube. The seawater was then decanted 134 

and replaced with deionised water and the volume made up to 10 mL before centrifuging at 5000 rpm 135 

for 30 sec. All fluid was then decanted and the tube capped and frozen. The frozen pellet was then 136 

transferred to a sample vial for pooling and sample preparation. This process was conducted over a 137 

14-day period for each sub-experiment to collected adequate sample for analysis. Faeces were not 138 

collected from any tanks with animals that had molted. No shrimp mortalities occurred during the 139 

experiments. The methods used here were based on those reported previously (Glencross et al., 2002; 140 

Smith and Tabrett, 2004; Smith et al., 2007; Glencross et al., 2013). 141 

 142 

2.4 Chemical and digestibility analysis 143 

All chemical analyses were carried out using methods consistent with AOAC (2005). Diet, 144 

raw material and faecal samples were analysed for dry matter, yttrium, ash, nitrogen, total lipids, and 145 

gross energy content. Only raw materials were analysed for amino acids. Dry matter was calculated 146 

by gravimetric analysis following oven drying at 105ºC for 24 h (Contherm Thermotec2000; 147 

Thermofisher, Scoresby, VIC, Australia). Total yttrium concentrations were determined after mixed 148 

acid digestion using an inductively coupled plasma atomic emission spectrophotometry (ICP-MS). 149 

Protein levels were calculated from the determination of total nitrogen by CHNOS auto-analyser, 150 

based on N x 6.25 (Leco Corp., St. Joseph, MI, USA). Amino acid composition of samples were 151 

determined by an acid hydrolysis prior to separation via HPLC (Shimadzu Nexera X2 series UHPLC, 152 

Shimadzu Corporation, Kyoto, Japan; coupled with a Shimadzu 8030 Mass Spectrometer). The acid 153 

hydrolysis destroyed tryptophan making it unable to be determined using this method. Total lipid 154 

content of the samples was determined gravimetrically following extraction of the lipids using the 155 

chloroform:methanol method. Gross ash content was determined gravimetrically following loss of 156 

mass after combustion of a sample in a muffle furnace at 550C for 12 h. Gross energy was 157 

determined by adiabatic bomb calorimetry (Par Instrument Company, Moline, IL, USA).  158 
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Differences in the ratios of the parameters of dry matter, protein, lipids, carbohydrates or 159 

gross energy to yttrium, in the feed and faeces in each treatment were calculated to determine the 160 

apparent digestibility coefficient (ADCdiet) for each of the nutritional parameters examined in each diet 161 

based on the following formula:  162 

 163 

 164 

 165 

where Ydiet and Yfaeces represent the yttrium content of the diet and faeces respectively, and 166 

Parameterdiet and Parameterfaeces represent the nutritional parameter of concern (organic matter, protein 167 

or energy) content of the diet and faeces respectively. The digestibility values for each of the test raw 168 

materials in the test diets examined in this study were calculated according to the formulae: 169 

 170 

 171 

 172 

Where Nutr.ADRM is the digestibility of a given nutrient from the test raw material included in the test 173 

diet at 30%. ADtest is the apparent digestibility of the test diet. ADbasal is the apparent digestibility of 174 

the basal diet, which makes up 70% of the test diet. NutrRM, Nutrtest and Nutrbasal are the level of the 175 

nutrient of interest in the raw material, test diet and basal diet respectively. All raw material inclusion 176 

levels were also corrected for their respective dry matter contribution relative to the dry matter content 177 

of the basal mash (Bureau and Hua, 2006). Ingredients with less than 5% lipid or 10% carbohydrates 178 

(CHO) were not assessed for lipid or CHO digestibilities due to an unacceptable error rate being 179 

encountered below this level these nutrients in the raw materials. 180 

Raw material digestibilities greater than 100% were not corrected because we consider they 181 

are potentially indicative of interactive effects between the diet and test raw material and should be 182 

stipulated as determined. However, for reasons of practicality, the total levels of digestible 183 

nutrients/energy were only calculated assuming a maximum digestibility of 100% or a minimum of 184 

0% when multiplied against the respective nutrient parameter of that raw material. 185 

 186 

2.5 Statistical analysis 187 

All values are means and standard error of the mean, unless otherwise specified. No ANOVA 188 

comparison of the digestibility values among all the raw materials was undertaken as this was 189 

considered largely pointless. For some specific comparisons an ANOVA was undertaken with a 190 

Tukey’s HSD post hoc test applied. For some simple comparisons (e.g. extruded versus raw feed 191 

grains) a MANOVA analysis was undertaken with a Tukey’s HSD post hoc test applied. To examine 192 

potential effects of composition on digestibility, correlation matrices between diet composition and 193 

diet digestibility, and again between raw material composition and raw material digestibility were 194 

undertaken using Microsoft Excel. Limits for all critical ranges were set at P < 0.05. Because of 195 
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nominal variance in the reference diet data across experiments, no standardisation of the inter–196 

experiment data was undertaken. Statistical analyses were conducted in the R-project statistical 197 

environment, version 3.1.0 (R Core Team, 2014). 198 

199 
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3. Results 200 

3.1 Raw material characterisation 201 

Across the 29 different raw materials examined in this study there was a substantial range in 202 

the composition parameters observed (Tables 1 and 2). Concentrations of protein varied from 0.2% 203 

DM in the pregelled starch to 93.4%DM in the blood meal. The concentrations of lipid were lowest in 204 

the pregelled starch and wheat gluten (<1% DM), though were also low (<2%) in field peas, faba 205 

beans and blood meals. By contrast the lipid concentrations were highest in the Camelina meal 206 

(29.3% DM) and krill meal (21.1% DM). The concentrations of ash were lowest in the pregelled 207 

starch and blood meal (~1.2% DM), though were also low (<2%) in wheat gluten, wheat flour and 208 

corn gluten. By contrast the ash concentrations were highest in the meat and bone meals (24.6 and 209 

27.7% DM) and the tuna by-product fish meal (21.9% DM). Carbohydrate (CHO) concentrations 210 

were highest in the pregelled starch (98.6% DM), though were also high (>60%) in field peas, wheat 211 

flour and faba beans. Several ingredients were devoid of any CHO (e.g. blood meal, Jack mackerel 212 

meal, etc.).  Energy densities were highest in the Camelina meal (26.3 MJ/kg DM) and lowest in the 213 

faba beans and field peas (18.9 MJ/kg DM). Amino acid concentrations also varied substantially 214 

among the different raw materials (Table 2). There was a strong relationship between the crude 215 

protein and sum of amino acids across all raw materials (R2= 0.973). 216 

 217 

3.2 Diet nutrient and energy digestibilities 218 

Across the three experiments there was a low level of variability (CV% < 10%) among the 219 

various digestibility values of the two common reference diets (the basal and SPC diets) (Table 4). 220 

However, the extent of this variation was significant among the different experiments on the basal diet 221 

for the CHO digestibility, and on the SPC diet for most parameters except lipid digestibility. The 222 

coefficients of variation (CV%) in the digestibility of these diets ranged from 0.8% for dry matter 223 

digestibility of the basal diet to 9.2% for dry matter digestibility of the SPC diet across the three 224 

experiments. Variation in the digestibility values for protein, lipid and energy of these two diets were 225 

otherwise between these two values observed for the dry matter digestibilities. Variation in the 226 

ingredient digestibility values across the three experiments was somewhat larger with coefficients of 227 

variation ranging from 9.8% for protein digestibility to 29.9% for energy digestibility. No significant 228 

effects of experiment were observed for any of the other parameters. 229 

Diet digestibility values for the 29 test diets ranged according to the different parameters 230 

measured (Table 5). Dry matter digestibilities were on average 0.636 ± 0.106 (mean ± SD), with a 231 

CV% of 16.6%. ADC values for dry matter digestibilities ranged from 0.251 (camelina meal) to 0.783 232 

(Vitamin-free casein). Protein digestibilities were on average 0.765 ± 0.095 (mean ± SD), with a 233 

CV% of 12.4%. ADC values for protein digestibilities ranged from 0.483 (hydrolysed feather meal) to 234 

0.895 (wheat gluten). Lipid digestibilities were on average 0.790 ± 0.076 (mean ± SD), with a CV% 235 

of 9.6%. ADC values for lipid digestibilities ranged from 0.559 (Blood meal) to 0.870 (Anchovetta 236 
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fishmeal). Energy digestibilities were on average 0.704 ± 0.089 (mean ± SD), with a CV% of 12.6%. 237 

ADC values for energy digestibilities ranged from 0.438 (camelina meal) to 0.826 (wheat gluten). 238 

Carbohydrate digestibilities were on average 0.722 ± 0.091 (mean ± SD), with a CV% of 12.5%. 239 

ADC values for carbohydrate digestibilities ranged from 0.423 (camelina meal) to 0.874 (blood meal). 240 

Across the 30 different diets (including the basal diet) a correlation matrix examining 35 241 

combinations was created to examine potential relationships between diet composition (dry matter, 242 

ash, protein, lipid, carbohydrate, protein+lipid and organic matter) and diet digestibilities for dry 243 

matter, protein, lipid, energy and carbohydrates. Several significant relationships were observed; Diet 244 

ADC-CHO vs. Diet Lipid (R =-0.487, P=0.006), Diet ADC-CHO vs. Diet DM (R =-0.430, P=0.018) 245 

and Diet ADC-Lipid vs. Diet Ash (R =0.397, P=0.030). 246 

 247 

3.2 Raw material nutrient and energy digestibilities 248 

Consistent with the observations from the diet digestibilities there was also a substantial range 249 

in the digestibilities of each of the parameters examined (dry matter, protein, lipid and energy) across 250 

each of the raw materials studied (Table 5). Raw material dry matter digestibilities ranged from -0.818 251 

(camelina meal) to 0.929 (dried fish solubles) across the different raw materials. Raw material protein 252 

digestibilities ranged from -0.247 (camelina meal) to 1.347 (wheat gluten). Lipid digestibilities ranged 253 

from -0.028 (raw field peas) to 1.693 (wheat flour) across the range of raw materials. CHO 254 

digestibilities ranged from -0.527 (camelina) to 1.002 (extruded field peas) across the range of raw 255 

materials. Raw material energy digestibilities ranged from -0.109 (camelina meal) to 0.953 (vitamin-256 

free casein).  257 

The factorial arrangement of field pea/faba bean x extrusion/raw demonstrated some notable 258 

effects. A significant effect of both grain type (P<0.000) and processing (P=0.001) on the digestibility 259 

of energy was observed, with improvements in energy digestibility occurring with the use of pre-260 

extruded grains and peas being more digestible than faba beans. However, there was no interaction 261 

effect (P=0.307). There was also a significant effect (P=0.003) of extrusion on the dry matter 262 

digestibility of faba beans, but not field peas and a significant difference between the two grain types 263 

(P<0.000). No interaction effect was observed (P=0.152). There were no significant effects of grain 264 

type, processing or interaction on protein digestibility. There was no effect of grain type on lipid 265 

digestibility (P=0.678), or processing (P=0.244), but there was a significant interaction effect 266 

(P=0.025). There was also an effect of grain type on carbohydrate digestibility (P<0.000), but not 267 

processing (P=0.240) or interaction (P=0.351). 268 

Across the 29 different raw materials a correlation matrix examining 32 combinations was 269 

created to examine potential relationships between raw material composition (dry matter, ash, protein, 270 

lipid, energy, carbohydrate, protein+lipid and organic matter) and raw material digestibilities for dry 271 

matter, protein, lipid and energy. No significant relationships were observed. 272 
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 The digestible nutrient and energy contents of each of the tested ingredients is presented in 273 

Table 6. 274 
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4. Discussion 275 

To reduce reliance on fishmeal in shrimp diets, it has long been recognised that assessment of 276 

alternative raw materials is one of the critical steps underpinning the optimal use of alternative raw 277 

materials (Gatlin et al., 2007). One of the foundational assessment strategies in evaluating raw 278 

materials for any animal species is to measure the digestibility of nutrients and energy from the 279 

specific raw materials of interest (Glencross et al., 2007). In this regard, the present study was 280 

undertaken to measure the digestible nutrient and energy values of a suite of raw materials for use in 281 

shrimp diets. It was anticipated that there would be substantial differences among the various test raw 282 

materials on diet digestibility, which was observed in several instances. The generation of this data is 283 

an essential step to improve the future basis to formulate shrimp diets. Not only does this data broaden 284 

the range of raw materials available for use in shrimp diets by providing a better understanding of 285 

their nutritional limitations, it also provides a basis from which to formulate diets on a digestible 286 

nutrient basis and so better design diets to meet the needs of shrimp. 287 

 288 

4.1 Raw material characterisation 289 

Although the focus of this study was to examine the effects of different raw materials on the 290 

digestibilities of diets and subsequently, by calculation/inference, the raw materials being tested, the 291 

large range of raw materials being assessed also offers the chance to examine the range in 292 

composition of some key resources. This characterisation stage was extolled by Glencross et al. 293 

(2007) as an often-missed point of many similar such studies and the results in the present study, we 294 

believe exemplify why this is an important part of any raw material assessment study. It can be seen 295 

by examination of the three fishmeals, three poultry offal meals, two canola meals and two soybean 296 

meals, that substantial differences exist subject to factors such as genotype, origin and processing 297 

variables. Simply describing a raw material as “soybean meal” or “fishmeal” without an 298 

accompanying comprehensive chemical characterisation and identification of the products origin 299 

substantially reduces the value of the data and limits the differentiation of good quality products from 300 

inferior ones.  301 

As anticipated, the extrusion of faba beans and field peas had no significant effect on their 302 

proximate chemical composition, supporting that any nutritional impacts are due to secondary 303 

changes in the composition of these raw materials. Another observation in this study was the strong 304 

relationship (R2= 0.973) between crude protein of sum of amino acids, supporting that sAA is an 305 

excellent proxy for protein. 306 

 307 

4.2 Diet digestibilities 308 

The across experiment variability (coefficient of variation) in digestibility values observed of 309 

the two common diets (the basal and SPC diets) used in each of the three experiments in this study, 310 

while still less than 10%, was still substantially larger than that observed in other species that 311 
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examined digestibilities across separate experiments using the same diets (Glencross et al., 2015; 312 

2017). In these other studies, where faeces were collected using stripping techniques from a 313 

carnivorous fish (Oncorhynchus mykiss), the coefficients of variation across dry matter, protein and 314 

energy digestibility ranged from only 1.2 % to 2.3%. We suspect that this lower level of variability 315 

may be linked to the use of a settlement-type faecal collection method in the present study with 316 

shrimp. An assessment of the methodology associated with shrimp faecal collection methods by 317 

Tabrett and Smith (2004) identified that the duration the faeces spent in the water post-defaecation 318 

had an appreciable impact on the digestibility determination with these species, but also noted that it 319 

was virtually impossible to remove the post-defecation solubilisation effect that results in over-320 

estimation of ingredient digestibility. 321 

The large data set of diet digestibilities was also used to explore for diet compositional factors 322 

that may influence diet digestibility. Although three significant correlations were found across the 35 323 

different diet compositional and digestibility combinations, only the one associated with the diet 324 

carbohydrate digestibility and diet lipid content appears plausible. Earlier studies have shown that 325 

higher lipid levels can negatively impact lipid digestibility in shrimp, so this link may extend to 326 

impacting other nutrients (Glencross et al., 2002). However, it was noted in the present study that 327 

there was no significant correlation between diet lipid level and lipid digestibility, so this weakens this 328 

hypothesis. The general absence of clear correlations between diet proximate compositional 329 

parameters and diet digestibility parameters infers that diet digestibility is largely affected by factors 330 

other than those ones examined. 331 

 332 

4.3 Raw material digestibilities 333 

The assessment of this suite of raw materials provided some clear indications on the nutritive 334 

value of a range of raw materials currently used in commercial shrimp diets and some novel 335 

prospective raw materials under consideration.  Notable were the poor digestibilities associated with 336 

camelina meal which despite being reported as a suitable raw material for salmonids (Hixson et al., 337 

2016), is clearly unsuitable for shrimp. Substantial variability in the digestibility could also be seen 338 

among the three different fishmeals (jack mackerel, anchovetta and tuna by-product meal), and also 339 

between the two soybean meals, with many of these differences significant. This later observation 340 

contrasts that of Cruz-Suarez et al., (2009), who examined different processing effects on soybean and 341 

found little impact on protein digestibility. However, our observations are consistent with that of Zhou 342 

et al (2014) who reported substantial differences in performance and digestibility associated with the 343 

use of a range of different soybean meals used in diets for L. vannamei. These differences further 344 

support the importance of specific ingredient characterisation, as clearly not all fishmeals or soybean 345 

meals are of equal nutritional value. 346 

The use of different processing methods to produce meat and bone meals and poultry offal 347 

meals had mixed results. The use of lower temperatures to render meat and bone meals had a minor 348 
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benefit to protein, lipid and energy digestibilities. The use of fresher starting material in the 349 

production of poultry offal meal had minor benefits to protein and lipid digestibility, but ironically not 350 

to energy digestibility.  Based on the present digestibility data, the nutritive value of blood meal to 351 

shrimp is questionable, as is that of hydrolysed feather meal. These findings are consistent with those 352 

presented by others using growth studies with shrimp (Dominy and Ako, 1988; Ricque-Marie et al., 353 

1998; Cheng et al., 2002; Forster et al., 2003; Suresh et al., 2011). 354 

The examination of the effects of pre-extrusion on the nutritional value of both field peas and 355 

faba beans demonstrated some important findings. There was no significant effect of extrusion on the 356 

protein digestibility of either faba beans or field peas. However, some significant effects on the energy 357 

and dry matter digestibilities were observed supporting the notion that with both faba beans and field 358 

peas the main benefit of extrusion is from improving the nutritive value of the starch content of the 359 

grain. We suspect that this is related to an improvement in the starch digestibility which can be 360 

inferred from effects on both the dry matter and energy digestibilities. Similar effects have also been 361 

seen with several fish species (Booth et al., 2002; Davies and Gouviea, 2008). Inclusion of un-362 

extruded field peas in diets for shrimp has been reported before, along with diet digestibility values 363 

that indicate that when peas are used to replace soybean that there is a significant improvement in 364 

both dry matter and protein digestibility (Bautista et al., 2003).  365 

Across all the raw materials, a correlation matrix examining 32 combinations failed to find 366 

significant relationships between any of the raw material composition and raw material digestibility 367 

parameters. This suggests that there are underlying factors driving the variation in digestibility, either 368 

at a chemical classification level finer than the proximate analyses used in the present study, or as the 369 

result of a combination of factors. One successful study using a similar approach to define the factors 370 

affecting the digestibility of lupins used a greater number of samples (n=75) and had a greater degree 371 

of compositional characterisation and further relied on multivariate statistics to define those factors 372 

responsible (Glencross et al., 2008b). 373 

 374 

4.4 Conclusions 375 

The findings of this study demonstrate that there is a wide range in the nutritive values of 376 

various raw materials when fed to shrimp. Importantly, a generalisation of the comparative 377 

digestibility of animal protein sources against vegetable protein sources cannot be made, as there are 378 

excellent and poor digestibilities in either class of raw materials. The collation of the digestibility 379 

values in this study we consider to be an important step-forward for the shrimp aquaculture industry 380 

as it continues to seek independence from fishery resources. Additionally, such datasets provide an 381 

important resource for future meta-analyses and the development of robust in vitro and in silico 382 

models to estimate raw material nutritional value (Lemos et al., 2004; 2007; 2009; Glencross et al., 383 

2015). 384 

 385 
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Table 1. Composition and origin of the experimental raw materials. Indicated also is which of the three sub-experiments each ingredient was evaluated in. 

 
Ingredient Source Experiment Dry Matter Protein Lipid Ash CHO Energy 

  

 

      Blood meal AJ Bush, Beaudesert, QLD, Australia 1 93.2 93.4 1.6 1.2 - 23.4 

Dried Fish Solubles Aquativ, Elven, France 2 93.5 71.8 13.9 14.2 0.1 22.4 

Fishmeal (Anchoveta) Ridley, Narangba, QLD, Australia 1 90.9 70.5 12.5 16.4 0.6 22.3 

Fishmeal (Jack Mackerel) Ridley, Narangba, QLD, Australia 3 92.7 74.3 11.4 15.5 - 21.6 

Fishmeal (Tuna By-Product) Ridley, Narangba, QLD, Australia 3 96.4 67.1 10.5 21.9 - 20.3 

Krill meal Akerbiomarine, Lysaker, Norway 3 94.9 64.4 21.1 11.8 - 24.5 

Meat and bone meal 1 (Low temp) CSF, Laverton, VIC, Australia 2 93.6 51.3 12.3 27.7 8.7 19.2 

Meat and bone meal 2 (High temp) CSF, Laverton, VIC, Australia 2 96.0 53.2 13.5 24.6 8.6 20.0 

Hydrolysed feather meal Camilleri, Maroota, NSW, Australia 1 94.8 82.3 7.3 5.3 - 22.6 

Poultry offal meal (FAQ) Camilleri, Maroota, NSW, Australia 3 94.7 69.7 16.6 15.1 - 23.3 

Poultry offal meal (HQ) CSF, Laverton, VIC, Australia 1 95.7 72.2 13.7 13.5 0.6 22.2 

Poultry offal meal (LQ) CSF, Laverton, VIC, Australia 1 96.5 65.9 15.0 14.6 4.5 22.6 

Vitamin free casein Sigma-Aldrich, Syndey, NSW, Australia 1 94.7 82.2 0.8 8.0 9.0 22.4 

Camelina meal Aus-Oils, Kojonup, WA, Australia 1 92.1 27.2 29.3 5.2 38.3 26.2 

Canola meal - Expeller Riverland Oilseeds, Pinjarra, WA, Australia 1 94.8 36.2 9.6 7.3 47.0 21.2 

Canola meal – Solvent Extracted Riverland Oilseeds, Footscray, VIC, Australia 1 89.6 37.5 6.6 8.4 47.5 20.9 

Corn gluten Arrow Commodities, Surrey Hills, NSW, Australia 2 92.3 65.1 6.0 1.6 27.3 23.7 

Faba bean - extruded Ridley, Narangba, QLD, Australia 2 96.3 29.9 1.5 3.3 65.3 18.9 

Faba bean - raw Ridley, Narangba, QLD, Australia 2 90.5 30.3 1.8 3.6 64.3 19.0 

Field peas - extruded Ridley, Narangba, QLD, Australia 2 96.0 25.2 1.4 3.1 70.3 18.9 

Field peas - raw Ridley, Narangba, QLD, Australia 2 90.6 24.9 2.1 3.3 69.7 19.0 

Lupin kernel meal (cv. Coromup) Coorow Seeds, Coorow, WA, Australia 3 91.8 46.0 8.2 4.1 33.6 21.0 

Pregelled starch  Manildra, Auburn, NSW, Australia 3 85.6 0.2 0.0 1.2 98.6 20.5 

Soybean meal (Hifeed) Ridley, Narangba, QLD, Australia 3 92.5 48.5 11.8 8.2 31.5 23.4 

Soybean meal (Trifecta) Ridley, Narangba, QLD, Australia 3 92.1 69.3 2.6 4.3 23.8 21.7 

Soy Protein Concentrate Selecta, Araguari, Brazil 1, 2, 3 90.2 69.8 2.4 7.3 20.5 21.9 

Soy Protein Isolate ADM, Decatur, IL, United States 1 93.7 89.7 5.3 5.0 - 23.3 

Wheat flour (Plain) Manildra, Auburn, NSW, Australia 3 87.5 15.3 1.9 1.7 81.2 21.5 

Wheat gluten Manildra, Auburn, NSW, Australia 3 92.1 86.5 0.7 1.5 3.4 24.1 

  

 

      All values are percent dry basis. Except for Dry matter, which is on a percent as received basis and for Energy which is on a MJ/kg dry basis. 
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Table 2. Amino acid compositions of the experimental raw materials  

 

Ingredient sAA ALA ARG ASP CYS GLU GLY HIS ISO LEU LYS MET PHE PRO SER TAU THR TYR VAL 

                    Blood meal 850 68 41 54 10 76 49 35 51 140 70 12 69 41 32 6 36 23 38 

Dried Fish Solubles 640 49 41 59 6 92 68 12 26 46 47 17 24 36 30 10 28 18 31 

Fishmeal (Anchoveta) 703 29 40 43 9 73 33 27 49 100 50 44 46 41 26 8 30 26 28 

Fishmeal (Jack Mackeral) 685 43 40 42 9 71 33 25 46 107 46 48 41 30 24 7 29 17 26 

Fishmeal (Tuna By-Product) 661 26 38 45 6 70 34 21 50 126 46 46 39 24 23 3 26 12 25 

Hydrolysed Feather Meal 822 39 56 54 44 89 65 6 38 67 18 5 40 82 94 2 38 25 60 

Krill meal n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Meat and bone meal (Low temp) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Meat and bone meal (High temp) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Poultry offal meal (FAQ) 619 41 45 52 13 83 58 12 26 48 33 15 28 46 39 2 27 20 31 

Poultry offal meal (HQ) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Poultry offal meal (LQ) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Vitamin free casein 814 1 31 41 4 29 67 27 67 133 71 79 73 38 42 0 35 35 41 

Camelina meal 246 12 20 15 6 26 17 7 18 30 18 11 15 13 11 0 10 6 11 

Canola meal – Expeller 312 16 21 25 9 60 16 9 14 25 12 7 15 23 16 0 16 11 18 

Canola meal – Solvent Extracted 323 16 22 25 10 62 16 9 14 26 16 7 15 23 16 0 16 12 18 

Corn gluten n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Faba bean - extruded 256 13 26 21 3 23 17 7 18 46 20 7 16 11 10 0 7 1 10 

Faba bean - raw 248 12 24 23 3 20 18 6 19 45 19 6 15 11 11 0 8 0 9 

Field peas - extruded n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Field peas - raw n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Lupin kernel meal (cv. Coromup) 390 17 44 31 5 34 35 12 31 50 29 4 23 16 18 0 14 12 13 

Pregelled starch  n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Soybean meal (Hifeed) 478 22 36 57 9 89 20 14 21 38 26 8 26 24 28 0 21 18 21 

Soybean meal (Trifecta) 535 26 42 63 10 92 22 16 23 42 30 11 28 28 32 0 25 20 25 

Soy Protein Concentrate 590 24 45 45 9 47 39 20 45 67 42 25 58 29 28 0 24 22 22 

Soy Protein Isolate 855 35 68 103 13 172 35 22 38 68 46 12 47 43 50 1 34 30 38 

Wheat flour (Plain) 104 4 4 4 3 8 15 3 8 8 8 5 8 12 5 0 3 2 4 

Wheat gluten 800 21 26 26 19 297 27 15 27 55 12 14 41 99 42 0 22 26 30 

                    sAA : Sum of all amino acids. n/a : not assessed. 
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Table 3. Formulations for the experimental diets  
 

Ingredient  

 

Reference Test 

    Fishmeal (Anchoveta) 

 

500.0 350.0 

Wheat gluten 70.0 49.0 

Wheat flour 399.3 279.5 

Lecithin 

 

10.0 7.0 

Fish oil 

 

15.0 10.5 

Yttrium oxide 

 

1.0 0.7 

Astaxanthin 0.5 0.4 

BanoxE 

 

0.2 0.1 

Cholesterol 1.0 0.7 

Vitamin C 

 

1.0 0.7 

Vitamin and Mineral Premix 2.0 1.4 

Test ingredient - 300.0 

    TOTAL 

 

1000.0 1000.0 
e Cholesterol : MP Bio, Aurora, OH, USA. f Banox-E™ : BEC Feed 

Solutions, Carole Park, QLD, Australia. g Astaxanthin (10%) as 

Carophyll Pink™ and Stay C™: DSM, Wagga Wagga, NSW, 

Australia. h Vitamin and mineral premix : Rabar, Beaudesert, QLD, 

Australia; includes (IU/kg or g/kg of premix): Vitamin A, 2.5MIU; 

Vitamin D3, 1.25 MIU; Vitamin E, 100 g; Vitamin K3, 10 g; 

Vitamin B1, 25 g; Vitamin B2, 20 g; Vitamin B3, 100 g; Vitamin 

B5, 100; Vitamin B6, 30 g; Vitamin B9, 5; Vitamin B12, 0.05 g; 

Biotin, 1 g; Vitamin C, 250 g; Banox-E, 13 g; hYttrium oxide: 

Stanford Materials, Aliso Viejo, CA, USA.  
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Table 4. Cross experiment statistics 

 

 
 Diet Digestibilities   Raw Material Digestibilities 

 
 Dry Matter Protein Lipid Energy CHO  Dry Matter Protein Lipid Energy 

            

 Basal Diet          

Exp-1  0.696 0.774 0.842 0.778 0.914  
    

Exp-2  0.690 0.779 0.758 0.731 0.823  
    

Exp-3  0.701 0.810 0.788 0.749 0.794  
    

mean  0.696 0.788 0.796 0.753 0.844  
    

SEM  0.0005 0.0005 0.0033 0.0012 0.0017      

CV  0.8% 2.5% 5.3% 3.2% 7.4%  
    

ANOVA  p=0.740 p=0.055 p=0.104 p=0.146 p=0.001      

 
 

     
 

    
 Soy Protein Concentrate         

Exp-1  0.612 0.750 0.861 0.684 0.583  0.506 0.784 0.869 0.430 

Exp-2  0.584 0.742 0.780 0.643 0.641  0.464 0.728 1.014 0.588 

Exp-3  0.695 0.838 0.795 0.761 0.736  0.717 0.882 0.761 0.789 

mean  0.630 0.777 0.812 0.696 0.654  0.562 0.798 0.881 0.602 

SEM  0.0040 0.0018 0.0044 0.0028 0.0029  0.0270 0.0093 0.3968 0.0274 

CV  9.2% 6.9% 5.3% 8.6% 11.8%  24.2% 9.8% 14.4% 29.9% 

ANOVA  p=0.044 p=0.006 p=0.163 p=0.014 p=0.003  p=0.145 p=0.139 p=0.788 p=0.134 

 
 

     
 

    
SEM = standard error of the mean; CV=coefficient of variation (standard deviation / mean *100).  
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Table 5  Diet and raw material digestibility coefficients. 

Diet Diet Digestibility Coefficients 

 

Raw Material Digestibility Coefficients  

 

Dry Matter Protein Lipid Energy CHO 

 

Dry Matter Protein Lipid Energy CHO 

            

Basal 0.696 0.788 0.796 0.753 0.844 

     

 

Blood meal 0.547 0.541 0.559 0.569 0.874 

 

0.387 0.452 - 0.389 - 

Dried Fish Solubles 0.774 0.846 0.777 0.812 0.852 

 

0.929 0.795 0.225 0.953 - 

Fishmeal (Anchoveta) 0.659 0.789 0.734 0.709 0.749 

 

0.587 x 0.837 x 0.673 x 0.651 x - 

Fishmeal (Jack Mackerel) 0.586 0.765 0.870 0.730 0.664 

 

0.486 y 0.815 x 1.114 z 0.530 y - 

Fishmeal (Tuna By-Product) 0.556 0.745 0.843 0.685 0.639 

 

0.355 z 0.735 y 0.952 y 0.521 y - 

Hydrolysed Feather Meal 0.485 0.483 0.690 0.517 0.734 

 

-0.005 0.071 0.568 0.061 - 

Krill meal 0.704 0.815 0.859 0.766 0.700 

 

0.789 0.951 1.045  0.717  - 

Meat and bone meal (Low temp) 0.704 0.807 0.796 0.756 0.761 

 

0.719 j 0.758 j 1.318 j 0.767 j - 

Meat and bone meal (High temp) 0.706 0.823 0.814 0.731 0.749 

 

0.717 j 0.715 j 0.919 k 0.710 k - 

Poultry offal meal (FAQ) 0.625 0.756 0.867 0.726 0.734 

 

0.578 m 0.724 m 0.961 m 0.666 m - 

Poultry offal meal (HQ) 0.627 0.749 0.800 0.685 0.730 

 

0.453 n 0.684 m 0.820 n 0.554 n - 

Poultry offal meal (LQ) 0.628 0.714 0.783 0.680 0.786 

 

0.473 n 0.583 n 0.791 n 0.552 n - 

Vitamin free casein 0.783 0.873 0.810 0.818 0.811 

 

0.940 0.906 - 0.977 - 

Camelina meal 0.251 0.577 0.633 0.438 0.423 

 

-0.818 -0.247 0.540 -0.109 -0.527 

Canola meal – Expeller 0.555 0.752 0.722 0.620 0.596 

 

0.394 o 0.738 o 0.616 o 0.545 o 0.296 o 

Canola meal – Solvent Extracted 0.555 0.758 0.706 0.575 0.592 

 

0.345 o 0.750 o 0.716 p 0.265 p 0.236 o 

Corn gluten 0.747 0.853 0.838 0.783 0.742 

 

0.798 0.816 0.810 0.798 0.687 

Faba bean - extruded 0.732 0.835 0.807 0.754 0.813 

 

0.843a 0.736  0.635 a 0.783 a 0.747 a 

Faba bean - raw 0.709 0.813 0.794 0.717 0.734 

 

0.758 b 0.575  0.878 ab 0.688 b 0.648 b 

Field peas - extruded 0.718 0.828 0.842 0.748 0.774 

 

0.709 b 0.742  1.162 b 0.696 b 1.002 c 

Field peas - raw 0.646 0.838 0.747 0.655 0.713 

 

0.491 c 0.795  -0.028 c 0.406 c 0.990 c 

Lupin kernel meal (cv. Coromup) 0.566 0.748 0.862 0.699 0.628 

 

0.322 0.770 0.953 0.556 0.083 

Pregelled starch  0.575 0.677 0.826 0.698 0.783 

 

0.379 - - 0.464 0.767 

Soybean meal (Hifeed) 0.674 0.811 0.859 0.759 0.709 

 

0.784 r 0.983 r 0.609 r 0.731 r 0.410 r 

Soybean meal (Trifecta) 0.637 0.718 0.836 0.751 0.811 

 

0.680 s 0.647 s 0.351 s 0.706 r 0.566 s 

Soy Protein Concentrate 0.630 0.777 0.812 0.696 0.654 

 

0.562 0.798 0.881 0.602 0.663 

Soy Protein Isolate 0.695 0.838 0.710 0.755 0.745 

 

0.774 0.877 0.551 0.892 - 

Wheat flour (Plain) 0.639 0.772 0.863 0.750 0.771 

 

0.633 0.629 1.693 0.682 0.688 

Wheat gluten 0.733 0.895 0.849 0.826 0.683 

 

0.830 1.347 0.730 0.883 - 

            

Pooled SEM 0.01 0.01 0.01 0.01 0.01  0.03 0.02 0.02 0.03 0.03 
Each data point is the mean (n=5). For the faba beans and field pea raw material digestibilities, the indicated different superscripts (a, b, c) imply a significant difference at P<0.05 from a 

MANOVA analysis. For the other superscripts comparisons are only made within the fishmeals (x, y, z), meat and bone meals (j, k), poultry meals (m, n), canola meals (o, p) or soybean meals 

(r, s), but not among the different meals.
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Table 6  Raw material digestible nutrient values (% as received). Based on raw material digestibility* x composition. 

 

 

Dry Matter Protein Lipid CHO Energy 

    

 

 Blood meal 36.1 39.3 - - 8.5 

Dried Fish Solubles 86.9 50.0 2.7 - 18.6 

Fishmeal (Anchoveta) 53.4 48.8 6.9 - 12.0 

Fishmeal (Jack Mackeral) 45.0 56.1 10.6 - 10.6 

Fishmeal (Tuna By-Product) 34.2 47.5 9.7 - 10.2 

Hydrolysed Feather Meal 0.0 5.5 3.9 - 1.3 

Krill meal 74.8 58.1 20.0 - 16.7 

Meat and bone meal (Low temp) 67.3 34.1 10.8 - 12.9 

Meat and bone meal (High temp) 68.9 35.1 11.5 - 13.1 

Poultry offal meal (FAQ) 54.7 45.3 14.3 - 13.9 

Poultry offal meal (HQ) 43.4 45.3 10.3 - 11.3 

Poultry offal meal (LQ) 45.6 35.8 11.1 - 11.6 

Vitamin free casein 89.0 66.8 - - 19.6 

Camelina meal 0.0 0.0 13.4 0.0 0.0 

Canola meal – Expeller 30.9 22.6 3.8 9.2 4.4 

Canola meal – Solvent Extracted 37.3 24.0 5.3 12.6 10.4 

Corn gluten 73.6 45.3 4.1 16.0 16.1 

Faba bean - extruded 81.2 20.4 0.9 45.3 13.7 

Faba bean - raw 68.6 14.3 1.3 34.3 10.7 

Field peas - extruded 68.1 17.2 1.3 65.0 12.2 

Field peas - raw 44.5 16.3 0.0 56.9 6.3 

Lupin kernel meal (cv. Coromup) 29.6 32.5 7.2 3.2 10.7 

Pregelled starch  32.5 0.0 0.0 64.8 7.0 

Soybean meal (Hifeed) 72.5 40.7 6.1 13.9 14.6 

Soybean meal (Trifecta) 62.6 38.1 0.8 15.5 13.0 

Soy Protein Concentrate 51.5 46.5 1.9 12.2 11.1 

Soy Protein Isolate 72.5 69.1 2.6 - 18.2 

Wheat flour (Plain) 55.4 7.3 1.5 50.3 11.2 

Wheat gluten 76.4 79.7 4.5 - 19.6 

    

 

 *where values were >100% they were rounded to 100. Where values <0 they were rounded to 0. 

 


