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Abstract 35 

Strategies for the conservation and management of many wild species requires an improved 36 

understanding of how population dynamics respond to changes in environmental conditions, 37 

including key drivers such as food availability. The development of mechanistic predictive models, in 38 

which the underlying processes of a system are modelled, enables a robust understanding of these 39 

demographic responses to dynamic environmental conditions.  We present an individual-based 40 

energy budget model for a mega-herbivore, the African elephant (Loxodonta africana), which relates 41 

remotely measured changes in food availability to vital demographic rates of birth and mortality. 42 

Elephants require large spaces over which to roam in search of seasonal food, and thus are vulnerable 43 

to environmental changes which limit space use or alter food availability. The model is constructed 44 

using principles of physiological ecology; uncertain parameter values are calibrated using approximate 45 

Bayesian computation. The resulting model fits observed population dynamics data well. The model 46 

has critical value in being able to project elephant population size under future environmental 47 

conditions and is applicable to other mammalian herbivores with appropriate parameterisation. 48 

Keywords 49 

Approximate Bayesian computation; Elephants; Energy budget; Individual-based modelling; 50 

Population dynamics; Remote sensing. 51 

Highlights 52 

- Energy-budget model of how individual elephants respond to changes in forage 53 

- Population size and structure emerge from model outputs 54 

- Predicts changes in population dynamics induced by climate and land-use change 55 

- Can be adapted for other mammalian herbivores in grassland ecosystems 56 

 57 
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1. Introduction 62 

Elephants are simultaneously a species of conservation concern and problem for coexisting humans 63 

(Evans and Adams, 2018; Hoare, 2000). The recent spike in elephant poaching fuelled by the ivory 64 

trade continues to threaten the persistence of elephant populations (Blanc, 2008; Chase et al., 2016), 65 

whilst the rapid growth of the human population and associated conversion of elephant habitat to 66 

human dominated landscapes increases interactions between humans and elephants, where elephant 67 

behaviours (e.g. crop foraging and infrastructure damage) may compromise coexistence (Browne-68 

Nunez et al., 2013; Wittemyer, 2011). Although poaching and human-elephant interactions (HEI) can 69 

alter elephant demographics and cohort survival (Jones et al., 2018), it is widely accepted the 70 

population dynamics are governed by the distribution and abundance of food and water (Rasmussen 71 

et al., 2006; Wittemyer et al., 2007); when resources are limited, animal draw on their energy 72 

reserves, female reproductive capacity is reduced, animals starve and eventually die (Sinclair, 1975). 73 

Changes in habitats and vegetation – and thus food available to elephants – owing to climate change 74 

and land-use strategies, will have large scale implications for the future of elephant populations, which 75 

may act to counter or exacerbate the effects of poaching and HEI. Ensuring a future for elephants will 76 

therefore rely on understanding how elephant population dynamics respond to food availability.  77 

To incorporate this heterogeneity into a model requires an individual-based approach (Grimm and 78 

Railsback, 2005), in which responses to food availability vary between individuals depending on their 79 

age, sex and reproductive state. Such models can combine known and projected patterns of food 80 

availability with the cohort dynamics apparent in age-structured populations to improve our 81 

mechanistic understanding of the processes underlying population dynamics as well as predicting 82 

responses to future environmental change (Evans et al., 2013; Stillman et al., 2015; Wood et al., 83 

2018). Individual-based models (IBMs) have been widely used to model population dynamics in 84 

spatiotemporally heterogeneous environments; individual responses to a spatially explicit 85 

environment and interactions with other individuals are modelled in detail, allowing population 86 

dynamics to emerge from the sum of individual characteristics (Deangelis and Mooij, 2005; Grimm 87 

and Railsback, 2005; Railsback and Grimm, 2012).  88 

The inclusion of energy budgets in IBMs aiming to capture population dynamics is essential if 89 

populations are to respond accurately to food availability; this inclusion allows reproductive 90 

opportunities and deaths from starvation to be properly related to the energy available in the 91 

environment (Sibly et al., 2013). Energy budgets rely on equations describing the process of energy 92 

intake and allocation to energy-expending processes. These equations are broadly applicable to a 93 

wide variety of taxa, but parameters controlling these relationships vary interspecifically. 94 



[Type here] 
 

4 

Occasionally, these parameters have been empirically determined for a species, but more often than 95 

not this information is lacking. Empirical studies to estimate values are not always feasible due to 96 

funding and time constraints, lack of appropriate methods and equipment, or ethical considerations. 97 

Elephants, like many mega-herbivores, are a species for which empirical determination of some 98 

physiological parameters is intrinsically difficult: elephant physiology does not lend itself to laboratory 99 

studies nor can physiological parameters be readily determined in the field. Estimation of parameter 100 

values is however possible using inverse modelling if, as here, data to hand include records of key 101 

drivers (food availability) and resulting population dynamics.  102 

Here we construct a model of individual energy budgets based on current understanding of 103 

physiological ecology, with parameters specifying energy allocation between the vital life processes of 104 

maintenance, growth and reproduction. Each individual in the IBM has its own energy budget and 105 

lives in a population in an environment for which food availability is known from ground-truthed 106 

remotely-sensed measurements. Emergent population dynamics are compared to observed rates of 107 

reproduction and mortality, and parameter values are obtained through calibration using 108 

approximate Bayesian computation (ABC; Van Der Vaart et al., 2015) – an example of inverse 109 

modelling. Our aim is to develop a mechanistic model with good predictive qualities that can serve to 110 

forecast future population dynamics in response to climate change and alternative management 111 

scenarios.  112 

2. Materials and methods 113 

2.1. Study system 114 

The Amboseli basin (bounding coordinates: -2.02N, -3.28S, 38.03E, 36.67W) covers an area of 115 

approximately 8000km2, straddling the southern border of Kenya and the northern border of 116 

Tanzania. It comprises the central Amboseli National Park (ANP; 392km2) and surrounding landscape 117 

(Croze and Lindsay, 2011).The habitat consists of semi-arid savannah and bush, with permanent 118 

swamp vegetation present within ANP (Fig. 1). Fluctuations in vegetation availability and quality are 119 

driven by two wet seasons: the short-rains (November-December) and the long-rains (March through 120 

May; Croze & Lindsay, 2011). The basin is home to over 1600 individually-known and monitored 121 

elephants (Lee et al., 2013). The population has remained largely undisturbed by poaching, although 122 

human population growth and a shift from nomadic pastoralism to sedentary farming poses a 123 

significant threat to the future of Amboseli elephants (Western et al., 2009), as elephant habitats 124 

become increasingly human-dominated and human responses to elephants become shaped by local 125 

political and cultural dynamics (Okello, 2005).    126 

2.2. Elephant population dynamics 127 
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The Amboseli Elephant Research Project (AERP) has monitored more than 3,300 individually-known 128 

elephants from over 60 family groups in the Amboseli basin since 1972. Elephants are identified by 129 

means of a photo recognition file illustrating unique identifying features; calves are identified through 130 

association with their known mothers (Moss et al., 2011). Censuses are attempted on a monthly basis 131 

for all family groups noting individuals present and those missing. By tracking individuals in this 132 

manner throughout their lives, birth and death dates are recorded. 133 

Births: New-born and young calves are aged based on body size and proportions, skin colouration, 134 

motor coordination, and behaviour of both mother and calf (Moss, 1988). Since 1978, when the last 135 

family unit was identified, age estimates are mostly within 1 month (see Supplementary Materials: 136 

TRACE 3.2). The age of individuals born prior to start of the study was estimated using techniques 137 

including hind foot length (Lee and Moss, 1995, 1986; Western et al., 1983), tooth eruption and wear 138 

(Laws, 1966), tusk length (Moss, 1996, 1988) and circumference at the lip (Pilgram and Western, 139 

1986), and shoulder height and back length (Croze, 1972; Laws et al., 1975; Lee and Moss, 1995; 140 

Moss, 1996; Shrader et al., 2006; Trimble et al., 2011). Age was backdated to give an estimate of birth 141 

date for all individuals and has been validated by collection of lower jaws post-mortem whenever 142 

possible (Lee et al., 2012).  143 

Deaths: Determining date of death for individual elephants has proven more difficult. In family 144 

groups, if an adult female was absent but her youngest calves present, the family was monitored 145 

closely. If her absence was prolonged for more than a week, while the rest of the family were sighted 146 

with her youngest offspring, she was assumed dead. For calves under three years old, absence whilst 147 

their mother was present suggested the calf had died. If a juvenile female or an adult female with her 148 

calves was missing, these individuals were assumed dead if not sighted for a month with their family. 149 

Once it was concluded an individual had died, the death date was recorded as the midpoint between 150 

when the individual was last seen alive and when they were first noted as missing. Rarely (<5% of 151 

records), mortalities were more directly monitored due to illness or injury, or when carcasses were 152 

found and identified. For the purposes of model analysis, we defined ‘calf’ mortality as deaths 153 

occurring in individuals less than two years of age and ‘adult and juvenile’ mortality as deaths 154 

occurring in individuals two years or older. This reflects the differing energetic thresholds controlling 155 

mortality in these groups: calf mortality occurs when mothers' stores (fat) reaches zero; adult and 156 

juvenile mortality occurs beyond this point, when all non-essential structural tissues (muscles) have 157 

also been depleted. 158 

For the purposes of model development and calibration, we modelled the population dynamics of 159 

four family groups (IBs, LBs, VAs and WAs). These families were chosen due to regular monitoring 160 
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providing good confidence in birth and death dates, and good understanding of movement patterns 161 

owing to GPS collars fitted to females in these families (Boult et al. in review). Individual demographic 162 

records were used to initiate the model elephant population (n = 126 on 1st March 2000; see 163 

Supplementary Materials: TRACE table 5) and provided annual records of elephant population 164 

dynamics for model calibration (on 1st October 2000-2016; see 2.5.1).  165 

2.3. Estimating food availability 166 

We estimated food availability using 16-day composite values of the Normalised Difference 167 

Vegetation Index (NDVI; MOD13Q1 product; Didan, 2015). NDVI is a general measure of the 168 

greenness of the top layer of the Earth’s surface and generally correlates well with ground-based 169 

measures of vegetation biomass, primary productivity and leaf area index, and has been widely used 170 

in models of animal performance and movement (reviewed in Pettorelli et al., 2011, 2005). We 171 

obtained measures of NDVI from the NASA Terra-MODIS (Moderate Resolution Imaging 172 

Spectroradiometer) mission accessed via the Oak Ridge National Laboratory web service (Vannan et 173 

al., 2011). Terra-MODIS was used rather than Aqua-MODIS because of the longer NDVI time-series 174 

available (Terra operational since 2000, Aqua since 2002). We chose not to combine the two MODIS 175 

sensors given that cloud cover was not a particular issue for satellite observation of Amboseli. Data 176 

were filtered using the MOD13Q1 QA flags so that only ‘good’ quality NDVI observations were 177 

considered in our calculations. NDVI values were ground-truthed using on-the-ground measures of 178 

herb-layer biomass, collected biannually in ANP since 1982 (Lindsay, 1982, 1994, 2011; see TRACE 179 

3.1). A single median NDVI value was calculated for the combined home ranges of family groups (95% 180 

kernel density estimates; Fig. 1; Shannon et al., 2006) for each 16-day composite and converted to 181 

biomass (kg m-2) in the model. The decision to use a single median NDVI value at each time step was 182 

taken firstly, because of uncertainty as to where each family was in its range and secondly, to reduce 183 

model run time.  184 

2.4. Model description 185 

The model relates spatiotemporal variation in food availability to changes in vital demographic rates 186 

through individual energy budgets. Individuals forage on locally available food and the assimilated 187 

energy is allocated to the energy-expending processes of life; from this population dynamics emerge 188 

(Johnston et al., 2014; Railsback and Grimm, 2012; Sibly et al., 2013). In the future the model may be 189 

applied as a tool for predicting the response of elephant populations to projected variation in food 190 

availability resulting from climate change or land-use management strategies. 191 

In the Supplementary Material, we provide a TRACE document (“TRAnsparent and Comprehensive 192 

model Evaludation”; Augusiak and Van den Brink, 2014; Grimm et al., 2014, 2010; Schmolke et al., 193 



[Type here] 
 

7 

2010) containing evidence that our model was thoughtfully designed, correctly implemented, 194 

thoroughly tested, well understood, and appropriately used for its intended purpose. This includes a 195 

complete model description in the standard Overview, Design concepts and Details format (ODD; 196 

Grimm et al., 2010). 197 

2.4.1. State variables and scales 198 

The modelled environment represents the combined home ranges of the four family groups as a 199 

single patch (Fig. 1), characterised by the time-specific median NDVI, resulting biomass, and energy 200 

content of its vegetation. The elephant population in the model comprises the individuals in four 201 

family groups – adult females and their immature offspring of both sexes (males become independent 202 

of their natal group at 12 years old). These four families comprised 126 individuals at the time of 203 

model initiation (1st March 2000). Elephants are characterised by variables describing their physiology 204 

in terms of age, sex, mass, energetic processes and reproductive states. Each individual experiences 205 

life through its own energy budget, the details of which depend on its age and sex. The model runs in 206 

daily time steps from the 1st March 2000 until the 20th November 2016 – the time period for which 207 

Terra-MODIS NDVI data was available.  208 

2.4.2. Model schedule 209 

Elephants in the model execute procedures to update their energy budget once a day. The energy 210 

budget model follows that described by Sibly et al. (2013; Fig. 2). Each individual begins with the 211 

intake of energy if food is available in the environment. The assimilated energy along with energy in 212 

storage tissues (fat) make up the ‘energy reserves’, and are available for use in energy expending 213 

processes: maintenance takes priority, after which come growth and/or reproduction depending on 214 

age, sex and energy reserves. Following maintenance, if energy reserves remain, sexually immature 215 

individuals (females <9 years old and males <19) grow. Growth in elephants is prolonged (Hollister-216 

Smith et al., 2007; Karkach, 2006; Shrader et al., 2006), and individuals continue to grow beyond 217 

sexual maturity if energy is available after paying the costs of reproduction. Only females reproduce in 218 

the model as males disperse prior to sexual maturity. If energy remains following maintenance, 219 

sexually mature females proceed through the reproductive cycle.  Assimilated energy is always 220 

utilised first and energy from stores is used only if required. If maintenance costs cannot be met by 221 

reserves, individuals enter starvation and metabolise non-essential structural tissues (muscles). If 222 

these tissues are depleted, an individual dies. Background mortality accounts for stochastic mortality 223 

events. 224 

The energy budget of an individual therefore responds to the energy available from food in the 225 

environment. When food is abundant, as in wet seasons, energy intake exceeds energy-expenditure, 226 
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and individuals may allocate energy maximally to all processes and accumulate stores. When food is 227 

limited, as in dry seasons or dry years (droughts), energy expenditure may outweigh energy intake, 228 

and individuals must utilise stores in order to maintain growth and reproduction. Thus, as food 229 

availability cycles through abundance and limitation, an individual’s energy balance fluctuates 230 

between positive and negative, and body composition (see TRACE 4.2) responds accordingly (Fig. 3). 231 

2.4.3. Sub-models 232 

Full details of each procedure, including equations and parameter derivation, are described in the 233 

TRACE document.  234 

Energy intake: Ingestion rate (IR; kg day-1) depends on body size (scales to the ¾ power; Brown et al. 235 

2004), age, food density (biomass) and consumer (elephant) density. In terms of age, elephants less 236 

than a year old obtain all energy through the ingestion of milk; individuals are milk-dependent until 237 

two years of age but begin supplementing milk intake with vegetation after a year; between the ages 238 

of one and four, decreasing milk ingestion is supplemented with increasing vegetation intake; at four 239 

years old elephants are weaned and feed entirely on vegetation. Suckling individuals first ingest milk 240 

from their mother then, if over a year old, will ingest vegetation. The maximum vegetation IR is 241 

reduced by the rate of ingestion already achieved through suckling. Food density (kg m-2) also 242 

influences vegetation ingestion, following a Holling type II functional response (Holling 1959; Lindsay 243 

1994). This is adjusted according to a Beddington-DeAngelis functional response to account for 244 

consumer-density dependent ingestion rate (Beddington, 1975; DeAngelis et al., 1975). If no food is 245 

available, IR is zero. IR is converted to energy given the energy content of food (KJ kg-1). Only a 246 

proportion of energy ingested in milk or vegetation is available for energy expending processes 247 

following assimilation efficiencies.  248 

Maintenance: Basal metabolic rate (BMR; KJ day-1) scales allometrically to the ¾ power with total 249 

body mass and accounts for the standard costs of maintenance essential for survival, so has first call 250 

on energy reserves (Sibly et al., 2013). If insufficient reserves remain to cover BMR, an individual 251 

enters starvation and non-essential structural tissues (muscles) may be metabolised to cover these 252 

costs (Atkinson et al., 1996). If all non-essential structural tissue is depleted, an individual dies. 253 

Growth: After birth male and female elephants follow von Bertalanffy growth curves (Lindeque and 254 

van Jaarsveld, 1993) resulting in the sexual dimorphism in stature observed in elephants. Parameters 255 

of the von Bertalanffy growth curve fitted to shoulder height in the Amboseli elephants were taken 256 

from Lee and Moss (1995) and the equation adapted to describe growth in mass rather than length 257 

(Sibly et al., 2013). Daily growth rates depend on current structural mass and energy available. The 258 
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energy required to fuel maximum growth fuels both the synthesis and the energy content of new 259 

tissue (KJ day-1). If insufficient energy is available to grow maximally, growth may continue more 260 

slowly. Any growth achieved is added to structural mass (kg). 261 

Reproduction: Only female reproductive processes are represented in the model as males disperse 262 

prior to sexual maturity. If energy remains following maintenance, sexually mature females proceed 263 

through the reproductive cycle: oestrus, conception, gestation, parturition and lactation. Sexually 264 

mature females experience oestrus and conceive if not already pregnant or lactating a milk-265 

dependent calf (<2 years), provided they have sufficient storage tissue (Bronson and Manning, 1991; 266 

Wittemyer et al., 2007). Gestation typically lasts ~660 days (Poole et al., 2011) during which time a 267 

female commits energy to foetal growth. If insufficient reserves remain to cover the energetic costs of 268 

foetal growth (the synthesis and energy content of new tissue) the mother miscarries. Parturition 269 

occurs at the end of gestation. Mother and calf are linked to relate the energy budget of a calf to that 270 

of its mother. The sex of the calf is determined at random with equal probability of becoming a 271 

female or male. The new-born calf has age zero and no energetic reserves. The mother lactates until 272 

the calf is weaned at four years old, but the energy required for lactation varies throughout this 273 

period (Oftedal 1985). Before the calf is a year old, milk forms the sole energetic intake so fully covers 274 

the costs of maintenance and growth. Lactation peaks when the calf is a year old. For the first two 275 

years of life, the calf is milk-dependent and so dies if its mother does, but after peak lactation, the 276 

amount of milk supplied by the mother decreases at a constant daily rate as the calf increasingly 277 

supplements this diet with vegetation. From two to four years of age the calf suckles at a decreasing 278 

rate and is no longer dependent on milk, and can survive without its mother. The mother lactates 279 

maximally if her energy reserves allow, but otherwise provides as much milk as her reserves allow. 280 

Calves over a year of age may make up for this deficit by consuming more vegetation. If a mother dies 281 

or enters starvation, lactation stops and the fate of the calf depends on its age and food availability. If 282 

a calf dies, the mother stops lactating. 283 

Energy reserves: If assimilated energy remains following all expenditure it is stored as fat until a 284 

maximum is reached.  285 

Mortality: In addition to mortality events described above, background mortality is included to 286 

account for deaths arising from stochastic events such as poaching, predation, disease or injury. 287 

When storage tissues remain, background mortality occurs at a constant rate for all individuals. This 288 

rate increases during starvation to account for the increased susceptibility of starving individuals to 289 

disease and risk-taking behaviour (Foley et al., 2001).  290 

2.5. Analysis 291 
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2.5.1. Calibration 292 

Eleven parameters were deemed uncertain and thus required calibration to accurately predict 293 

population dynamics (see TRACE 6). We calibrated these parameters using rejection approximate 294 

Bayesian computation (ABC; Van Der Vaart et al. 2015): parameter values were sampled randomly 295 

from uniform prior distributions ranging from roughly half to double the reference values; the model 296 

was simulated 100,000 times; the 30 simulations which best fit the data (annual population size, birth 297 

and mortality rates on 1st October 2000-2017) were accepted. We chose to accept the 30 best fitting 298 

runs as a compromise between including only well-fitting runs and the need to produce posterior 299 

distributions (van der Vaart et al., 2015). Simulations were run in parallel through R 3.3.1 using the R 300 

package RNetLogo (Thiele, 2014; Thiele et al., 2012). 301 

2.5.2. Local sensitivity analysis 302 

Local sensitivity analysis identified relative sensitivities of population size, birth rates, adult and 303 

juvenile mortality, and calf mortality rates to changes in calibrated parameter values. Changes in 304 

outputs were averaged over a 10% increase and decrease in each parameter, and over ten repeated 305 

simulations to account for stochasticity in the model. While one parameter was tested all others were 306 

kept at their calibrated values. 307 

2.5.3. Validation 308 

To validate the model we compared model outputs to independent data from families not used in 309 

model calibration for the time period 2000 - 2016. We used the 30 parameter sets accepted in the 310 

ABC to simulate the population dynamics of six intensively recorded Amboseli elephant family groups 311 

(AAs, FBs, GBs, JAs, KB2s and OBs; n = 105 initially on 1st March 2000). These families spend more time 312 

in Amboseli National Park and thus use a different area to that used in model calibration (Remelgado 313 

et al., 2017). However, the ranging patterns of these families have only been recorded within ANP. 314 

Therefore, median NDVI was extracted from the 95% density kernels of known ranging within ANP and 315 

the model was used to estimate the total area used by these families (see TRACE 4.1). The model was 316 

initialised for these individuals (population on 1st March 2000; see TRACE table 6) and run with the 317 

adjusted NDVI input data.  318 

2.6. Hypothetical range loss scenario 319 

To demonstrate the potential of the model to estimate elephant population size under environmental 320 

change scenarios, we implemented two hypothetical range loss scenarios representing a 10% and 50% 321 

reduction in home ranges. We assumed that the median NDVI was unaffected by range loss. 322 

Increasing human populations in the Amboseli basin could result in elephant range loss through the 323 



[Type here] 
 

11 

conversion of elephant habitats to cropland, over-grazing by livestock, the installation of fences or 324 

transport links which may prevent movement across the ecosystem, or increasing HEI and resulting 325 

avoidance of these areas by elephants. We ran each scenario with the 30 parameter sets accepted in 326 

the ABC. 327 

3. Results 328 

3.1. Calibration 329 

We determined goodness of model fit to data using R2 coefficient of determination. Model fits to the 330 

population dynamic data are shown in Fig. 4. Adult and juvenile mortality rates were well predicted by 331 

the model, which accurately replicated low levels of background mortality and captured the high 332 

mortality rate associated with a drought in 2009. Modelled calf mortality also matched observations 333 

well, again capturing background and drought-related rates, although the prediction for 2005 was too 334 

high. Birth rates were well replicated throughout the simulation period, including low birth rates 335 

following the 2009 drought and the subsequent ‘baby-boom’ in 2012, with the exception of under-336 

prediction in 2014 and 2015.  As a result of model fit to birth and death rates, overall predictions of 337 

population size were good, with slight under-prediction from 2014 onwards owing to the lower than 338 

observed birth rates. 339 

3.2. Sensitivity analysis 340 

Sensitivities of key variables to model parameters are shown in Table 1 as the % change in the variable 341 

relative to 10% changes in parameter values. Adult and juvenile mortality was the least and calf 342 

mortality the most sensitive variable. Calf mortality was especially sensitive to parameters controlling 343 

energy intake from milk (AEmilk and E0) as expected given that milk provides the primary source of 344 

energy for calves, and to B0 which controls metabolic rate, the main source of energetic expenditure 345 

for elephant calves. All population variables were relatively sensitive to parameters controlling energy 346 

intake (hsc, maxIRscaling and AEveg). 347 

3.3. Validation 348 

The model with its calibrated parameter values was validated by comparing its predictions with 349 

independent data from a different family groups utilising a different area (Fig. 5). Model predictions 350 

match these data well though the peak in birth rates was predicted a year late following the 2009 351 

drought.  352 

3.4. Hypothetical range loss scenarios 353 

To demonstrate the model’s potential application, we modelled the population size of the four family 354 

groups (IBs, LBs, VAs, and WAs) given hypothetical reductions of 10% and 50% of their home ranges 355 
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(Fig. 6). Over the time period for which the model was calibrated, a 10% reduction in range had little 356 

impact on the population size predictions throughout, whilst a 50% range loss predicts the end 357 

population size was generally below 100 individuals, compared to 151 in reality. 358 

4. Discussion 359 

Following calibration, the model generally fits the data well and in particular predicts the critical 360 

events induced by the 2009 drought. The Amboseli elephant population as a whole declined by 25% 361 

during the drought; in our modelled families, 16 adults and 15 calves died. Starving adult females 362 

struggled to meet the demands of reproduction, resulting in the deaths of young calves and failure of 363 

pregnancies. Despite the drought breaking at the end of 2009, the 22-month gestation period of 364 

elephants meant there was a two-year lag in births with low numbers of births occurring in 2010 and 365 

2011, but since drought acts to synchronise female reproduction there was a ‘baby-boom’ in 2012. 366 

Such drought-induced population dynamics are critical in the natural regulation of population size and 367 

are captured by the model, as indicated by the high R2 values. 368 

Elevated calf mortality predicted by the model in 2005 was the result of low median NDVI during this 369 

period. In contrast to the 2009 drought, we believe elephants were able to buffer this period of low 370 

productivity in 2005 by being more selective in their foraging locations and retreating to the fairly 371 

constant source of food in the ANP swamps, hence mortality rates are low. This was not possible 372 

during the 2009 drought, which began with a prolonged period of low rainfall in 2008, meaning ‘fall-373 

back’ resources such as the swamps were already depleted by the time the official drought occurred 374 

in 2009. This resulted in the high mortality rates of both adults and calves in 2009. The under-375 

prediction of birth rates in 2014-2015 in both the calibration and validation of the model is possibly 376 

because densities of other grazers are not considered in the model. The number of grazers in the 377 

Amboseli basin remained in low for a prolonged period following the drought, limiting competition for 378 

food for elephants. Incorporation of interspecific competitor density would be expected to improve 379 

model fit to birth rates post-2009, as elephants access more food and reproduce more readily. The 380 

under-prediction of population size from 2014 onwards results from under-prediction of birth rates in 381 

this period. 382 

The sensitivity analysis provided further support that the model was working accurately. The 383 

robustness of adult and juvenile mortality to changes in parameter values reflects generally low 384 

mortality rates in adult elephants whose large body size and substantial energy reserves allow them to 385 

buffer fluctuations in energy intake and expenditure. Calf mortality on the other hand is extremely 386 

sensitive, indicative of the vulnerability of young elephants to environmental changes (Foley et al., 387 

2008; Wato et al., 2016; Woolley, 2008). The overall sensitivity of all model outputs to parameters 388 
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controlling energy intake confirms that food availability is the key driver of elephant population 389 

dynamics. This endorses the use of mechanistic approaches in modelling the bottom-up processes 390 

controlling population dynamics. 391 

Given the success of the model in predicting observed elephant population dynamics, we 392 

demonstrated how this model may be applied to predict the response of elephant population size to 393 

changes in their range. A range reduction of 50% caused the population size of modelled families to 394 

decline, indicating that less absolute space would support fewer elephants. Whilst these scenarios 395 

were hypothetical, the model may be easily adapted to simulate range reduction resulting from 396 

specific land-management strategies such as the installation of fences or conversion of elephant 397 

habitats into human-dominated landscapes, both of which are possible scenarios for the elephants of 398 

Amboseli and elsewhere in Africa. The food availability input data may also be altered to simulate 399 

changes in median NDVI resulting from, for example, climate change, provided the relationship 400 

between NDVI and climatic variables is known. The use of NDVI here to represent herb-layer biomass 401 

could be replicated in other open, grass-dominated ecosystems following ground-truthing. Ground-402 

truthing is crucial in order to exclude unintended land-cover types and identify any features which 403 

may influence satellite-derived observations. By these means the model may also be readily applied to 404 

other elephant populations whose ranging patterns are known, or to other mammalian herbivores 405 

inhabiting grass-dominated ecosystems following re-parameterisation of the model. When considering 406 

application to species with finer-scale movements, it may be necessary to utilise a remote sensing 407 

product with higher spatial resolution, such as Landsat or Sentinel. Improvements in the estimation of 408 

biomass or food availability may perhaps be possible using alternative sensors, such as LiDAR, or 409 

alternative variables, such as the enhanced vegetation index (EVI) or net primary productivity (NPP). 410 

With the increasing demand for predictive modelling of population responses to environmental 411 

change (Wood et al., 2018), we believe mechanistic models which relate key drivers to population 412 

dynamics are appropriate for improving understanding of the processes underlying demographics and 413 

for providing robust predictions under novel environmental conditions. We have presented a model 414 

which relates elephant population dynamics to food availability and may be applied to understanding 415 

how elephants will cope given projected climate change scenarios, land-use change and management 416 

strategies. We hope that this will be used as a tool to aid the conservation and management of 417 

elephant populations and the ecosystems they inhabit, and may be applied to other species of interest 418 

to wildlife managers. 419 
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Figure 1. The home ranges (coloured polygons) of elephant family groups (IB, LB, VA and WA) included in the 

model. This represents the spatial extent of NDVI used to calculate time-specific food availability. Protected 

areas are indicated by dark grey boundaries, the international border between Kenya and Tanzania by the 

dashed white line, and the central Amboseli swamps in blue. Scale bar represents 10km (divisions of 5km). 
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Figure 2. Overview of the daily updating of each individual's energy budget. If energy is available through 

reserves, an individual will utilise this energy in maintenance, growth and reproduction. If insufficient 

energy remains to cover costs of maintenance, individuals enter starvation. These energy budgets cause 

births and deaths from which over time the population dynamics emerge. 
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Figure 3. Energy balance and resulting body composition of adult female elephant, Ilka, throughout the 

model period 2000-2016. The top plot shows the NDVI experienced by Ilka. NDVI is used here as a proxy for 

food availability, peaking during the biannual wet seasons and declining as the dry seasons progress. The 

energy balance plot compares energy expenditure with energy assimilated (red and grey lines, respectively). 

The resulting energy balance indicates whether energy intake was greater or less than energy expenditure 

(grey and red shading, respectively), and broadly coincides with peaks and troughs in NDVI. The energy 

expenditure plot further breaks down expenditure into BMR, gestation, growth and lactation. Lactation is 

energetically costly and results in a period of net negative energy balance. Due to the fluctuating energy 

balance, body composition changes: storage tissues increase when the balance is positive but are depleted 

during times of negative balance. Structural tissues may be depleted during starvation, as seen here in 2009-

2010. 
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Fig 4. Population size, births and deaths for modelled families in Amboseli years 2000 – 2016. Black lines and 

open points show the data, the thick grey line is the best fitting simulation. Light grey lines show the 30 best 

fitting simulations indicating the uncertainty in model outputs that result from uncertainty in the values of 

parameters. Amboseli years run October to September. R2 of best fitting simulation presented on plot. * 

indicates significance with p < 0.05. 
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Figure 5. Validation of model fit. Population size, births and deaths for families not used in model 

calibration. Black lines and open points show the data, light grey lines show the 30 simulations indicating 

the uncertainty in model outputs that results from uncertainty in the values of parameters. R2 of mean 

simulation presented on plot. * indicates significance with p < 0.05. 
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Figure 6. Population size for modelled families in Amboseli years 2000 – 2016 given hypothetical scenarios 

of 10% and 50% range loss. Black lines and open points show the observed population size data, light grey 

lines show the 30 simulations indicating the uncertainty in model outputs that result from uncertainty in the 

values of parameters. 
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Table 1. Sensitivities of population size, total number of births and mortalities, presented as % change in 

output for a 10% change in parameter (mean and standard error over ten repeated simulations and for 

changes above and below parameter value). 

Parameter Pop. size Births Adult and Juv. Mort. Calf Mort. 

storscaling -0.07  ±  3.02 0.02  ±  2.14 -0.14  ±  9.83 -0.31  ±  2.26 

Hsc -2.30  ±  3.19 -1.30  ±  2.81 0.70  ±  12.39 0.94  ±  1.66 

maxIRscaling 4.76  ±  4.09 2.69  ±  3.26 -0.63  ±  15.91 -3.98  ±  1.68 

AEveg 4.34  ±  4.87 2.38  ±  3.38 -0.38  ±  15.88 -4.28  ±  2.16 

AEmilk -0.42  ±  2.82 -3.39  ±  4.57 0.70  ±  13.33 -14.93  ±  3.9 

B0 -3.71  ±  3.59 0.63  ±  3.9 0.18  ±  17.13 15.95  ±  2.83 

E0 -0.52  ±  3.37 -3.48  ±  5.71 0.74  ±  11.5 -15.00  ±  4.32 

EPL -1.82  ±  2.59 -0.89  ±  2.64 0.86  ±  12.34 0.88  ±  2.14 

MRback -0.15  ±  2.65 -0.14  ±  2.16 -0.05  ±  11.06 0.02  ±  1.09 

MRscaling 0.08  ±  1.95 0.05  ±  1.97 0.09  ±  10.38 -0.12  ±  2.36 

DD -1.19  ±  3.07 -0.67  ±  3.21 0.32  ±  10.88 0.65  ±  1.92 
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